EDITORIAL POLICY

Papers must be submitted with the understanding that they have not been published elsewhere (except in the form of an abstract or as part of a published lecture, review, or thesis) and are not currently under consideration by another journal published or any other publisher. The submitting (Corresponding) author is responsible for ensuring that the article’s publication has been approved by all the other coauthors. It is also the authors’ responsibility to ensure that the articles coming from a particular institution are submitted with the approval of the necessary institution. Only an acknowledgment from the editorial office officially establishes the date of receipt. It is a condition for submission of a paper that the authors permit editing of the paper for readability. All enquiries concerning the publication of accepted papers should be addressed to nadipelly.j@tau.edu.gy.

EDITORIAL TEAM
Chief Patron: Dr. A. Anand, Vice Chancellor, TAU, Guyana.
Executive Editor: Dr. Jagan Nadipelly, Faculty of Medicine – Pharmacology, TAU, Guyana.
Managing Editor: Dr. Pendru Raghunath, Asso. Prof. of Microbiology, TAU, Guyana.

PEER REVIEWERS
Dr. S. Esakki Muthu, Professor and HOD, Premedical Department, TAU, Guyana.
Dr. Edna D Cuaresma, Asso. Prof., Clinical Sciences, TAU, Guyana.
Mr. Dave C. Paguntalan, Asst. Prof., Nursing Sciences, TAU, Guyana.
Dr. Nagesh Venkatasubbareddy, Asst Prof., Pharmacology, TAU, Guyana.
Dr. Sankalan Sarkar, Asst. Prof. of Physiology, TAU, Guyana.
Dr. Rajini Kurup, Asst Prof., Microbiology, Uni. of Guyana, Guyana.

PRINCIPAL CONTACT INFORMATION
Dr. Pendru Raghunath,
Managing Editor, TJBMS,
Associate Professor of Microbiology,
Texila American University (TAU), George Town, Guyana, South America,
E-mail: pendru.r@tau.edu.gy
Skype: pendru.r@tau.edu.gy
ABOUT PLAGIARISM

Plagiarism is the use or close imitation of the language and ideas of another author and representation of them as one’s own original work. Duplicate publication, sometimes called self-plagiarism, occurs when an author reuses substantial parts of his or her own published work without providing the appropriate references. This can range from getting an identical paper published in multiple journals, where authors add small amounts of new data to a previous paper.

Plagiarism can be said to have clearly occurred when large chunks of text have been cut and pasted. Such manuscripts would not be considered for publication in TIJBMS Journal. But minor plagiarism without dishonest intent is relatively frequent, for example when an author reuses parts of an introduction from an earlier paper. The editors will judge any case of which they become aware (either by their own knowledge of and reading about the literature, or when alerted by referees) on its own merits.

The paper containing the plagiarism will be obviously returned back to the author’s for review, but we earnestly request the authors to avoid submitting plagiarized.
DISCLAIMER

Texila International Journal of Basic Medical Science’s (TIJBMS) make every effort to ensure the accuracy of all the information (the “Content”) contained in its publications. However, the TIJBMS and its agents make no representations or warranties whatsoever as to the accuracy, completeness or suitability for any purpose of the Content and disclaim all such representations and warranties whether express or implied to the maximum extent permitted by law. Any views expressed in this publication are the views of the authors and are not necessarily the views of the Editor’s or Texila International Journal of Basic Medical Science’s.
TABLE OF CONTENT

1 Attrition Rate and Reasons for Attrition in Medical Schools Worldwide - an Analysis
 Arulsamy Anand

2 Chemotherapy Induced Peripheral Neuropathy and Therapeutic Options: A Review
 Gaitree Ramkumar

Attrition Rate and Reasons for Attrition in Medicals Schools Worldwide- an Analysis

Article by Arulsamy Anand
Vice Chancellor, Texila American University, East Bank Demerara, Guyana
Email: vc@tau.edu.gy

Abstract

Background: Students attrition in Medical schools is a major concern, attrition rates are one of the important indicators being used by the accrediting bodies to measure the medical schools’ performance. Having understood the gravity of this issue, medical schools are paying great attention to curb the attrition rate. This review aims to understand the various reasons identified by worldwide medical schools for the attrition of students. The reasons identified by different medical schools and the attrition rate, detailed in this study will be of great value to the medical school administrators to address the attrition in their respective medical schools.

Methods: Based on the determined eligibility criteria, six electronic databases were searched in the year 2018 for relevant articles. Nine relevant articles were chosen for the study, the articles where chosen based on the experience of different medical schools from different countries, which include the UK, Nigeria, Jeddah, Croatia, Pakistan, Ireland, Kingdom of Saudi Arabia, Israel and Malaysia. Articles that reported the attrition rate and the reasons were chosen. An analysis was done to understand the experience of the worldwide medical schools and the reason attributed to attrition.

Results: A careful analysis of nine articles reveals that the attrition rate varied from 3.8% in Saudi Arabia to 26% in Croatia medical schools. UK medical school showed an attrition rate of 14%, Ireland-5.7%, Nigeria- 7.8%, Jeddah- 20.8%, Croatia- 26%, Pakistan-16%, Kingdom of Saudi Arabia-3.8%, Israel- 12.6% and Malaysia- 5.9%. An average attrition rate of 12.5% was found in all schools from different countries.

The major reason for attrition is found to be academic difficulty followed by absenteeism, isolation, personal problems, psychological problem, and financial problems.

Conclusion: Investment into medical education is expensive compared to the other programs and dropping out from medical schools has multiple implications. The individual student has a major setback in life, the society loses the professional manpower. The medical school loses its revenue and waste its professionals time. In most cases it is observed that students drop out because of academic difficulty hence, it is imperative that medical schools pay more attention to screening students academically and psychologically. It should also create strong students support system and academic mentoring to minimize dropouts.

Keywords: Attrition Rate, Reasons for attrition, Academic difficulty, Dropouts.

Background

Attrition in an academic institution is not something new, but attrition in a medical school needs to be dealt with appropriately. Enrolling into medical school represents the start of a demanding and stressful period for students. Despite a multitude of social, academic, and emotional stressors, most students successfully cope with a complex new life role and achieve academic success. Other students are less able to successfully manage this transition and, sooner or later, decide to withdraw themselves, or face dismissal by the medical school.

Attrition rates are one of the important indicators being used to measure university performance. In part, this reflects the fact that student attrition represents an inefficient use of resources. If students who leave the school before graduating cannot be used in the labor market whatever human capital they have gained during their courses [1].

For the medical profession, dropout results in a loss of useful contribution and impacts on medical workforce planning. A high attrition rate can affect the academic reputation of a medical school and
staff morale and may have financial consequences with subsequent impact on research and teaching. Most important of all, however, is the effect of leaving medicine on the individual student - dropout has considerable financial, social and emotional consequences and can cause great distress, low morale, and poor self-esteem.

