A Low Noise, Low Power Readout Front-End Analysis for Biomedical Applications using CMOS Technology

Download Article

DOI: 10.21522./TAJMHR.2016.05.01.Art001

Authors : Jyoti Sehgal, Manoj Kumar

Abstract:

As biopotential signals are having very small frequency variations tens of Hz and micro to millivolts amplitude in the range. While acquiring biopotential signals from a human body, intrusions occur in the acquisition system. Thus, for acquiring noise-free signals, the enhanced Biopotential Acquisition unit having a high gain with an improved common-mode rejection ratio readout front-end is designed. To solve mentioned issues, an improved front end is introduced in this paper to achieve high DC gain and high Unity-gain frequency. The proposed front-end operates at ±0.2 V supply voltage, the bias current of 20µA, and achieves a high gain of 74dB. The design comprises a miller frequency compensation structure by connecting a capacitor across a high voltage stage and the load capacitor is connected across output by following the relation of CC > 0.22 CL. The proposed high gain stage achieves additional gain with reduced noise of 0.2 mV/  with a minimal power consumption of 1.9 nW. The analog readout front-end is executed using 180 nm CMOS Technology and utilizes less power, making it ideal for battery-powered devices in Biopotential Acquisition systems. The final section includes a comparison of the proposed front-end with various amplifiers.

References:

[1].   Elamien, M. B., Mahmoud, S. A., 2017, Analysis and design of a highly linear CMOS OTA for portable biomedical applications in 90 nm CMOS, Microelectronics Journal, 70, 72-80, Doi: 10.1016/j.mejo.2017.10.009.

[2].   Sai Meena, M. V., Malipatil, S., Kumar, D. S., 2020, Low Power CMOS OTA Design for Biomedical Applications, IJERT, International Journal of Engineering Research and Technology, NCCDS, 8(13), 171-173.

[3].   Zhao, X., Fang, H. J., Ling, T., Xu, J., 2014, Low-voltage process-insensitive frequency compensation method for two-stage OTA with enhanced DC gain, Elsevier, International Journal of Electronics and Communications, 685-690, Doi: https://doi.org/10.1016/j.aeue.2014.12.003

[4].   Suman, S., 2019, Two-Stage CMOS Operational Amplifier: Analysis and Design, SSRN Electronic Journal, August, 40-44, Doi:10.2139/ssrn.3433181.

[5].   Tan, K. T., Ahmad, N., Mohamad, M., Musa, F. A. S., 2019, Design and Analysis of Two-Stage CMOS Operational Amplifier using 0.13 µm Technology, International Conference on Applied Photonics and Electronics (InCAPE), Doi: https://doi.org/10.1063/1.5142132

[6].   Singh, W., Yatharth, G., Paritosh, J., and Sujay, D., 2017, Energy Efficient Biopotential Acquisition Unit for Wearable health Monitoring Applications, IEEE, Doi: 978-1-5090-5404-6/17/$31.00.

[7].   Moallemi, S., Jannesari, A., 2012, A New Architecture For Two-Stage OTA with No-Miller Capacitor Compensation, IEEE, 978-1-4673-3119-7/12.

[8].   Zhang, H., Qin, Y., Hong, Z., 2009, A 1.8-V 770-nW Biopotential Acquisition System for portable Applications, IEEE Published in 2009 IEEE Biomedical Circuits and Systems Conference, Doi: 10.1109/BIOCAS.2009.5372077.

[9].   Akbari, M., Nazari, M., Sharifi, L., Hashemipour, O., 2015, Improving power efficiency of a two-stage operational amplifier for biomedical applications, Springer, Analog Integrated Circuit and Signal Processing, 24th April 2015, Doi: 10.1007/s10470-015-0542-y.

[10].  Khameh, H., Shamsi, H., 2012, On the design of a low-voltage two-stage OTA using bulk-driven and positive feedback techniques, Taylor and Francis, 99(9), 1309–1315.

[11].  Mirvakili, A., Koomson, V. J., 2014, Passive frequency compensation for high gain-bandwidth and high slew-rate two-stage OTA, Electronics Letters, 24th April 2014, 50(9), 657–659, https://doi.org/10.1049/el.2014.0473.

[12].  Kim, H. S., Cha, H. K., 2018, A Low-Noise Biopotential CMOS Amplifier IC Using Low-Power Two-Stage OTA for Neural Recording Applications, World Scientific, Journal of Circuits, Systems, and Computers, 27(5), Doi: 10.1142/S0218126618500688.

