A Guide to AI in Orthodontics

Download Article

DOI: 10.21522./TAJMHR.2016.05.01.Art002

Authors : Rosaline Tina Paul, Adam Ozeer K A, Shaji T. Varghese, Ligil A. R, Joseph K. Thanikunnel, Roshna Mandayapurathu

Abstract:

The use of AI in dental practice is now becoming common. The patient’s expectation of diagnosis and treatment planning supported by AI has become mandatory in a clinic. Only if we have a basic knowledge about AI, can we comprehend what is done for the patient. This review article aims at providing an indepth knowledge what an orthodontist should know regarding AI. Though much is spoken about AI in literature, the basic background of AI still remains abtract to a dentist. This article unravels the hidden mystery behind AI. The meaning of the terms used in AI is explained with suitable examples. Starting with the paradigm shift in AI, the types of knowledge dealt is also mentioned. The basic three types of model-based studies are explained in detail. Moreover, the detailed orthodontic implications of AI are also explained with relevant references. This review article would definitely be a valuable guide for those who would like to do an AI based thesis or study.

References:

[1].   Kaplan, A, Haenlein, M., 2019, Siri, Siri, in my hand: who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus Horiz 62(1), 15–25.

[2].   Berat, S. A., Muhammet, E. T., 2021, A review of the use of artificial intelligence in orthodontics, J Exp Clin Med., 38(S2), 157-162.

[3].   Rony, T. K., Aishwarya, P., Devika, G., Angeline, J., Ashwath, K., Saumya, N., 2022, Introduction to artificial intelligence and machine learning into orthodontics: A review, APOS Trends in Orthodontics, 12(3), July-September.

[4].   Faber, J., Faber, C., Faber, P., 2019, Artificial intelligence in orthodontics. APOS Trends Orthod, 9(4), 201-5.

[5].   Le Cun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998, Gradient-based learning applied to document recognition. Proc. Of the IEEE, 86(11), 2278-2324.

[6].   Steyerberg, E. W., Vickera A. J., Cook, N. R., Gerds, T., Gonan, M., Obuchowski, N., Pencina, M. J., Kattan, M. W., 2010, Assessing the performance of prediction models: a framework for traditional and novel measures, Epidemiology, 21(1), 128-38.

[7].   Karras, T., Aittala, M., Aila, T., Laine, S., 2022, elucidating the design space of Diffusion -Based generative models, Nvidia.

[8].   Asiri, S. N., Tadlock, L. P, Schneiderman, E., Buschang, P. H., 2020, Applications of artificial intelligence and machine learning in orthodontics, APOS Trends Orthod, 10(1), 17-24

[9].   Kok, H., Izgi, M. S, Acilar, A. M., 2021, Determination of growth and development period in orthodontics using artificial neural network, Orthod Craniofac Res., 24(2), 76–83

[10].  Sandoval, T. C. N., Perez, G., Sonia, V., Fabio, A., Gonzalez, Jaque, R., Contreras, C. I., 2017, Use of automated learning technology for predicting mandibular morphology in skeletal class I, II and III, Forensic Science International, 281, 187.

[11].  Rao, Y., Zhang, Q., Wang, X., Xue, X., Ma, W., Xu, L., Xing, S., 2024, Automated diagnosis of adenoids hypertrophy with lateral cephalogram in children based on multiscale local attention, Nature Portfolio,14:18619.

[12].  Shoukri, B., Prieto, J.C., Ruellas, A., Yatabe, M., Sugai, J., Styner, M., Zhu, H., Huang, C., Paniagua, B., Aronovich, S., Ashman, L., Benavides, E., P. de Dumast, Ribera, N. T., Mirabel, C., Michoud, L., Allohaibi, Z., Ioshida, M., Bittencourt, L., Fattori, L., Gomes, L. R., and Cevidanes, L., 2019, Minimally Invasive Approach for Diagnosing TMJ Osteoarthritis, Journal of Dental Research, 98(5), July.

[13].  Wang, X., Pastewait, M., Wu, T. H, et al., 2021, 3D morphometric quantification of maxillae and defects for patients with unilateral cleft palate via deep learning- based CBCT image auto- segmentation, OrthodCraniofac Res, 24(2), 108–116.

[14].  Yu, X., Liu, B., Pei, Y., Xu, T., 2014, Evaluation of facial attractiveness for patients with malocclusion. A machine learning technique employing Procrustes, Angle Orthodontist, 84(3).

[15].  Kim, B. M., Kang, B. Y., Kim, H. G., Baek, S. H., 2009, Prognosis prediction of class3 malocclusion treatment using feature wrapping method, Angle Orthodontist, 79(4).

[16].  Xie, X., Wangb, L., Wang, A., 2010, Artificial Neural Network Modeling for Deciding if Extractions Are Necessary Prior to Orthodontic Treatment, Angle Orthod, 80, 262–266.

[17].  Jung, S. K, Kim, T. W., 2016, New approach for diagnosis for extraction with neural network machine learning, American Journal of Orthodontics and Dentofacial Orthopedics 149(1).

[18].  Li, P., Kong, D., Tang, T., Su, D., Yan, P., Wang, H., Zhao, Z., Liu, Y., 2019, orthodontic treatment planning based on artificial neural network, Scientific Reports, 9, 20-37.

[19].  Trehan, M., Bhanotia, D., Shaikh, T. A., Sharma, S., Sharma, S., 2023, Artificial intelligence based automated model for prediction of extraction using neural network machine learning: A scope and performance analysis, Journal of Contemporary Orthodontics, 7(4), 281–286.

[20].  Okcam, M. O., Takoda, K., 2002, Fussy modelling for selecting headgear types. European Journal of Orthodontics, 24, 99-106.

[21].  Choi, H., Jung, S. K., Baek, S. H., Lim, W. H., Ahn, S. J., Yang, H., Kim, T. W., 2019, Artificial intelligence model with neural network machine learning for the diagnosis of orthognathic surgery, J Craniofac. Surg., 30,1986–1989.

[22].  Buschanga, P. H., Rossb, M., Shawb, S. G., Crosbyc, D., Campbelld, P. M., 2015.  Predicted and actual end-of-treatment occlusion produced with aligner therapy. Angle Orthod, 85, 723–727.