Addressing the attrition in medical school requires an understanding of the cause of attrition and the attrition rate. This article analyzes the reason for attrition in medical schools located in different countries.

Methods

Literature search

As it is a literature review, ethical approval is not required for this project. Articles from the various digital database were sourced, 78 related articles were identified from ResearchGate, Pubmed, Biomed Central and Google scholar. Research Studies reported in languages other than English were omitted from this review. No date restrictions were used. This literature search was conducted and completed in early 2018. The references of the included articles were examined to identify additional relevant studies.

Review procedure

The initial search strategies yielded 78 original candidate articles, but after abstract review, 38 articles remained eligible for inclusion. Among the common reasons for article exclusion were the following: the articles did not report the attrition rate and did not state any reasons.

After reviewing full texts, an additional 19 studies were excluded for reasons including nonmedical student learners, insufficient characteristics of attrition, Non-English, not peer-reviewed or scholarly and Conference presentation (Figure 1). As a result, 19 articles were selected for inclusion in this review.
Eligibility criteria

To examine the reasons attributed by medical schools for attrition and the attrition rate detailed by them. The eligibility criteria are given as the inclusion and exclusion criteria in the below table.

Table 1. Inclusion and exclusion criteria

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Inclusion</th>
<th>Exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>English</td>
<td>Non-English</td>
</tr>
<tr>
<td>Type of Article</td>
<td>Peer-reviewed</td>
<td>Non-peer reviewed or scholarly, Conference presentation</td>
</tr>
<tr>
<td>Type of Studies</td>
<td>Quantitative (e.g. controlled studies, before and after studies, post-course studies, longitudinal studies); Qualitative (e.g. action research, case studies); reviews (e.g. meta-analyses, scoping reviews);</td>
<td></td>
</tr>
<tr>
<td>Study Focus</td>
<td>Attrition rate and the reasons for attrition</td>
<td></td>
</tr>
<tr>
<td>Population and Sample</td>
<td>Medical education at all levels (i.e. first- to fourth-year medical student, Clerkship)</td>
<td>Not medical education related; other health professions (e.g. pharmacy, nursing, veterinary)</td>
</tr>
</tbody>
</table>
Results

The scope of published studies on attrition and reasons for attrition in medical schools. There have been numerous studies on attrition and the reasons for attrition, however, this study is unique mainly because it offers a combined view of all studies related to attrition.

Countries of study

The articles were chosen from studies conducted in different medical schools spread across the world. This includes UK (n = 1), Nigeria (n = 1), Jeddah (n = 1), Croatia (n = 1), Pakistan (n = 1), Ireland (n = 1), Kingdom of Saudi Arabia (n = 1), Israel (n = 1), and Malaysia (n = 1).

Level of medical education

The review and searches included all 4 years of medical school (including preclinical and clerkship).

Attrition rate and reasons for attrition in medical schools worldwide

1. Studies conducted in the UK medical school

This study retrospectively assessed the records of all students at Leeds School of Medicine who left the course prematurely between 1983 and 1992. The demographic data of the leavers were compared with those of all students entering the school during the 10 years studied. A-level examination choices and results of the leavers were compared with those of a control group of all students who entered the school in 1990.

Attrition Rate: The attrition rate over the 10 years was 14% (283 students), with more males than females leaving.

Reason for Attrition: Fifty-three percent of leavers were asked to withdraw from the course for academic reasons; the rest left voluntarily. Thirty percent had personal problems, 9% had a combination of academic and personal problems and 8% had health problems (psychological difficulties were the commonest). [10]

2. Studies conducted in the irish medical school

Attrition Rate: Overall attrition rate was 5.7% (45/779) in 6 completed cohorts when students who transferred to other medical courses were excluded. Students from Kuwait and the United Arab Emirates had the highest dropout rate (RR = 5.70, 95% Confidence Intervals 2.65 to 12.27; p < 0.0001) compared to Irish and EU students combined. North American students had a higher dropout rate than Irish and EU students; RR = 2.68 (1.09 to 6.58; p = 0.027) but this was not significant when transfers were excluded (RR = 1.32(0.38, 4.62); p = 0.75). Male students were more likely to drop out than females (RR 1.70, 93 to 3.11) but this was not significant (p = 0.079).

Reason for attrition: Absenteeism was documented in 30% of students, academic difficulty in 55.7%, social isolation in 20%, and psychological morbidity in 40% (higher than other studies). Qualitative analysis revealed recurrent themes of isolation, failure, and despair. [8].

3. Studies conducted in the nigerian medical school

Attrition Rate: A pilot analysis was undertaken using the records of students who failed at medical school as a result of the inability to pass the second MBBS examination at Ebonyi State University, Abakaliki, Nigeria, between 2002 and 2007. Some of these students were interviewed using a structured questionnaire.

Data analysis showed that 58 (7.8%) of the students admitted into preclinical class withdrew from their study. Thirty-six (62.1%) were males and the rest were females.

Reason for Attrition Thirteen of those withdrawn was interviewed, and 53.8% of them believed they had poor academic ability, while 15.4% attributed their withdrawal to family pressure. [3]

4. Studies conducted in the jeddah medical school

Analysis of Attrition over a 7-Year Period at the Faculty of Medicine, King Abdulaziz University, Jeddah
The purpose of this study is to determine the attrition rate at the Faculty of Medicine from 1996 to 2002. Review of all students’ records (males and females) matriculated during the study period. Non-graduating students’ records were further examined to differentiate academic from non-academic attrition and to determine the length of stay in the faculty, frequency of failing examinations and curriculum level at leaving the faculty.

Attrition Rate: out of 1,725 students admitted to the faculty, 359 left the faculty without graduation. This gives an attrition rate of 20.8%.

Reason for Attrition: 10.9% for academic reasons. For the non-academic attrition, 81.3% of the students leave after one year, 28.7% of them without failing any examination. In the academic attrition group, 50.5% of the students are dismissed after 2 years and another 25.5% after 3 years. 73.4% of these students fail 4 times before being dismissed. 50.5% of the academic attrition is in the first year of the curriculum. [2].

5. **Studies conducted in croatia medical school**

To determine attrition and predictors of academic success among medical students at the University of Split, Croatia. The researchers analyzed academic records of 2054 students enrolled during the 1979-2008 period.

Attrition Rate: They found that 26% (533/2054) of enrolled students did not graduate.

Reason for attrition: The most common reasons for attrition were 'personal' (36.4%), transfer to another medical school (35.6%), and dismissal due to unsatisfactory academic record (21.2%).[9].

6. **Studies conducted in the pakistan medical school**

Attrition Rate: Study conducted during the six years between 1996 and 2001, the school enrolled 396 students out of which 64 students left which equals to 16%.

