Detecting the Role of mi RNA Molecules and Methylation on Expression of BMAL1 Gene in Kids with Amyloid Leukemia in Mosul City

Download Article

DOI: 10.21522./TAJMHR.2016.05.01.Art016

Authors : Owayes M. Hamed, Musttafa M.younis, Shiffa M. Attash

Abstract:

Leukaemia is the most common type of blood cancer among all ages marked by rapid growth of abnormal blood cells. Epigenetics entails the study of genomic modifications that do not change the core DNA nucleotide sequence. The study included 45 children aged 2 to 11years old referred to Al-Hadbaa Specialized Hospital between October and November 2024. The sample was divided into two groups: the first consisted of 35 children with leukaemia, and the second encompassed 10 samples as controls. Two millilitres of blood was obtained from the children, one ml was placed in an EDTA tube for DNA extraction and methylation assessmentand the second ml was placed in a Trizol tube for RNA extraction. The research comprises three phases. The initial task is to ascertain the gene expression level for the BAML1 genes. The second step is to measure the level of microRNA-155, which affects how genes are expressed. The third step is to determine the percentage of DNA methylation on the gene promoters using q-PCR. The study showed an elevation in gene expression levels of miRNA 155, recorded at 18.2 for leukaemia patients in compared to the control group. The study also showed a reduction in the expression level of the BMAL gene in leukaemia patients (measured at 0.46) compared to the control group.

References:

[1].   Hamed, O. M., Al-Taii, R. A., Jankeer, M. H., 2021, Biochemical and genetic study in blood of β-thalassaemia children in Mosul city, Iraq. Iraqi J of Scienc, 62(8), 2501–2508.

[2].   Talaat, F. M., Gamel, S. A., 2024, Machine learning in detection and classification of leukemia using C-NMC_Leukemia. Multimedia Tools and Applications, 83(3):8063-8076.

[3].   Garcia-Garcia, I., Grisotto, G., Heini, A., Gibertoni, S., Nusslé, S., Gonseth Nusslé, S., Donica, O., 2024, Examining nutrition strategies to influence DNA methylation and epigenetic clocks: a systematic review of clinical trials. Front Aging, 5:1417625.

[4].   Oblak, L., van der Zaag, J., Higgins-Chen, A. T., Levine, M. E., Boks, M. P., 2021, A systematic review of biological, social, and environmental factors associated with epigenetic clock acceleration. Aging research Review, 69:101348.

[5].   Tang, Z., Xu, T., Li, Y., Fei, W., Yang, G., Hong, Y., 2020, Inhibition of CRY2 by STAT3/miRNA-7-5p promotes osteoblast differentiation through upregulation of CLOCK/BMAL1/P300 expression. Mol Ther Nucleic Acids, 19:865-876.

[6].   Niu, L., Yang, W., Duan, L., Wang, X., Li, Y., Xu, C., Fan, D., 2021, Biological implications and clinical potential of metastasis-related miRNA in colorectal cancer. Mol Ther Nucleic Acids, 23:42-54.

[7].   Sajjadi-Dokht, M., Mohamad, T. A. M., Rahman, H. S., Maashi, M. S., Danshina, S., Shomali, N., Jarahian, M., 2022, MicroRNAs and JAK/STAT3 signaling: A new promising therapeutic axis in blood cancers. Genes Dis., 9(4):849-867.

[8].   Rodríguez-Santana, C., Florido, J., Martínez-Ruiz, L., López-Rodríguez, A., Acuña-Castroviejo, D., Escames, G., 2023, Role of melatonin in cancer: effect on clock genes. Int J Mol Sci, 24(3):1919.

[9].   Partch, C. L., Green, C. B., Takahashi, J. S., 2014, Molecular architecture of the mammalian circadian clock.Tends Cell Biol., 24(2):90-99.

[10].  Patke, A., Young, M. W., Axelrod, S., 2020, