A Clinical Perspective on Adult Cerebral Atrophy in Chronic Alcohol Use: Considering the Role of Neurotropic TORCH-Related Viruses (CMV, HSV-1, and Rubella)

Download Article

DOI: 10.21522/TIJAR.2014.13.01.Art018

Authors : Jean-Paul Mukeba Tshitende

Abstract:

Chronic alcohol use is a well-recognized cause of cerebral atrophy and ventricular enlargement in adults. Neurotropic viral infections, including cytomegalovirus (CMV), herpes simplex virus type 1 (HSV-1), and rubella virus—pathogens traditionally grouped within the TORCH framework—may also contribute to central nervous system injury, particularly in states of immune dysfunction. This descriptive observational study draws on routine clinical observations of eight adults aged 42–65 years with long-standing alcohol use who presented with neurological symptoms at a district-level hospital with referral access to tertiary care. Non-contrast computed tomography imaging demonstrated diffuse cerebral atrophy with proportional ventricular enlargement consistent with hydrocephalus ex vacuo rather than true hydrocephalus. Clinical history and available serological data suggested prior exposure to CMV, HSV-1, and/or rubella in several patients, without evidence of acute viral encephalitis. Integrating these observations with a narrative review of the literature, this article explores plausible mechanisms through which alcohol-related neurotoxicity, immune dysregulation, and latent or prior neurotropic viral exposure may interact to accelerating neuronal injury, with particular vulnerability of temporal lobe structures. These mechanisms are discussed as hypothesized associations rather than proven causal relationships. Recognition of these interactions is clinically relevant for practitioners evaluating alcohol-exposed adults with cerebral atrophy and ventricular enlargement, especially in resource-limited settings where advanced neuroimaging and molecular viral diagnostics are not readily available.

References:

[1].   Harper, C., 2009, The neuropathology of alcohol-related brain damage. Alcohol and Alcoholism, 44(2), 136–140.

[2].   Oscar-Berman, M., and Marinković, K., 2007, Alcohol: Effects on neurobehavioral functions and the brain. Neuropsychology Review, 17(3), 239–257.

[3].   Sullivan, E. V., Rosenbloom, M. J., Serventi, K. L., and Pfefferbaum, A., 2000, Effects of alcohol dependence on volumes of the brain. Neuropsychology, 14(3), 341–350.

[4].   Griffin, D. E., 2014, Viral encephalomyelitis. In J. E. Bennett, R. Dolin, and M. J. Blaser (Eds.), Mandell, Douglas, and Bennett’s principles and practice of infectious diseases (8th ed.). Elsevier.

[5].   Cheeran, M. C. J., Lokensgard, J. R., and Schleiss, M. R., 2009, Neuropathogenesis of congenital cytomegalovirus infection: Disease mechanisms and prospects for intervention. Clinical Microbiology Reviews, 22(1), 99–126.

[6].   Whitley, R. J., and Kimberlin, D. W., 2005, Herpes simplex encephalitis: Children and adolescents. Seminars in Pediatric Infectious Diseases, 16(1), 17–23.

[7].   Bradshaw, M. J., and Venkatesan, A., 2016, Herpes simplex virus-1 encephalitis in adults: Pathophysiology, diagnosis, and management. Neurotherapeutics, 13(3), 493–508.

[8].   Thomas, E., Mahadevan, A., and Taly, A. B., 2018, Viral encephalitis: An overview. Annals of Indian Academy of Neurology, 21(4), 282–291.

[9].   Szabo, G., and Saha, B., 2015, Alcohol’s effect on host defense. Alcohol Research: Current Reviews, 37(2), 159–170.

[10].  Crews, F. T., Lawrimore, C. J., Walter, T. J., and Coleman, L. G., 2017, The role of neuroimmune signaling in alcoholism. Neuropharmacology, 122, 56–73.

[11].  Pfefferbaum, A., and Sullivan, E. V., 2005, Disruption of brain white matter microstructure by excessive alcohol consumption. Neuropsychopharmacology, 30, 423–432.

[12].  Zahr, N. M., and Sullivan, E. V., 2008, Perspectives on fronto-fugal circuitry from human imaging of alcohol use disorders. Neuropharmacology, 56, 194–205.

[13].  Mailles, A., and Stahl, J.-P., 2009, Infectious encephalitis in adults. The Lancet Neurology, 8(12), 1149–1161.

[14].  Cinque, P., Marenzi, R., and Ceresa, D.,1998, Cytomegalovirus infections of the nervous system. Clinical Infectious Diseases, 26(6), 1409–1415. https://doi.org/10.1086/516282

[15].  Lokensgard, J. R., Cheeran, M. C., Hu, S., and Gekker, G., 2016, Chronic neuroinflammation following CMV infection. Journal of Neurovirology, 22, 720–732.

[16].  De Chiara, G., Piacentini, R., Fabiani, M., Mastrodonato, A., Marcocci, M. E., Limongi, D., Napoletani, G., Protto, V., Coluccio, P., Celestino, I., Li Puma, D. D., Grassi, C., and Palamara, A. T., 2019, Recurrent herpes simplex virus-1 infection induces hallmarks of neurodegeneration and cognitive deficits in mice. PLoS Pathogens, 15(3), e1007617. https://doi.org/10.1371/journal.ppat.1007617

[17].  Itzhaki, R. F., Lathe, R., Balin, B. J., Ballard, C., Barnett, F. C., Beach, T., Biglan, O., and Bloom, S. L., 2016, Microbes and Alzheimer’s disease. Journal of Alzheimer’s Disease, 51(4), 979–984.

[18].  Itzhaki, R. F., 2018, Herpes simplex virus type 1 and Alzheimer’s disease. Journal of Alzheimer’s Disease, 64, S53–S63.

[19].  Molina, P. E., Happel, K. I., Zhang, P., Kolls, J. K., and Nelson, S., 2010, Alcohol abuse and the immune system. Alcohol Research & Health, 33(1–2), 97–108.

[20].  Barr, T., and Helms, C., 2016, Opposing effects of alcohol on the immune system. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 65, 242–251.