Systematic Reviews on the Use of Artificial Intelligence in Eye Care Management

Download Article

DOI: 10.21522./TAJMHR.2016.05.01.Art012

Authors : Timothy Olatunji OLADOSU, Adebayo Lukman Ademola, Adeola Oluwasayo Omopariola, Emmanuel Olufemi Ayandiran, Olufemi Oyebanji Oyediran

Abstract:

This systematic review discusses the benefits, difficulties, and prospects of artificial intelligence (AI) in eye health services, within the scope of diagnostic, therapeutic, and operational functions. A thorough search for pertinent literature conducted across several databases, namely, PubMed, Scopus, and IEEE Xplore identified articles published from 2019 to the present. Studies exploring the applications of AI in terms of diagnostic accuracy and treatment outcomes, the integration of technology in the workflows and consistency and bias were included and rated with metrics like the Cochrane Risk of Bias Tool and PROBAST-AI. The findings suggest that deep learning AI models, such as convolutional neural networks, provide high often greater than 90% diagnostic accuracy in retinal diseases like diabetic retinopathy and age-related macular degeneration, enabling early detection and better treatment planning. The use of AI in eye care also proved to be cost effective especially in those areas with less eye care specialists, as it lessened the demand for specialist input and re-structured service delivery. Nevertheless, several issues limit both generalizability and clinical use, such as lack of diversity in the datasets used, the general inability to explain the decision-making process of AI tools and most studies being observational in nature, which affects the quality of the evidence presented. Solutions to these issues, that is, standardization of datasets and better clarity of the model will be central to the expanded use of the applications. Altogether, while AI has the potential to be transformative in improving eye care preparation and treatment, the existing barriers have to be eliminated to achieve the anticipated benefits clinically.


References:

[1].   Bali, J., & Bali, O., 2021. Artificial intelligence in ophthalmology and healthcare: An updated review of the techniques in use. Indian Journal of Ophthalmology. https://doi.org/10.4103/ijo.IJO_1848_19

[2].   Benet, D., & Pellicer-Valero, O. J., 2021. Artificial intelligence: the unstoppable revolution in ophthalmology. Survey of Ophthalmology, 67(2), 252-270. https://doi.org/10.1016/j.survophthal.2021.03.003

[3].   Scheetz, J., Rothschild, P., McGuinness, M., Hadoux, X., Soyer, H., Janda, M., … van Wijngaarden, P., 2021. A survey of clinicians on the use of artificial intelligence in ophthalmology, dermatology, radiology and radiation oncology. Scientific Reports, 11. https://doi.org/10.1038/s41598-021-84698-5

[4].   Gunasekeran, D., Zheng, F., Lim, G., Chong, C., Zhang, S., Ng, W. Y., … Ting, D., 2022. Acceptance and perception of artificial intelligence usability in eye care (APPRAISE) for ophthalmologists: A multinational perspective. Frontiers in Medicine, 9. https://doi.org/10.3389/fmed.2022.875242

[5].   Yin, J., Ngiam, K., & Teo, H. H., 2021. Role of artificial intelligence applications in real-life clinical practice: Systematic review. Journal of Medical Internet Research, 23, e25759. https://doi.org/10.2196/25759

[6].   Fasler, K., Moraes, G., Wagner, S., Kortuem, K., Chopra, R., et.al., 2019. One- and two-year visual outcomes from the Moorfields age-related macular degeneration database: A retrospective cohort study. BMJ Open, 9, e027441. https://doi.org/10.1136/bmjopen-2018-027441

[7].   Han, J. E. D., Liu, X., Bunce, C., Douiri, A., Vale, L., Blandford, A., et.al., 2022. Teleophthalmology-enabled and AI-ready referral pathway for community optometry referrals of retinal disease (HERMES). BMJ Open, 12, e055845. https://doi.org/10.1136/bmjopen-2021-055845

[8].   Shimura, M., Kitano, S., Muramatsu, D., Fukushima, H., Takamura, Y., et.al., 2019. Real-world management of treatment-naïve diabetic macular oedema in Japan: DRCR.net protocol I versus real-world clinical practice. The British Journal of Ophthalmology, 104, 1209-1215. https://doi.org/10.1136/bjophthalmol-2019-315199