Reason for Attrition: A total of 6 (17.1%) female and 7 (24.1%) male students voluntarily left the course, and 29 (82.9%) female and 22 (75.9%) male students withdrew from the course for academic reasons. Twenty-seven (93.1%) female and 19 (86.4%) male students were asked to withdraw due to poor academic performance. Five (7.8%) students left medicine due to psychiatric or psychological problems. A similar number of students left after being admitted into some other institution. Four (6.3%) students left medicine for financial reasons, and a similar number migrated overseas. [5].

7. **Studies conducted in the saudi arabian medical school:**

A cross-sectional study of all students admitted to the College of Medicine at KSU during 5 academic years (1994 to 1998) was conducted in 2004.

Attrition Rate: Overall, 28 students (3.8%) dropped out,

Reason for Attrition: There was a significantly greater frequency of dropping out in the Low GPA group (10/120; 8.3%) compared with the High GPA group (18/619; 2.9%: OR 3.035 [95% CI: 1.37, 6.75], P=0.01) [1].

8. **Studies conducted in the israel medical school**

The study sought to identify variables from the demographic, socio-economic, academic and personal background of medical students in order to reveal possible predictors of drop-out from medical school. The research included 443 students who were admitted to Ben Gurion University (BGU) Medical School during its first 10 years, 1974–1983.

Attrition Rate: The study found out that 12.6% dropped out of BGU

Reason for Attrition: It was found that the permanent drop-out rate in BGU Medical School (12.6%) is relatively high and mainly due to academic failures. Of all admitted students 11.3% do not graduate on time due to academic reasons. [7].

9. **Studies conducted in the malaysian medical school**

Attrition Rate: Among the 10 student cohorts between 2002 and 2007, a total of 112 out of 1,890 students withdrew from the medical program with more male than female students. The attrition rate among medical students in IMU between 2002 and 2007 was 5.9%.
Reason for Attrition: Students with ‘high’ academic banding of entry qualifications and poor English qualification grades exhibited higher rates of attrition. [11]

Discussion

Studies predominantly attribute academic difficulty as the major cause of attrition. Studies have also shown that students enrolling with lower level GPA struggle in academics and are at risk of dropping out, the other attributes like absenteeism, isolation, and depression are added to the vows of poor academic performance.

Attrition can only be addressed when the issues related to academic performance and student satisfaction are addressed. Some of the measures are:

- **Entry requirement:** Students has to be screened appropriate predictive screening test which will adequate assess students’ suitability to the medical program.
- **Non-cognitive skills:** students should be assessed on the non-cognitive skills particularly focusing on the coping skills and emotional quotients.
- **Students Support Service:** Every student should be assigned to a student support service office, who will render all support to the students. He/She will shadow him/her throughout the program, particularly during the pre-clinical years.
- **Faculty Advisers:** Every student should be assigned with a Faculty adviser, who will monitor the students closely and also be the first point of contact for any academic related concerns.
- **Academic Mentoring:** This is the most important aspect of retention, which will guarantee almost 90% retention or more.
- **Feedback system:** Regular feedback from the students is the most important activity to be encouraged in any medical school. Addressing the students concerns on the feedback will resolve many trivial concerns but keep the student satisfied.
- **Monitoring and Independence:** Many teachers believe that students should fend for themselves and should have self-motivation to do a medical course, but this is not always true. Students need constant monitoring and guidance, at least during the pre-clinical years.

Limitations of the study

1. Focus on a few schools in a country: The data chosen for the study are only from a few schools in a country, hence it may not represent the countries national data.
2. Variation in duration: The study coverage period varied in each of these studies spanning from 5 years to 30 years.
3. Variation in the number of the students studied: As the study period varied the number of students studied also varied.

Conclusion

The medical profession is a taxing field. Many students who enter medical school often leave the course halfway upon realizing that they are not capable. Some are forced to leave, owing to financial or personal situations. Attrition is not uncommon in universities, but attrition rates are highest in medical schools. Medical students require a support system, which will help them deal with the stress that comes along with the course. When they are psychologically supported, their academic performance will also improve. While it is impossible to completely abolish attrition in medical schools, it is very conceivable to bring it down.

Disclaimer

This disclaimer informs readers that the views, thoughts, and opinions expressed in the text belong solely to the author, and not necessarily to the author’s employer, organization, committee or other group or individual.
References

Chemotherapy Induced Peripheral Neuropathy and Therapeutic Options: A Review

Article by Gaitree Ramkumar¹, Osama Yaqoob Arain¹, Siyabonga Caleb Mathengwa¹, Jagan Nadipelly²

¹Medical students, College of Medicine, Texila American University, Guyana, South America
²Associate Professor of Pharmacology, College of Medicine, Texila American University, Guyana, South America

Abstract

Background: Peripheral neuropathy is characterized by distal damage to neurons along PNS which consists of loss of function. This would result from various factors. Chemotherapy Induced Peripheral Neuropathy (CIPN), a side effect of chemotherapy decreasing quality of life. There are various mechanisms by which these cause CIPN are neuronal structural and functional alterations.

Method: Background searches into peripheral neuropathy and the chemotherapeutic agents that induce CIPN and their mechanisms were done from a series of journal databases.

Treatment options were sought from the same databases dating between 2003 and 2019. From this the therapeutic options that have been explored and tried and the updates to these have been enumerated a discussed.

Discussion: CIPN manifests from a heterogenous group of aetologies. One standardized treatment option is not available for proper treatment of CIPN. Research over the years has produced methods of prevention and treatment for CIPN patients, including the use of preventative therapy, polypharmacy and some specific first line drugs. Nonpharmacological methods of treating CIPN comprises of the recent use of medicinal plants and complementary therapies for severe pain relief and better quality of life for these patients.

Future Scope of Studies: Over the past decade, despite many efforts to develop a standardized treatment for CIPN, there has been little success. As a result, many more future studies are strongly indicated.

Keywords: Chemotherapy Induced Peripheral Neuropathy, Chemotherapy, Neuralgia, Neuropathy Mechanisms, Peripheral Neuropathy Therapy.

Introduction

Peripheral neuropathy (PN) – characterized by pain, numbness, and tingling in the extremities and slow nerve conduction – affects a significant percentage of the U. S. population and can be extremely debilitating. The prevalence of peripheral neuropathy in the general population is 2.4% and increases with age to an estimated 8% in those older than 55 years (1), (2). Peripheral neuropathy is more common in patients with diabetes mellitus, human immunodeficiency virus infection, and dysproteinemic disorders and most importantly in those receiving chemotherapy.

Peripheral neuropathy manifests as axonal degeneration. Diagnosis of PN involves a complete evaluation to determine the extent of the neurological deficit as well as a complete history and physical examination to determine the possible aetiology. Despite thorough history and physical exam, aetiology remains a mystery in approximately 50 percent of cases.

Peripheral neuropathy can be the result of genetics, chronic disease, environmental toxins, alcoholism, nutritional deficiencies, or side effects of certain medications, for instance chemotherapeutic agents.

