Digital Finance in Fragile Settings: Structural Predictors of Mobile Money Retention in North Kivu, Democratic Republic of Congo
Abstract:
This study investigated the factors influencing the
continuous usage of mobile money services in the cities of Butembo and Beni,
North Kivu (DRC), using a structural equation modelling approach via SmartPLS.
The findings reveal that Trust, Subjective Norms, and Perceived Cost
significantly affect users’ continued use of mobile money platforms, while
Customer Experience and Perceived Quality do not show a direct effect. The
results highlight Continuous Usage as a central mechanism that strongly
predicts both Behavioural Intention and User Engagement, reinforcing its role
as a critical bridge between initial perceptions and long-term behaviour. From
a managerial standpoint, building trust, leveraging social influence, and
reducing transaction costs are key strategies for increasing adoption and
retention. Theoretically, the study confirms the relevance of trust- and
norm-based models in digital finance usage within low-infrastructure contexts. The
paper concludes with a call for future research to explore longitudinal
patterns, qualitative dimensions of service perception, and contextual
moderators such as digital literacy and income level.
References:
[1].
Shaikh, A. A., Glavee-Geo, R., Karjaluoto,
H., & Hinson, R. E., 2023, ‘Mobile money as a driver of digital financial
inclusion’, Technol. Forecast. Soc. Change, vol. 186, p. 122158, Doi:
10.1016/j.techfore.2022.122158.
[2].
Kim, M., Zoo, H., Lee, H., & Kang, J.,
2018, ‘Mobile financial services, financial inclusion, and development: A
systematic review of academic literature’, Electron. J. Inf. Syst. Dev.
Ctries., 84(5), p. e12044, Doi: 10.1002/isd2.12044.
[3].
Donovan, K., 2012, ‘Mobile Money for
Financial Inclusion’, in Information and Communications for Development 2012,
The World Bank, pp. 61–73. Doi: 10.1596/9780821389911_ch04.
[4].
Adelaja, A. O., Umeorah, S. C., Abikoye,
B. E., & Nezianya, M. C., 2024, ‘Advancing financial inclusion through
fintech: Solutions for unbanked and underbanked populations’, World J. Adv.
Res. Rev., 23(2), pp. 427–438, Doi: 10.30574/wjarr.2024.23.2.2379.
[5].
Jack, W., & Suri, T., 2011, ‘Mobile
Money: The Economics of M-PESA’, National Bureau of Economic Research,
Cambridge, MA, w16721, Jan. 2011. Doi: 10.3386/w16721.
[6].
Demirgüç-Kunt, A., Klapper, L., Singer,
D., & Ansar, S., 2022, The Global Findex Database 2021: Financial
Inclusion, Digital Payments, and Resilience in the Age of COVID-19. The
World Bank. Doi: 10.1596/978-1-4648-1897-4.
[7].
Jack, W., Ray, A., and Suri, T., 2013,
‘Transaction Networks: Evidence from Mobile Money in Kenya’, Am. Econ. Rev.,
103(3), pp. 356–361, Doi: 10.1257/aer.103.3.356.
[8].
Kemp, S., 2024, ‘Digital 2024: The
Democratic Republic of the Congo’, DataReportal – Global Digital Insights.
Accessed: Dec. 01, 2024. [Online]. Available: https://datareportal.com/reports/digital-2024-democratic-republic-of-the-congo
[9].
Kemp, S., ‘Digital 2023: Global Overview
Report — DataReportal – Global Digital Insights’. Accessed: Dec. 01, 2024.
[Online]. Available: https://datareportal.com/reports/digital-2023-global-overview-report?utm_source=DataReportal&utm_medium=Country_Article_Hyperlink&utm_campaign=Digital_2023&utm_term=Democratic_Republic_Of_The_Congo&utm_content=Global_Overview_Link
[10]. Ngunza,
K., 2024, ‘Democratic Republic of the Congo - United States Department of
State:023 Investment Climate Statements: Democratic Republic of the Congo’,
www.state.gov. Accessed: Dec. 01, 2024. [Online]. Available: https://www.state.gov/reports/2023-investment-climate-statements/democratic-republic-of-the-congo/
[11]. International
Monetary Fund. African Dept.,2019, ‘Democratic Republic of the Congo: Selected
Issues in: IMF Staff Country Reports Volume 2019 Issue 286 (2019)’. Accessed:
Dec. 01, 2024. [Online]. Available: https://www.elibrary.imf.org/view/journals/002/2019/286/article-A004-en.xml
[12]. Kalumendo,
R., Kapakazi, K., Kisumano, G. M., Bwambale, L., & Mitume, B., 2023,
‘Factors Influencing the Continuous Usage of Mobile Banking Services in
Butembo, Democratic Republic of Congo’, TEXILA Int. J. Manag., 9(2), pp.
46–54, Doi: 10.21522/TIJMG.2015.09.02.Art005.
