Predicting Malaria Incidence in Guinea: A Real Time Machine Learning Tool

Download Article

DOI: 10.21522/TIJAR.2014.12.04.Art005

Authors : Gerard Christian Kuotu, Nouman Diakite, Dioubate Mouhamed, Diallo Abdourahmane, Alioune Camara

Abstract:

Malaria remains a pressing public health issue in Guinea, with approximately 13 million individuals at risk of contracting the disease. Despite efforts to reduce malaria incidence, it remains the leading cause of consultations, hospitalizations, and deaths in the country. To address this challenge, machine learning (ML) techniques have gained traction in epidemiology for predicting disease outbreaks and identifying high-risk areas. During this internship, we aim to use ensemble learning algorithms to develop a predictive model for malaria incidence in Guinea. Our methodology involved data integration, feature engineering, and model training using various ML algorithms, such as logistic regression, random forest, decision tree, support vector machine, gradient boosting machine, artificial neural network and ensemble stacking leveraging diverse datasets, including clinical records, demographic health surveys, and climatic data spanning six years from 2018 to 2023. We evaluated model performance using the F1-score metric. We found that the ensemble stacking method, particularly balanced stacking, demonstrated superior predictive accuracy (F1-score = 0.74). This highlights the importance of interdisciplinary collaboration and data integration in epidemiological research, as well as the potential of ML in informing targeted interventions and resource allocation strategies for malaria control. Challenges such as multicollinearity and imbalanced datasets were addressed through robust statistical techniques and model tuning. This research underscores the significance of translating research findings into actionable insights for malaria control efforts in Guinea. By harnessing the power of ML and deploying user-friendly tools, public health authorities can make informed decisions to mitigate the burden of malaria and improve health outcomes for affected populations.

References:

[1].   President’s Malaria Initiative (PMI). 2023, Guinea Malaria Operational Plan FY 2023. https://d1u4sg1s9ptc4z.cloudfront.net/uploads/2023/01/FY-2023-Guinea-MOP.pdf

[2].   World Health Organization (WHO). 2020, Malaria in the African Region. https://www.afro.who.int/health-topics/malaria

[3].   Hamilton, A. J., Strauss, A. T., Martinez, D. A., et al., 2021, Machine learning and artificial intelligence: Applications in healthcare epidemiology. Antimicrobial Stewardship & Healthcare Epidemiology, 1(1), e28. https://doi.org/10.1017/ash.2021.191

[4].   Harvey, D., Valkenburg, W., & Amara, A., 2021, Predicting malaria epidemics in Burkina Faso with machine learning. PLOS ONE, 16(6), e0253302. https://doi.org/10.1371/journal.pone.0253302

[5].   Ji, C., Zou, X., Hu, Y., et al., 2019, XG-SF: An XGBoost classifier based on shapelet features for time series classification. Procedia Computer Science, 147, 24–28. https://doi.org/10.1016/j.procs.2019.01.087

[6].   Huang, J., & Ling, C. X., 2005, Using AUC and accuracy in evaluating learning algorithms. IEEE Transactions on Knowledge and Data Engineering, 17(3), 299–310. https://doi.org/10.1109/TKDE.2005.50

[7].   Kalipe, G., Gautham, V., & Behera, R. K., 2018, Predicting malarial outbreak using machine learning and deep learning approach: A review and analysis. In 2018 International Conference on Information Technology (ICIT) (pp. 33–38). IEEE. https://doi.org/10.1109/ICIT.2018.00017

[8].   Yaa, E. A., Quaye, I. K., Osei, P. P., et al., 2021, Malaria prediction model using machine learning algorithms. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(11), 7488–7496.

