Determination of Molecular Property, Bioactivity Score and Binding Energy of the Phytochemical Compounds Present in Cassia Auriculata by Molinspiration and DFT Method

Download Article

DOI: 10.21522./TIJBMS.2016.02.02.Art002

Authors : A. Chandra Mohan, Dhanarajan M.S, Geetha S, Gajalakshmi R, Divya S. R

Abstract:

Phytoconstituent present in Cassia Auriculata were found to obey the Lipinski’s rule (MiLog P <5) α - Tocopherol (2.007) indicated their drug likeness property. Among these compounds, α - Tocopherol exhibited highest score towards GPCR ligand, (0.25) nuclear receptor ligand (0.43) and inhibitory activities towards protease (0.29), enzyme (0.25) and kinase (-0.22) inhibitors compared to others. Insilico determination of binding energy using DFT method proved that α- Tocopherol was found to possess good binding energy (B3LYP and HF method were found to -1228.3913, -1236.9904 &-1243.4557 a.u. and -1220.2810,-1228.4658 &-1234.8000 a.u.) among others hence it was found to be more stable.

Keywords: Cassia auriculata phytochemical compounds, Molinspiration software, DFT methods and Insilico prediction.

References:

[1].     Anastas, P.T. I.J. Levy, K.E. Parent (Eds). Green Chemistry Education. Changing the Course of Chemistry, ACS Publications, Washington DC, 2009.

[2].     Basu and Kirtikar. Indian Medicinal Plants. Vol. II, Second edition .International Book distributors Dehradun India, 867-868; 1935.

[3].     Diebold. U. The surface science of titanium dioxide. Sur Sci Rep, 48: 53–229; 2003. http://www.molinspiration.com.

[4].     Evans. W.C. Trease and Evans Pharmacognosy W.B. Saunders Company Ltd., London, pp (14th Edition). 19-20; 2000.

[5].     Grossman. E. Chasing Molecules: Poisonous Products, Human Health, and the Promise of Green Chemistry. Island Press, New York, 2009.

[6].     Lipinski, C.A. F. Lombardo, B.W. Dominy, P.J. Feeney. Adv Drug Delivery Rev., 23(1-3):3-25; 1997.

[7].     Lipinski, C.A. F. Lombardo, B.W. Dominy, P.J. Feeney. Adv Drug Deliv Rev; 46 (1-3): 3-26; 2001.

[8].     Lipinski. C.A. Drug Discovery Today: Technologies; 1 (4): 337-34; 2004.

[9].     Mossi, Mazutti, A.J. M. Paroul, N. Corazza, M.L. Dariva, C. Cansian & R.L. Oliveira, O.R. Rocha, R.F. Dantas, M.M.M.B. Duarte, et al. Oil sludge treatment by photocatalysis applying black and white light. Chem Eng J, 157: 80–85; 2010.

[10].  Mukunthan, K.S. E.K. Elumalai, N.P. Trupti, V. Ramachandra Murty. Catharanthus roseus: a natural source for the synthesis of silver nanoparticles. Asian Pacific Journal of Tropical Biomedicine, 270-274; 2011.

[11].  Newman, D.J. G.M. Cragg, K.M. Snadder. J. Nat. Prod., 66(7): 1022 -1037; 2003.

[12].  Prakash. S.K. Int. J. Poultry Sci. 5: 259-261; 2006.

[13].  Sharma. S.K. Green Chemistry for Environmental Sustainability. Series: Advancing Sustainability Through Green Chemistry and Engineering. CRC Press, Boca Raton, FL, 2010.

[14].  Thirumurgan, A. N.A. Tomy, R. Jai Ganesh, S. Gobikrishnan. Biological reduction of silver nanoparticles using plant leaf extracts and its effect an increased antimicrobial activity against clinically isolated organism. De. Phar. Chem, 2: 279-284; 2010.

[15].  Tripathy, A. A.M. Raichur, N. Chandrasekaran, T.C. Prathna, A. Mukherjee. J. Nanopart. Res.12, 237; 2010. DOI: 10.1007/s11051-009-9602-5

[16].  Tagboto, S. S. Townson. Adv. Parasitol., 50: 199-295; 2001.

[17].         Thompson, T.L. J.T. Yates Jr. Surface science studies of the photoactivation of TiO2-New photochemical processes. Chem Rev, 106: 4428–4453; 2006.