Among chronic diseases, DM is that the foremost typical clarification for PN. Mechanisms involved in diabetes-associated PN unit of measurement mentioned full throughout a later section. Alternative endocrinological abnormalities which will result in pathology embody disorder and hypertrophy. The pathology related to adenosis usually manifests as carpal tunnel
syndrome. Alternative manifestations like diabetic pathology, with tingling paraesthesia are during a stockling-glove distribution. PN of hypertrophy (excess growth hormone) includes carpal tunnel syndrome and activity polyneuropathy. Human immunological disorder virus (HIV) conjointly leads to PN, typically involving distal, nonpainful paraesthesias, shrieved articulatio talocruralis reflexes, and abnormal pain and temperature perception (3) illness is another chronic unwellness leading to PN. Peripheral pathology is common among chronic alcohol abusers, with prevalence as low as 9 % and as high as 50%. Alcohol-associated PN is expounded to a mixture of things, together with deficiency disease, nutrient deficiencies (thiamine in particular), and direct neurotoxicity of alcohol.

Pathogenesis of peripheral neuropathy

Demyelinating neuropathy

If the deceleration of nerve physical phenomenon affects all nerves roughly equally the designation is probably going to be the demyelinating sort of neuropathy (type 1). Seventy per cent of such patients have a duplication of the factor for a twenty-two kDa peripheral nerve myelin macromolecule on body seventeen (4). The duplication causes overexpression of the protein (4). The clinical picture ranges from classic claw foot with inverted champagne bottle legs to scarcely detectable clawing of the toes. Different mutations of constant macromolecule and of different myelin proteins cause an identical clinical image.

About 100% of patients with a demyelinating pathology have a body fluid paraprotein (4). Although often related to a solitary tumour, the paraprotein is usually benign. The commonest syndrome may be a slowly progressive preponderantly sensory pathology with AN IgMκ paraprotein. The paraprotein is AN antibody directed against the macromolecule epitopes on myelin associated compound protein. The antibody is directly responsible for the neuropathy.

Chronic inflammatory demyelinating polyradiculoneuropathy is that the most common quite no transmissible demyelinating pathology and affects regarding a try of per 100 000 of the population (5). The illness is typically preponderantly motor, and patients show a proximal as well as distal pattern of weakness; the condition may be relapsing and remitting. Protein concentrations within the body fluid square measure nearly always inflated (5). Chronic inflammatory demyelinating polyradiculoneuropathy is diagnosed by exclusion of the other causes from neurophysiological testing, which shows multifocal abnormalities with partial conduction block. This causes the compound muscle nerve impulse following proximal stimulation to be smaller than that following distal stimulation (5). It is thought to be a disease due to the inflammation within the nerves and response to therapy (6).

Chronic axonal neuropathy

Axonal polyneuropathy may be sensory or sensory and motor. It has several causes, which can usually be steered by the history or examination (7).

Such chronic idiopathic axonal neuropathy usually occurs in elderly people and is often indolent, predominantly sensory, and length dependent. Patients can be reassured that, although their condition may progress, it will usually do so only slowly and is unlikely to become seriously disabling.

Loss of pain and temperature sensation and spontaneous neuropathic pain, represented as burning or puncture, is distinguished symptoms of nerve fibre pathology. They are due to degeneration of thinly medullated and fat nerve fibres (7). Proof of the designation would need skin diagnostic test or enumeration of unmyelinated nerve fibres in lepton micrographs of a nerve diagnostic test specimen.

Chronic nerve fibre pathology happens in patients with several multisystem hereditary disorders. The identification of those conditions is typically steered by the opposite neurologic and general options (8). In this disease the symptoms usually begin in childhood and are associated with claw toes but may not come to attention until middle or old age. The condition is clinically and genetically heterogeneous, and a number of other cistron loci are concerned (8).
Alcohol-related neuropathy

Neuropathy related to chronic liver disease/alcoholism seems to be related to direct Ammendola et al found the strongest correlation was between incidence of nerve fibre pathology (most unremarkably of the sural nerve) and total period dose of fermentation alcohol, compared to alternative parameters examined (malnutrition and case history of alcoholism) (9). Alternative B-vitamin deficiencies, together with pteroylglutamic acid deficiency, have additionally been related to cases of alcohol-related pathology (10, 11).

Thyroid/Pituitary Neuropathies

Mucinous deposits in soft tissue leading to nervous disorder and carpal tunnel-like symptoms are involved in pathology related to gland disease (12). Neuropathy associated with excess growth hormone or acromegaly has been associated with sub perineural-tissue proliferation and diminished myelinated and unmyelinated fibbers (12).

AIDS-associated neuropathy

Peripheral neuropathy affects as many as one-third of individuals with acquired immunodeficiency syndrome (AIDS), most commonly manifested as distal, symmetrical polyneuropathy. A study of 251 HIV-positive people found the incidence of pathology was considerably correlative with extent of immune deficiency (reflected in low CD4 counts) and deficiency disease (decreased weight, haemoglobin, and serum albumin) (13).

Drugs causing chemotherapy induced peripheral neuropathy

Chemotherapy Induced Peripheral Neuropathy (CIPN) is a side effect cancer patient and survivors are subjected to. This typically decreases the quality of life and manifests as paraesthesia, hyperalgesias, cold allodynia, myalgia, arthralgia disrupted motor activities and neurogenic pain. Enlisting the various chemotherapeutic agents and understanding their mechanism is key to establish an approach to manage the patients’ resultant condition. CIPN is associated with many cancer chemotherapeutics but research has been done into a significant number of these.

The list includes Cisplatin, Oxaliplatin, Paclitaxel, Docetaxel, Epothilones, Bortezomib, Thalidomide, Lenalidomide, Pomalidomide, Vincristine and Suramin (14).

The various mechanisms by which these cause CIPN includes immune mediated mechanisms, alterations in the function of neuronal ion channels, degeneration of axons in myelinated neurons, altered calcium homeostasis within the cell and oxidative stress by the induction of reactive oxygen species (15).

Cisplatin and oxaliplatin

These two agents have been enlisted for the treatment of solid tumours and an important agent in the treatment of colorectal cancer as part of the FOLFOX regimen (16). By forming strong crosslinks between purine bases in the genetic material of the cell, Oxaliplatin disrupts the normal patterns of cell proliferation (16). Furthermore, inhibition of mRNA synthesis is achieved by the inhibition of RNA polymerases (17) ensuring a complete disruption of genetic activity and therefore cell death. Another mechanism of action is the initiation of an immune response via Interferon-gamma mediated T-Cell response (18). Cisplatin, is known for certain cytotoxic effects resulting from the disruption of mitochondrial functions to trigger oxidative toxicity – by which reactive oxygen species are released and these then damage nucleic and membranous materials of the cell – and the activation of the apoptotic pathways (19).