[9].   Tran, V. T., Riveros, C., & Ravaud, P., 2019. Patients’ views of wearable devices and artificial intelligence in healthcare: Findings from the ComPaRe e-cohort. NPJ Digital Medicine, 2, 53. https://doi.org/10.1038/s41746-019-0132-y

[10].  Goldstein, J., Weitzman, D., Lemerond, M., & Jones, A., 2023. Determinants for scalable adoption of autonomous AI in the detection of diabetic eye disease in diverse practice types. Frontiers in Digital Health, 5, 1004130. https://doi.org/10.3389/fdgth.2023.1004130

[11].  Shukla, K., Sapkota, Y., Das, A., & Morjaria, P., 2022. Communication technology for eye care: Closing gaps in access in low-resource settings. Community Eye Health Journal, 35(115), 1-2. https://doi.org/10.4103/ceh.ceh_13_22

[12].  Morrison, S. L., Dukhovny, D., Chan, R. P., Chiang, M. F., & Campbell, J., 2022. Cost-effectiveness of artificial intelligence-based retinopathy of prematurity screening. JAMA Ophthalmology. https://doi.org/10.1001/jamaophthalmol.2022.0223

[13].  Wolf, R., Channa, R., Abràmoff, M., & Lehmann, H., 2020. Cost-effectiveness of autonomous point-of-care diabetic retinopathy screening for pediatric patients with diabetes. JAMA Ophthalmology. https://doi.org/10.1001/jamaophthalmol.2020.3190

[14].  Fuller, S. D., Hu, J., Liu, J. C., Gibson, E., Gregory, M. H., Kuo, J., & Rajagopal, R., 2020. Five-year cost-effectiveness modeling of primary care-based, nonmydriatic automated retinal image analysis screening among low-income patients with diabetes. Journal of Diabetes Science and Technology, 16, 415-427. https://doi.org/10.1177/1932296820967011

[15].  Lin, S., Ma, Y., Xu, Y., Lu, L., He, J., Zhu, J., Peng, Y., Yu, T., Congdon, N., & Zou, H., 2023. Artificial intelligence in community-based diabetic retinopathy telemedicine screening in urban China: Cost-effectiveness and cost-utility analyses with real-world data. JMIR Public Health and Surveillance, 9. https://doi.org/10.2196/41624

[16].  Erdal, B. S., Laugerette, A., Fair, K. H., Zimmermann, M., Demirer, M., Gupta, V., O'Donnell, T., & White, R. D., 2023. AI algorithm deployment and utilization: Strategies to facilitate clinical workflow implementation and integration. medRxiv. https://doi.org/10.1101/2023.09.19.23295729

[17].  Keel, S., & van Wijngaarden, P., 2018. The eye in AI: Artificial intelligence in ophthalmology. Clinical & Experimental Ophthalmology, 47. https://doi.org/10.1111/ceo.13435

[18].  Ting, D. S. W., Peng, L., Varadarajan, A. V., Keane, P. A., Burlina, P. M., Chiang, M. F., et.al., 2019. Deep learning in ophthalmology: The technical and clinical considerations. Progress in Retinal and Eye Research, 72. https://doi.org/10.1016/j.preteyeres.2019.04.003

[19].  Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G., & King, D., 2019. Key challenges for delivering clinical impact with artificial intelligence. BMC Medicine, 17. https://doi.org/10.1186/s12916-019-1426-2

[20].  Anton, N., Doroftei, B., Curteanu, S., Catãlin, L., Ilie, O., Târcoveanu, F., & Bogdănici, C., 2022. Comprehensive review on the use of artificial intelligence in ophthalmology and future research directions. Diagnostics, 13. https://doi.org/10.3390/diagnostics13010100

[21].  Betzler, B., Rim, T. H., Sabanayagam, C., & Cheng, C. Y., 2022. Artificial intelligence in predicting systemic parameters and diseases from ophthalmic imaging. Frontiers in Digital Health, 4. https://doi.org/10.3389/fdgth.2022.889445

[22].  Storås, A., Strümke, I., Riegler, M., Grauslund, J., Hammer, H., Yazidi, A., Halvorsen, P., Gundersen, K. G., Utheim, T., & Jackson, C., 2021. Artificial intelligence in dry eye disease. The Ocular Surface. https://doi.org/10.1016/j.jtos.2021.12.003