[13].  Gaonkar, S., Sushma, P. S., 2016, Fathima, A., Design of High CMRR Two Stage Gate Driven OTA Using 0.18 µm CMOS Technology, IEEE, International Conference on Computer Communication and Informatics, Jan.07-09, Coimbatore, INDIA, Doi:10.1109/ICCCI.2016.7480011.

[14].  Viswanathan, S. M., 2020, Design and Analysis of Operational Transconductance Amplifier (OTA) Under 180nm Technology Using LT spice, JASC, 1076-5131, 7(6), 107-115.

[15].  Palmisano, G., Palumbo, G., and Pennisi, S., 2001, Design Procedure for Two-Stage CMOS Transconductance Operational Amplifiers: A Tutorial, Kluwer Academic Publishers, Analog Integrated Circuits and Signal Processing, 27, 179–189, https://doi.org/10.1023/A:1011229119071.

[16].  The Scaling of MOSFETs, 2010, Moore’s Law, and ITRS, 1–10.

[17].  Ren, M. Y., Wu, T., Song, M. X., Zhang, C. X., 2012, Design Procedures for a Fully Differential Telescopic Cascode Two-Stage CMOS Operational Amplifier, Procedia Engineering, 29, 4030-4034, https://doi.org/10.1016/j.proeng.2012.01.614.

[18].  Akbari, M., Hashemipour, O., 2014, Enhancing transconductance of ultra-low-power two-stage folded cascode OTA, Electronics Letters, 50, 1514-1516, https://doi.org/10.1049/el.2014.2399

[19].  Tran, L., Cha, H. K., 2021, An ultra-low-power neural signal acquisition analog front-end IC, Microelectronics Journal, 107, Doi: https://doi.org/10.1016/j.mejo.2020.104950

[20].  Barabino, G., Pani, D., Dess, A., Raffo, L., A configurable biopotentials acquisition module suitable for fetal electrocardiography studies, IEEE, 978-1-4799-6477-2/15/, 2015.

[21].  Durgam, R., Tamil, S., Raj, N., 2021, Design of Low Voltage Low Power High Gain Operational Transconductance Amplifier, U.Porto Journal of Engineering, 103-110, Doi: 10.24840/2183-6493007.004.

[22].  Akbari, M., & Hashcmipour, O., 2015, Design and Analysis of folded cascade OTAs using Gm/Id methodology based on flicker noise reduction, Analog Integrated Circuits and Signal Processing, Doi:10.1007/s10470-015-0535-x.

[23].  Agnes, A., Cabrini, A., Maloberti, F., & Martini, G., 2007, Cancellation of amplifier offset and 1/f noise: An improved chopper-stabilized technique, IEEE Transactions on Circuits and Systems-II: Express Briefs, 54, 469-473, Doi: 10.1109/TCSII.2007.891758.

[24].  Syuhadah Baharudin, S. N., Jambek, A. B., Ismail, R. C., 2014, Design and Analysis of a Two-Stage OTA for Sensor Interface Circuit, IEEE, ISCAIE, Doi: 10.1109/ISCAIE.2014.7010215.

[25].  Saravana kumar, O. M., Kaleeswari, N., 2014, Design, and Analysis of Two-Stage Operational Transconductance Amplifier (OTA) using Cadence tool, IJETAE, 4(4), 192-195.

[26].  Ghatikar, R. S., Nithin, M., 2021, Design of high-speed 2-stage OTA for high capacitive load of 120 pF and 2.97V, Engineering Research Express, Doi: https://doi.org/10.1088/2631-8695/ac3fbc

[27].  Sharma, A., Sherman, B., 2016, AC, DC, Transient and FFT Analysis of Multistage Operational Amplifiers using 0.3µm process technology for CMOS, IRJET, 1956-1962, 3(8).

[28].  Vanessa, T., Abaya, F., Ray, F., Gomez, I., 2019, Design of Two-Stage Fully-Differential Operational Transconductance Amplifier Using a Standard 0.35µm CMOS Process, Asian Online Journals, Asian Journal of Engineering and Technology, 7(17), February 2019, Doi: 10.24203/ajet.v7i1.5680.

[29].  Giustolisi, G., Palumbo, G., 2021, Design of CMOS three-stage amplifiers for near-to-minimum settling-time, Microelectronics Journal, 107, ISSN 0026-2692, Doi: https://doi.org/10.1016/j.mejo.2020.104939