Cisplatin typically induces neuropathy by means of an axonal degeneration, intra-epidermal (nociceptor) loss, alteration of calcium homeostasis and mitochondrial dysfunction. Oxaliplatin shares an immune response mechanism by dissimilar underlying mechanisms to that of Cisplatin (Figure 1). Typically, Oxaliplatin mediates neuronal damage via inflammation while Cisplatin acts by altering the excitability of peripheral neurons.
Paclitaxel and docetaxel

Belonging to the taxane group of agents, their usage appears dominant in the treatment of solid tumours.

Primarily they bind to microtubules comprising the cytoskeleton of the neuronal body, inducing damage to the axons and affecting signal transduction and retrograde and anterograde transport. Additionally, the neuronal inflammation pathway is triggered and alteration of the function of ion channels as well as alterations to the neuronal cell membrane (Figure 2).

Vincristine

Inclusive in MOPP, COPP and BEACOPP regimens for the treatment of Hodgkin’s lymphomas, many paediatric neoplasms such as leukaemias – it is hence used commonly. Vincristine interferes with cytoskeleton synthesis by binding to the beta-globin of microtubules (23).

Vincristine induces CIPN by means of an immune mediated response, resulting from cytokine release and the expression of integrins in the peripheral tissue. It affects microtubules as discussed, the myelin sheath, and alters calcium homeostasis of the cell resulting in changes in the membrane excitability factors (Figure 3).

Figure 1. Adapted from: Starobova H., Vetter I. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front. Mol. Neurosci. 2017 May 31; (10)

Illustrating the mechanisms of CIPN induced by chemotherapeutic agents Cisplatin and Oxaliplatin.
Illustrating the mechanisms of CIPN induced by chemotherapeutic agents Paclitaxel

Table 1 summarizes the various mechanisms of neuropathy corresponding with the inducing drugs (26).

Bortezomib

Used typically for leukemoid cancers and it has been approved for usage in multiple myeloma, this agent works as a proteasome inhibitor (24).

Mechanisms inducing neuropathy are similar to previous agents such as mitochondrial altered homeostasis of calcium with the inclusion accumulation of Bortezomib in the Dorsal root Ganglion and dysregulation of neurotrophins (25).
Mechanisms of chemotherapy induced peripheral neuropathy

Table 1. Adapted from: Han Y. and Smith M. T. Pathobiology of cancer chemotherapy-induced peripheral neuropathy (CIPN). Front. Pharmacol. 2013 Dec 18.

<table>
<thead>
<tr>
<th>Chemotherapy agent</th>
<th>Rodent CIPN models and human studies</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisplatin Oxaliplatin</td>
<td>Male C57BL6 mice Female Wistar Rats-cultured DRGs</td>
<td>Up-regulation TRPV1, TRPA1 and TRM8 TRPM8 and/or TRPA1 Over-expression; to cold allodynia</td>
</tr>
<tr>
<td>Cisplatin Oxaliplatin</td>
<td>Male SD rats</td>
<td>Activation of p38 MAPK and ERK1/2, along with downregulation of SAPK/JNK in cultured DRGs</td>
</tr>
<tr>
<td>Vincristine Paclitaxel</td>
<td>Male SD rats</td>
<td>Calcium increase either by influx extracellular Ca(^{2+}) or released from mitochondrial intracellular stores, binding to (\alpha_2\delta) subunits of Ca(^{2+}) channel; decreased calcium</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>Human neuroblastoma cell line, SHSY-5Y</td>
<td>Activation of calpain, degradation of neuronal calcium sensor (NCS-1), and loss of intracellular calcium signaling</td>
</tr>
<tr>
<td>Paclitaxel Vincristine Cisplatin Oxaliplatin Bortezomib</td>
<td>Female/male Wister rats Male SD rats</td>
<td>NMDA receptor antagonist antagonize CIPN in prevention not intervention protocol or only at high dose</td>
</tr>
<tr>
<td>Oxaliplatin Cisplatin Vincristine</td>
<td>Male mice C57BL6J Male SD rats</td>
<td>DNA damage</td>
</tr>
<tr>
<td>Oxaliplatin</td>
<td>Male SD rats</td>
<td>Increase in PKC activity in supra-spinal regions</td>
</tr>
<tr>
<td>Paclitaxel but Not Oxaliplatin</td>
<td>Male SD rats – cultured DRGs</td>
<td>Increased released of substance P and altered CGRP and somatostatin release</td>
</tr>
<tr>
<td>Cisplatin Paclitaxel</td>
<td>Female patients Female Wistar rats</td>
<td>Decreased in NGF levels by Total Neuropathy Score (TNS) in patients and in rat plasma samples</td>
</tr>
<tr>
<td>Oxaliplatin</td>
<td>Patients Rates</td>
<td>Dysfunction of axonal Na(^+) channels Dysfunction of axonal K(^+) channels</td>
</tr>
</tbody>
</table>

Enlisting the numerous drugs and their brief mechanisms of inducing CIPN.
Immune mediated injury

Mechanical hyperalgesia and the loss of intra epidermal fibres due to oxaliplatin and paclitaxel has been shown to be mediated by monocytes and microglia, indicated by decreased neuropathy after administering antibiotics known to inhibit these cells (26, 27).

Agents triggering an increase in levels of specific cytokines (IL-6, IL-1 beta, TNF-alpha) have also been shown to sensitize nociceptors leading to neuralgic presentations (28).

Increased expression of integrins on the surface of endothelial expressions gives way for macrophage (CXCR3) migration into nervous tissue, allowing macrophage induced injury (29). This can also be mediated by increased chemokine leukin-12 in dorsal horn ganglia which attracts T-Lymphocytes and monocytes leading to activation of these which increases intracellular Ca^{2+} and illicit attraction of immune cells to the inflamed site. This is caused by the increased binding affinity of STAT3 to the CXCL 12 genepromoter (28).

Altered calcium homeostasis

Certain drug metabolites, such as oxalate from oxaliplatin, acts as Ca^{2+} chelators. The chelation favours an influx of Na⁺ initiating an action potential (31). Mitochondrial depolarization triggered by chemotherapeutic agents that activate a Mitochondrial Permeability Transition Pore initiate depolarization of the mitochondria and the release of Ca^{2+} (32).

Apoptosis and stress by oxidative species

Chemotherapeutic agents targeting mitochondrial DNA, lead to an alteration of function or disruption of the membranous integrity of the organelle which can trigger a dysfunction. Results are a generation of reactive species, typically oxygen species (33). These species are known to destroy proteinaceous and lipid-based components in the cell, resulting in damage to organelle and cell membranes including genetic material damage. The presence of these molecules also triggers the Cytochrome C and Bax initiation of apoptosis (33) leading to neuronal damage. An inclusive finding leading to mitochondrial dysfunction is that of increased vacuolation and mitochondrial swelling (34).

Altered neuronal excitability

Changes to the ion channel function and expression induce changes in action potentials favouring the propagation of such. Increased expression of Na channels at the Nodes of Ranvier along axons (35) and alterations in their function (36) have been shown with usage of agents such as Oxaliplatin. A decreased expression of K⁺ channels was also found in subjects with Oxaliplatin exposure (36).