[23].  Ji, Y., Liu, S., Hong, X., Lu, Y., Wu, X., Li, K., Li, K., & Liu, Y., 2022. Advances in artificial intelligence applications for ocular surface diseases diagnosis. Frontiers in Cell and Developmental Biology, 10. https://doi.org/10.3389/fcell.2022.1107689

[24].  Shetty, D., Talasila, A., Shanbhag, S., Patil, V., Hameed, Z., Naik, N., & Raju, A., 2021. Current state of artificial intelligence applications in ophthalmology and their potential to influence clinical practice. Cogent Engineering, 8. https://doi.org/10.1080/23311916.2021.1920707

[25].  Zhang, Z., Wang, Y., Zhang, H., Samusak, A., Rao, H., Xiao, C., Abula, M., Cao, Q., & Dai, Q., 2023. Artificial intelligence-assisted diagnosis of ocular surface diseases. Frontiers in Cell and Developmental Biology, 11. https://doi.org/10.3389/fcell.2023.1133680

[26].  Xu, J., Xue, K., & Zhang, K., 2019. Current status and future trends of clinical diagnoses via image-based deep learning. Theranostics, 9, 7556–7565. https://doi.org/10.7150/thno.38065

[27].  Wen, J., Liu, D., Wu, Q., Zhao, L., Iao, W. C., & Lin, H., 2023. Retinal image‐based artificial intelligence in detecting and predicting kidney diseases: Current advances and future perspectives. View, 4. https://doi.org/10.1002/VIW.20220070

[28].  Bhagat, S., 2021. Artificial intelligence in healthcare. International Journal for Research in Applied Science and Engineering Technology. https://doi.org/10.22214/ijraset.2021.37319

[29].  Walter, W., Haferlach, C., Nadarajah, N., Schmidts, I., Kühn, C., Kern, W., & Haferlach, T., 2021. How artificial intelligence might disrupt diagnostics in hematology in the near future. Oncogene, 40, 4271-4280. https://doi.org/10.1038/s41388-021-01861-y

[30].  Petersson, L., Svedberg, P., Nygren, J., & Larsson, I., 2023. Healthcare leaders' perceptions of the usefulness of AI applications in clinical work: A qualitative study. Studies in Health Technology and Informatics, 302, 678-679. https://doi.org/10.3233/SHTI230235

[31].  Macrae, C., 2019. Governing the safety of artificial intelligence in healthcare. BMJ Quality & Safety, 28, 495-498. https://doi.org/10.1136/bmjqs-2019-009484

[32].  Yuan, J., & Xiao, P., 2023. Challenges and countermeasures in the development of artificial intelligence research in ophthalmology. Chinese Journal of Ophthalmology, 59, 245-249. https://doi.org/10.3760/cma.j.cn112142-20230221-00061

[33].  Armato, S., Drukker, K., & Hadjiiski, L., 2023. AI in medical imaging grand challenges: Translation from competition to research benefit and patient care. The British Journal of Radiology, 96. https://doi.org/10.1259/bjr.20221152

[34].  Reis, L., Fernandes, J., Mansk, R., & Cota Lemos, C. B., 2023. Innovation in ophthalmology and dentistry services: Benefits and challenges of using AI. European Conference on Innovation and Entrepreneurship. https://doi.org/10.34190/ecie.18.2.1389

[35].  van Dijk, S. B. V., Brusse-Keizer, M., Bucsán, C. C., van der Palen, J., Doggen, C., & Lenferink, A., 2023. Artificial intelligence in systematic reviews: promising when appropriately used. BMJ Open, 13. https://doi.org/10.1136/bmjopen-2023-072254

[36].  Pattathil, N., Zhao, J. Z. L., Sam-Oyerinde, O. A., & Felfeli, T., 2023. Adherence of randomised controlled trials using artificial intelligence in ophthalmology to CONSORT-AI guidelines: a systematic review and critical appraisal. BMJ Health & Care Informatics, 30. https://doi.org/10.1136/bmjhci-2023-100757

[37].  Crowther, D. M., 2013. A clinician's guide to systematic reviews. Nutrition in Clinical Practice, 28(4), 459-462. https://doi.org/10.1177/0884533613490742

[38]. Li, T., & Bartley, G., 2014. Publishing systematic reviews in ophthalmology: new guidance for authors. Ophthalmology, 121(2), 438-439. https://doi.org/10.1016/j.ophtha.2013.10.003