[13]. Kalumendo,
R., 2023,‘The Benefits of Technological Developments on Businesses: A Survey
Conducted among SMEs in Beni, Democratic Republic of Congo’, https://doi.org/10.21522/TIJAR.2014.SE.22.01.Art012
[14]. Kalumendo,
R., 2022, ‘Barriers to SME Computerization in Developing Countries: Evidence
from SMEs in North Kivu, Democratic Republic of Congo’, Texila Int. J.
Manag., 8(2), pp. 163–169, Doi: 10.21522/TIJMG.2015.08.02.Art013.
[15]. Kalumendo,
R., 2022, ‘Predictive Factors of IT Systems Adoption by SME Employees in
Developing Countries: Evidence from SME Employees in North Kivu, DRC’, Texila
Int. J. Acad. Res., 9(4), pp. 28–36, Doi: 10.21522/TIJAR.2014.09.04.Art003.
[16]. Ozili,
P. K., 2018, ‘Impact of digital finance on financial inclusion and stability’, Borsa
Istanb. Rev., 18(4), pp. 329–340, Doi: 10.1016/j.bir.2017.12.003.
[17]. Nelly
Tochi Nwosu, and Oluwatosin Ilori, 2024, ‘Behavioral finance and financial
inclusion: A conceptual review and framework development’, World J. Adv.
Res. Rev., 22(3), pp. 204–212, Doi: 10.30574/wjarr.2024.22.3.1726.
[18]. World
Bank, 2024, ‘Financial inclusion is a key enabler to reducing poverty and
boosting prosperity’, World Bank. Accessed: Dec. 05, 2024. [Online].
Available: https://www.worldbank.org/en/topic/financialinclusion/overview
[19]. Bansal,
S., 2014, ‘Perspective of Technology in Achieving Financial Inclusion in Rural
India’, Procedia Econ. Finance, vol. 11, pp. 472–480, Doi:
10.1016/S2212-5671(14)00213-5.
[20]. Ozili,
P. K., 2022, ‘Digital Financial Inclusion’, in Big Data: A Game Changer for
Insurance Industry, K. Sood, R. K. Dhanaraj, B. Balusamy, S. Grima, and R.
Uma Maheshwari, Eds, Emerald Publishing Limited, pp. 229–238. Doi:
10.1108/978-1-80262-605-620221015.
[21]. Ahmad,
A. H., Green, C. J., Jiang, F., & Murinde, V., 2023, ‘Mobile money, ICT,
financial inclusion and growth: How different is Africa?’, Econ. Model.,
vol. 121, p. 106220, Doi: 10.1016/j.econmod.2023.106220.
[22]. Avom,
D., Bangaké, C., and Ndoya, H., 2023, ‘Do financial innovations improve
financial inclusion? Evidence from mobile money adoption in Africa’, Technol.
Forecast. Soc. Change, vol. 190, p. 122451, Doi:
10.1016/j.techfore.2023.122451.
[23]. Warsame,
M. H., and Abdalla, Y. A., 2024, ‘Impact of mobile financial services on
financial inclusion: empirical insights from Kenya’, Int. Rev. Econ.,
vol. 71, no. 3, pp. 633–666, Doi: 10.1007/s12232-024-00456-9.
[24]. Lu, B.,
Wang, Z., and Zhang, S., 2021, ‘Platform-based mechanisms, institutional trust,
and continuous use intention: The moderating role of perceived effectiveness of
sharing economy institutional mechanisms’, Inf. Manage., 58(7), p.
103504, Doi: 10.1016/j.im.2021.103504.
[25]. Mcknight,
D. H., Carter, M., Thatcher, J. B., and Clay, P. F., 2011, ‘Trust in a specific
technology: An investigation of its components and measures’, ACM Trans.
Manag. Inf. Syst., 2(2), pp. 1–25, Doi: 10.1145/1985347.1985353.
[26]. Arora,
P., and Banerji, R., 2024, ‘The impact of digital banking service quality on
customer loyalty: An interplay between customer experience and customer
satisfaction’, Asian Econ. Financ. Rev., 14(9), pp. 712–733, Doi:
10.55493/5002.v14i9.5199.
[27]. Phan Tan, L., & Le, T. H., 2024, ‘The Influence of Perceived
Price and Quality of Delivery on Online Repeat Purchase Intention: The Evidence
from Vietnamese Purchasers’, Cogent Bus. Manag.,10(1), p. 2173838, Doi:
10.1080/23311975.2023.2173838.
[28]. Dodds,
W. B., Monroe, K. B., and Grewal, D., 1991, ‘Effects of Price, Brand, and Store
Information on Buyers’ Product Evaluations’, J. Mark. Res., 28(3), pp.
307–319, Doi: 10.1177/002224379102800305.
[29]. DeLone,
W. H., & McLean, E. R., 2003, Model of Information Systems Success: A
Ten-Year Update’, J. Manag. Inf. Syst., vol. 19, no. 4, pp. 9–30, doi:
10.1080/07421222.2003.11045748.