[9].   Nkiruka, O., Prasad, R., & Clement, O., 2021, Prediction of malaria incidence using climate variability and machine learning. Informatics in Medicine Unlocked, 22, 100508. https://doi.org/10.1016/j.imu.2020.100508

[10].  Kim, Y., Ratnam, J. V., Doi, T., et al., 2019, Malaria predictions based on seasonal climate forecasts in South Africa: A time series distributed lag nonlinear model. Scientific Reports, 9, 17882. https://doi.org/10.1038/s41598-019-54250-3

[11].  Higuchi, D., 2014, Characteristics of coping strategies for dysesthesia in preoperative patients with compressive cervical myelopathy. Asian Spine Journal, 8(4), 393–400. https://doi.org/10.4184/asj.2014.8.4.393

[12].  Castro, M. C., 2017, Malaria transmission and prospects for malaria eradication: The role of the environment. Cold Spring Harbor Perspectives in Medicine, 7(9), a025601. https://doi.org/10.1101/cshperspect.a025601

[13].  El-Hasnony, I. M., Elzeki, O. M., Alshehri, A., et al., 2022, Multi-label active learning-based machine learning model for heart disease prediction. Sensors, 22(4), 1184. https://doi.org/10.3390/s22031184

[14].  World Health Organization (WHO). 2017, A framework for malaria elimination. https://iris.who.int/handle/10665/254761

[15].  Weiss, D. J., Lucas, T. C. D., Nguyen, M., et al., 2019, Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum, 2000–17: A spatial and temporal modelling study. The Lancet, 394(10195), 322–331. https://doi.org/10.1016/S0140-6736(19)31097-9

[16].  Garske, T., Ferguson, N. M., & Ghani, A. C., 2013, Estimating air temperature and its influence on malaria transmission across Africa. PLoS ONE, 8(2), e56487. https://doi.org/10.1371/journal.pone.0056487

[17].  Bhatt, S., Weiss, D. J., Cameron, E., et al., 2015, The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature, 526(7572), 207–211. https://doi.org/10.1038/nature15535

[18].  Karuri, M. K., & Snow, R. W., 2016, Forecasting malaria burden in Africa using satellite meteorological data. Frontiers in Public Health, 4, 112. https://doi.org/10.3389/fpubh.2016.00112

[19].  Bousema, T., Griffin, J. T., Sauerwein, R. W., et al., 2012, Hitting hotspots: Spatial targeting of malaria for control and elimination. PLoS Medicine, 9(1), e1001165. https://doi.org/10.1371/journal.pmed.1001165

[20].  Reiner, R. C., Perkins, T. A., Barker, C. M., et al., 2015, A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010. Journal of the Royal Society Interface, 12(106), 20140921. https://doi.org/10.1098/rsif.2014.0921

[21].  Chang, H. H., Davis, G. M., & Waller, L. A., 2014, Mining spatio-temporal data on malaria for exploratory analysis and model building. International Journal of Health Geographics, 13(1), 31. https://doi.org/10.1186/1476-072X-13-31

[22].  Sturrock, H. J. W., Hsiang, M. S., Cohen, J. M., et al., 2013, Targeting asymptomatic malaria infections: Active surveillance in control and elimination. PLoS Medicine, 10(6), e1001467. https://doi.org/10.1371/journal.pmed.1001467

[23].  Snow, R. W., & Marsh, K., 2002, The consequences of reducing Plasmodium falciparum transmission in Africa. Advances in Parasitology, 52, 235–264. https://doi.org/10.1016/S0065-308X(02)52005-X

[24].  Omumbo, J. A., Hay, S. I., Goetz, S. J., et al., 2002, Updating historical maps of malaria transmission intensity in East Africa using remote sensing. Photogrammetric Engineering & Remote Sensing, 68(2), 161–166.

[25].  Osei, P., Frempong, G. A., & Nettey, O. E. A., 2020, Spatial analysis of malaria incidence and associated risk factors in Ghana. Geospatial Health, 15(1), 13–22. https://doi.org/10.4081/gh.2020.859

[26].  LeCun, Y., Bengio, Y., & Hinton, G., 2015, Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539

[27].  Müller, A. C., & Guido, S., 2016, Introduction to machine learning with Python: A guide for data scientists. O’Reilly Media.