Methods

Background searches into peripheral neuropathy and the chemotherapeutic agents that induce CIPN and their mechanisms was done from a series of journal databases including PubMed, SCOPUS, Frontiers, Science Direct and Nature’s series of Journals.

Treatment options were sought from the same databases dating between 2003 and 2019. From this the therapeutic options that have been explored and tried and the updates to these have been enumerated as discussed.

Discussion

Chemotherapy-induced peripheral neuropathy cannot be regarded as a homogeneous syndrome, given the great variety of cytostatic drugs exhibiting different modes of damaging the PNS (37). The treatment options available for the management of CIPN are almost as diverse as the etiologies, due to the diversities of the underlying initiating events, patient populations and manifestations of the different types of pain, hence there is no way to determine a particular therapy and the response of an individual to that particular therapeutic intervention (38).

The treatment of CIPN remains largely ineffective. Although different strategies have been attempted, no pharmacological agent has yet been shown to be helpful. As a result, many patients are forced to reduce the dosage or discontinue potentially curative neurotoxic drugs, on a trial and error basis [38].
Hence there is no best or ideal treatment option. However, over the years several therapeutic strategies have been postulated, even though much research and clinical trials are still needed before the usage can be approved. Nevertheless, evidence has established a set of first-line drugs for usage in the management of CIPN. Among other researches, complementary therapeutic approaches include the use of combination therapy in polypharmacy, preventative medicines, medicinal plants and psychological management.

CIPU patients should be treated on a holistic level that considers all aspects of patient well-being. Pain, depression, and anxiety are highly interrelated, greatly impairing quality of life in those with cancer [39]. In Box 1 the various therapeutic options available for patients suffering from CIPU are highlighted. Recently, most treatment options have a higher affinity towards non-pharmacological therapies such as medicinal herbs.

The goal of most treatments is to limit the intense pain experienced by patients from their specific chemotherapy agents causing severe neuropathic pain over a course of time.

<table>
<thead>
<tr>
<th>Box 1. Key points: Treatment of CIPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacological treatment</td>
</tr>
<tr>
<td>Preventative therapy</td>
</tr>
<tr>
<td>Polypharmacy combinations</td>
</tr>
<tr>
<td>First-line therapy</td>
</tr>
<tr>
<td>Non-pharmacological treatment</td>
</tr>
<tr>
<td>Medicinal plants</td>
</tr>
<tr>
<td>Complementary therapies</td>
</tr>
<tr>
<td>Psychological treatment</td>
</tr>
<tr>
<td>Rehabilitation, Physical Therapy and Safety Factors</td>
</tr>
</tbody>
</table>

Pharmacological therapy

Preventative drugs

The application of preventative drugs will not exert a significant impact on the progression of the neoplastic disease. Preventative treatments are aimed at trying to reduce the incidence or severity of CIPN in patients actively receiving neurotoxic treatments (40).

In 2003, Paice mentions that clinical studies were underway to evaluate the use of glutamine and glutathione to prevent CIPN. By 2009, Kaley and DeAngelis stated that in order for these preventative drugs to be beneficial it must reduce the neurotoxic effect of the drugs while not interfering with its anti-tumour property. They provided evidence for the uses of these preventative drugs by the results from clinical trials conducted. This concept was further developed in 2012, in which the efficacy of these drugs was revised by Brzezinski. Evaluation of these drugs was based on their effectiveness as a preventative drug and its impact of the chemotherapeutic activity. These drugs include calcium and magnesium ions, vitamin E, glutathione, glutamine, N-acetylcysteine, acetyl-L-carnitine, human recombinant interleukin and antiepileptic drugs. The cumulative results from this study are seen in figure 4.
Figure 4: List of drugs tested for their effectiveness in CIPN prevention. Adapted from Brzezinski (2012), Chemotherapy-induced peripheral neuropathy. Part II. Prevention

Published in 2014, the ASCO guidelines on the prevention of CIPN, based on a systematic review of 42 randomized controlled trials investigating 18 agents, found that there are no agents that have shown consistent, clinically meaningful benefits for CIPN prevention (41). These guidelines have several recommendations against and for the use of certain drugs used in both treatment and prevention, of which are found in table 2.

Table 2. ASCO guidelines for treatment and prevention of CIPN. Adapted from Stenger (2014) ASCO Releases Guidelines on Prevention and Management of Chemotherapy-Induced Peripheral Neuropathy in Survivors of Adult Cancers

<table>
<thead>
<tr>
<th>Agent</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevention Recommendations</td>
<td></td>
</tr>
<tr>
<td>Acetyl-L-carnitine</td>
<td>Strong against, with high strength of evidence, no evidence of efficacy and high evidence of harm</td>
</tr>
<tr>
<td>Amifostine</td>
<td>Moderate against, with intermediate strength of evidence, low evidence of efficacy and moderate evidence of harm</td>
</tr>
<tr>
<td>Amitriptyline</td>
<td>Moderate against, with intermediate strength of evidence, no evidence of efficacy and moderate evidence of harm</td>
</tr>
<tr>
<td>Calcium and Magnesium for patients receiving oxaliplatin-base chemotherapy</td>
<td>Moderate against, with high strength of evidence and low evidence of efficacy and harm</td>
</tr>
<tr>
<td>Diethyldithio-carbamate</td>
<td>Strong against, with low strength of evidence, no evidence of efficacy and high evidence of harm</td>
</tr>
<tr>
<td>Glutathione for patients receiving paclitaxel/carboplatin chemotherapy</td>
<td>Moderate against, with intermediate strength of evidence and low evidence of efficacy and harm</td>
</tr>
<tr>
<td>Nimodipine</td>
<td>Strong against, with low strength of evidence, no evidence of efficacy and moderate evidence of harm</td>
</tr>
<tr>
<td>Org 2766</td>
<td>Moderate against, with intermediate strength of evidence and low evidence of efficacy and harm</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>Retinoic acid</td>
<td>Moderate against, with low strength of evidence, low evidence of efficacy and moderate evidence of harm</td>
</tr>
<tr>
<td>rhuLIF or emfilermin</td>
<td>Moderate against, with low strength of evidence, no evidence of efficacy and low evidence of harm</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>Moderate against, with intermediate strength of evidence and low evidence of efficacy and harm</td>
</tr>
<tr>
<td>Venlafaxine</td>
<td>Insufficient information for recommendation, with intermediate strength of evidence and moderate evidence of efficacy and harm</td>
</tr>
<tr>
<td>Acetylcysteine, carbamazepine/oxycarbazepine, glutamate or glutathione for patients receiving cisplatin or oxaliplatin-based chemotherapy, goshajinkigan or omega-3 fatty acids.</td>
<td>Inconclusive recommendation, with low strength of evidence and low evidence of efficacy and harm for all</td>
</tr>
</tbody>
</table>

Treatment Recommendations

<table>
<thead>
<tr>
<th>Acetyl-L-carnitine</th>
<th>Low strength of evidence, low evidence of efficacy, moderate evidence of harm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tricyclic antidepressants (nortriptyline/amitriptyline)</td>
<td>Intermediate strength of evidence, low evidence of efficacy and harm.</td>
</tr>
<tr>
<td>Gabapentin</td>
<td>Intermediate strength of evidence, low evidence of efficacy and harm</td>
</tr>
<tr>
<td>Topical gel treatment containing baclofen (10mg) amitriptyline (40mg) and ketamine (20mg)</td>
<td>Intermediate strength of evidence, moderate evidence of efficacy and low evidence of harm</td>
</tr>
</tbody>
</table>

Polypharmacy combinations

CIPN treatments are usually adjusted based on the desired effect that will be of maximal benefit to the patient. Basis for treating CIPN patients is to administer one drug at a particular time period, then the drug is gradually titrated to a higher dose as long as the harm does not outweigh the benefit of the drug or simply it is switched with a similar or different drug.