[30]. Song,
Y., Gui, L., Wang, H., and Yang, Y., 2023, ‘Determinants of Continuous Usage
Intention in Community Group Buying Platform in China: Based on the Information
System Success Model and the Expanded Technology Acceptance Model’, Behav.
Sci., 13(11), p. 941, Doi: 10.3390/bs13110941.
[31]. Bhattacherjee,
A., 2001, ‘Understanding Information Systems Continuance: An
Expectation-Confirmation Model’, MIS Q., vol. 25, no. 3, p. 351, Doi:
10.2307/3250921.
[32]. O’Brien,
H. L., and Toms, E. G., 2008, ‘What is user engagement? A conceptual framework
for defining user engagement with technology’, J. Am. Soc. Inf. Sci.
Technol., 59(6), pp. 938–955, Doi: 10.1002/asi.20801.
[33]. Venkatesh,
V., Thong, J. Y., & Xu, X., 2012, ‘Consumer Acceptance and Use of
Information Technology: Extending the Unified Theory of Acceptance and Use of
Technology’, MIS Q., 36(1), p. 157, Doi: 10.2307/41410412.
[34]. Davis,
F. D., 1989, ‘Perceived Usefulness, Perceived Ease of Use, and User Acceptance
of Information Technology’, MIS Q., 13(3), p. 319, Doi: 10.2307/249008.
[35]. Hair,
J. F., Hult, G. T. M., Ringle, C. M., and Sarstedt, M., 2017, A primer on
partial least squares structural equation modeling (PLS-SEM), Second
edition. Los Angeles London New Delhi Singapore Washington DC Melbourne: SAGE.
[36]. Hair, J.
F., lliam Black, Babin, B. J., and Anderson, R. E., 2010, Eds, Multivariate
data analysis: a global perspective, 7. ed., Global ed. Upper Saddle River,
NJ Munich: Pearson.
[37]. F. Hair
Jr, J., Sarstedt, M., Hopkins, L., & G. Kuppelwieser, V.,2014, ‘Partial
least squares structural equation modeling (PLS-SEM): An emerging tool in
business research’, Eur. Bus. Rev., 26(2), pp. 106–121, Doi:
10.1108/EBR-10-2013-0128.
[38]. Preacher,
K. J., and Hayes, A. F., 2008, ‘Asymptotic and resampling strategies for
assessing and comparing indirect effects in multiple mediator models’, Behav.
Res. Methods, 40(3), pp. 879–891, Doi: 10.3758/BRM.40.3.879.
[39]. Hair,
J. F., Ringle, C. M., Gudergan, S. P., Fischer, A., Nitzl, C., and Menictas,
C., 2018, ‘Partial least squares structural equation modeling-based discrete
choice modeling: an illustration in modeling retailer choice’, Bus. Res.,
12(1), pp. 115–142, doi: 10.1007/s40685-018-0072-4.
[40]. Taber,
K. S., 2018, ‘The Use of Cronbach’s Alpha When Developing and Reporting
Research Instruments in Science Education’, Res. Sci. Educ., 48(6), pp.
1273–1296,, Doi: 10.1007/s11165-016-9602-2.
[41]. Fornell,
C., and Larcker, D. F., 1981, ‘Evaluating Structural Equation Models with
Unobservable Variables and Measurement Error’, J. Mark. Res.,18(1), p.
39, Doi: 10.2307/3151312.
[42]. Chin,
W. W., 1988, ‘The Partial Least Squares Approach to Structural Equation
Modeling’, in Modern Methods for Business Research, New York: Psychology
Press, 1988. Doi: 10.4324/9781410604385.
[43]. Cohen,
J., 2009, Statistical power analysis for the behavioral sciences, 2. ed.,
Reprint. New York, NY: Psychology Press.
[44]. Sharma,
P. N., Shmueli, G., Sarstedt, M., Danks, N., and Ray, S., 2021,
‘Prediction‐Oriented Model Selection in Partial Least Squares Path Modeling’, Decis.
Sci.,52(3), pp. 567–607, Doi: 10.1111/deci.12329.
[45]. Mcknight,
D. H., Carter, M., Thatcher, J. B., and Clay, P. F., 2011, ‘Trust in a specific
technology: An investigation of its components and measures’, ACM Trans.
Manag. Inf. Syst.,2(2), pp. 1–25, Doi: 10.1145/1985347.1985353.
[46]. Lu, Y., Yang, S., Chau, P. Y. K., and Cao, Y., 2011,
‘Dynamics between the trust transfer process and intention to use mobile
payment services: A cross-environment perspective’, Inf. Manage., 48(8),
pp. 393–403, Doi: 10.1016/j.im.2011.09.006.
[47]. Dodds, W. B., Monroe, K. B., and Grewal, D., 1981, ‘Effects of Price, Brand, and Store Information on Buyers’ Product Evaluations’, J. Mark. Res., 28(3), p. 307, Doi: 10.2307/3172866.