In 2005, the concept of drug combinations was proposed to treat CIPN by Gilron and Max. They postulated that having a combination of drug acting via different mechanism can further improve pain relief with less side effects.

Benefits of combining an opioid with a non-opioid adjuvant include enhanced analgesic efficacy, broader analgesic spectrum, decreased opioid dose and prevent opioid tolerance. In chronic pain management, drug interactions are of concern. Therefore, close observation is required with certain drug combinations.

First-line therapy

In 2003, Paice introduces an algorithm for management of neuropathic pain, shown in figure 5. The algorithm commences with an evaluation of the patient to establish a baseline upon which to gauge the efficacy of the therapy. Drugs considered as first-line therapy includes anticonvulsants, corticosteroids, local anaesthetics, opioids and tricyclic antidepressants. By 2009, these categories of drugs were still given as first line for symptomatic treatment and were under further investigations.
Most of these drugs are not standardized and their usage is dependent on patient tolerability and the diverse pathogenesis involved in CIPN.

In 2015, Kajih and Moore proposed a list of drugs for pharmacological treatment given in table 3, with Duloxetine being the only pharmacologic therapy recommended in the American Society of Clinical Oncology (ASCO) clinical practice guidelines for treatment of CIPN in patients with cancer (42). While the other drugs have been under investigation for their efficacy in treating CIPN. Further in 2015, Trivedi et al, through randomized controlled trials for the treatment of CIPN, showed that antiepileptic, antidepressants and topical drugs were of limited success (41). Results of these trials are shown in table 4.

CIPN does not have a standardized treatment protocol due mainly to the fact that it manifests itself in several diverse pathogeneses and etiologies. Thereby, making each treatment specific to the patient and the underlying cause.

Considering this fact, in 2014 Cohen and Mao summarizes several mechanisms involved in the development of CIPN and its specific treatment, seen in figure 6.

Figure 5. Algorithm for Management of Neuropathic Pain. Adapted from Paice (2003) Mechanisms and Management of Neuropathic Pain in Cancer.
Table 3. Pharmacological treatment strategies for CIPN. Adapted from Kajih and Moore (2015) Management of Chemotherapy-Induced Peripheral Neuropathy

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Dosage</th>
<th>Drugs causing CIPN</th>
<th>Primary study outcome measure and results</th>
<th>Overall Result</th>
<th>Adverse effect of interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duloxetine</td>
<td>30 mg/day for 1 wk, increase to 60 mg/day</td>
<td>Vinca alkaloids, platinum agents, or taxanes</td>
<td>Global improvement as assessed by numeric scales (scales, 0-100) in daily data was no significant difference in mean score between group (3.4±3.6 vs 1.9±3.1 in placebo arm; P=NS). Global improvement at final visit assessed by verbal rating scale (scale, complete relief-symptoms worse); no significant difference between group (47% vs 31% in placebo arm; P=NS),</td>
<td>Negative</td>
<td>Tiredness</td>
</tr>
<tr>
<td>Tricyclic</td>
<td>Amitriptyline: 25-100 mg/day; max dose: 200 mg/day</td>
<td>Cisplatin</td>
<td>Paraesthesia as assessed by visual analog scale: in first treatment period, no significant reduction in paraesthesia (49 vs 55; scale, 0-100) in placebo arm; P=.78). Negative</td>
<td>Dry mouth</td>
<td>Dizziness</td>
</tr>
<tr>
<td>Antidepressants</td>
<td>Nortriptyline: 10-25 mg/day initially; titrate to effective dose (usually 75 mg/day)</td>
<td>Venlafaxine</td>
<td>Full relief of acute neurotoxicity: 31.3% vs 5.3% in placebo arm (P=.03) Positive</td>
<td>Grade 1-2: Nausea and Vomiting Asthenia, Somnolence</td>
<td>Grade 1-2: Nausea and Vomiting Asthenia, Somnolence</td>
</tr>
<tr>
<td>Anticonvulsants</td>
<td>Gabapentin: 300-900 mg/day; titrate to 3,600 mg/day</td>
<td>Oxaliplatin</td>
<td>Reduction in average pain positive</td>
<td>Fatigue (7%)</td>
<td>Fatigue (7%)</td>
</tr>
<tr>
<td></td>
<td>Pregabalin: 150 mg/day initially; may titrate up to 600 mg/day (max dose)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topical products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compounded gel containing baclofen 10 mg, amitriptyline 40 mg, and ketamine 20 mg applied bid</td>
<td>NSAID(e)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ibuprofen 630 mg bid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opioids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tramadol slow-release tablets: 200-400 mg/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oxycodone CR: 10 mg tablet q12h; may titrate every 3 days to a max dose of 60 mg q12h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CIPN: chemotherapy-induced peripheral neuropathy; CR: controlled release; max: maximum; NSAID: nonsteroidal anti-inflammatory drug

Table 4. Phase 3 Randomized, Placebo-Controlled CIPN Treatment Trials. Adapted from Trivedi (2015) Management of Chemotherapy-Induced Peripheral Neuropathy

<table>
<thead>
<tr>
<th>Pharmacologic agent and dosage</th>
<th>Drugs causing CIPN</th>
<th>Primary study outcome measure and results</th>
<th>Overall Result</th>
<th>Adverse effect of interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amitriptyline 10 mg daily with dose escalation of 10 mg/week up to target maximum dosage of 50 mg daily for 8 weeks</td>
<td>Vinca alkaloids, platinum agents, or taxanes</td>
<td>Global improvement as assessed by numeric scales (scales, 0-100) in daily data was no significant difference in mean score between group (3.4±3.6 vs 1.9±3.1 in placebo arm; P=NS). Global improvement at final visit assessed by verbal rating scale (scale, complete relief-symptoms worse); no significant difference between group (47% vs 31% in placebo arm; P=NS),</td>
<td>Negative</td>
<td>Tiredness Tachycardia</td>
</tr>
<tr>
<td>Nortriptyline (N) 25 mg daily with dose escalation of 25 mg/week up to target maximum dosage of 100 mg during treatment period</td>
<td>Cisplatin</td>
<td>Paraesthesia as assessed by visual analog scale: in first treatment period, no significant reduction in paraesthesia (49 vs 55; scale, 0-100) in placebo arm; P=.78). Negative</td>
<td>Negative</td>
<td>Dry mouth Constipation</td>
</tr>
<tr>
<td>Venlafaxine 50 mg 1h prior to oxaliplatin infusion and 37.5 mg extended- release twice daily on days 2 through 11</td>
<td>Oxaliplatin</td>
<td>Full relief of acute neurotoxicity: 31.3% vs 5.3% in placebo arm (P=.03)</td>
<td>Positive</td>
<td>Grade 1-2: Nausea and Vomiting Asthenia, Somnolence</td>
</tr>
<tr>
<td>Duloxetine (D) 30 mg</td>
<td>Paclitaxel</td>
<td>Reduction in average pain positive</td>
<td>Fatigue (7%)</td>
<td></td>
</tr>
</tbody>
</table>
daily for 1 week, then 60 mg daily for 4 weeks during
dicetaxel, nanoparticle albumin-bound paclitaxel, cisplatin, oxaliplatin
as measured by BPI-SF: in initial treatment period, larger mean reduction in BPI-SF pain score in duloxetine group than placebo group (1.06 vs 0.34 (scale, 0-10); P=.003) with moderately large effect size (0.513).

<table>
<thead>
<tr>
<th>Antiepileptic</th>
<th>Gabapentin(G) 300 mg with dose escalation of 300 mg to a target maximum dosage of 2700 mg daily for 6 weeks during treatment period</th>
<th>Vinca alkaloids, Taxanes, or platinum agents</th>
<th>Averages pain by NRS and ENS: no difference in NRS or ENS score at baseline 6 weeks or 4 weeks between groups</th>
<th>Negative</th>
<th>No significant difference in toxicities between group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamotrigine</td>
<td>25 mg at bedtime for 2 weeks, then 25 mg twice daily for 2 weeks, then 50 mg twice daily for 2 weeks, then 100 mg twice daily for 2 weeks, then 150 mg twice daily for 2 weeks</td>
<td>Vinca alkaloids, Taxanes, or platinum agents</td>
<td>Averages pain by NRS and ENS: no difference in NRS or ENS score at baseline or 10 weeks between groups</td>
<td>Negative</td>
<td>No significant difference in toxicities between group</td>
</tr>
<tr>
<td>Topical</td>
<td>Baclofen, amitriptyline, and ketamine gel, 1.31 g of compounded gel containing 10 mg baclofen, 40 mg am</td>
<td>Vinca alkaloids, Taxanes, or platinum agents</td>
<td>EORTC CPIN sensory subscale mean neuropathy change from baseline to 4 weeks: 8.1 vs 3.8 in placebo arm (P=.053)</td>
<td>Negative</td>
<td>No significant difference in toxicities between group</td>
</tr>
<tr>
<td></td>
<td>Arnitrptyline and ketamine (AK) cream 4 g twice daily for 6 weeks</td>
<td>Taxanes or notaxanes</td>
<td>Mean pain, numbness, and tingling score at week 6: no significant</td>
<td>Negative</td>
<td>No significant difference in toxicities between group</td>
</tr>
</tbody>
</table>
Non-pharmacological therapy

Medical plants

CIPN patients already succumb to numerous amounts of medications per day. A different perspective is to reduce on the quantity of chemical consumed by these patients, which can build up and eventually cause toxicity. Considering that these medical plants does not interact with the chemotherapeutic agents to decrease their efficacy. It is more beneficial to the patient than pharmacological treatments, which can be a substantial burden to the patient as well as increase healthcare costs. Medicinal plants are the most recent approach to managing CIPN in 2019, proposed by authors Wu et al. Majority of these plant extracts are used because their active compound has natural anti-inflammatory and antioxidant properties which can help counteract the inflammatory effects of chemotherapeutic drugs on peripheral nerves.

Complementary therapies

There are several different avenues patients take for relief of their neuropathic pain when they their prescription medications are no longer effective. They are considered complementary since they can be used simultaneously with chemotherapeutic drugs and have little to no interaction with these drugs. Such therapies include the use of acupuncture, among others which have readily decreased pain experienced by these patients. Table 5, displays a list of complementary therapies that can be used for treatment of CIPN.

Psychological therapy

Painful neuropathies can significantly impair the quality of daily life of those suffering from cancer, especially correlating with the depression and anxiety. Several studies have shown that pain can directly affect mood and daily activities such as work, sleep and socializing.

Cognitive behaviour techniques can be employed as adjuvants to pharmacological therapies and can help patient develop positive coping methods in dealing with difficult situations such as extreme pain. Examples of these techniques include hypnosis, meditation and imagery.

Rehabilitation, physical therapy and safety factors

An essential consideration is managing chronic neuropathic pain from CIPN. This provides a safe environment for these patients which can help them avoid serious accidents such as sudden fatal falls, especially in patients with lower functional dependence in performing simple tasks such as getting dressed.

Physical therapy can improve functional muscle strength, which can improve coordination and sensory integration. Expressive arts and relaxation prayers. These can further help to improve mood and provide a sense of control to the patient.

Ankle foot orthotics (AFO)--type braces, which fit easily within a standard shoe, can help prevent falls when patients experience a slapping gait or foot drop (39).

Practical safety measures include advising patients who are insensitive to heat to test the temperature of water in their home to avoid scalding, wear gloves while washing dishes and to use pot holders when cooking. Walkways in the home should be clear, with no throw rugs that could lead to falls. Well-lit hallways and the use of nightlights may prevent falls. Non-skid shower and tub mats will also help prevent falls while bathing (39).

Future scope of studies

Despite the existence of CIPN over the past decade, not much significance has been given to its treatment. As majority of treatment options available are directly linked to the underlying
chemotherapeutic agent being used. It is clear that this is an area that requires much future researches to help CIPN patients. Box 2 demonstrates a list of future research questions.

Box 2: Key Research Questions

Clinical trials should be conducted among patients using both medical herbs and preventative drugs to test their combined efficacy.

A comparison between medicinal plants and first line drugs.

Pain relief among patients using complementary therapies and those using pharmaceutical drugs.

References

GLOBAL OFFICE
Texila Education & Management Services (P) Ltd,
Module 310, III floor,
TIDEL Park, ELCOT-SEZ,
Aerodrome Post, Coimbatore-641014,
Tamilnadu, India.
E-mail: ejournal.assist@tau.edu.org
Skype: texila.aco32
 Whatsapp: +918056580933

TEXILA AMERICAN UNIVERSITY
Lot 2442, Plantation Providence,
East Bank Demerara (EBD),
Guyana, South America.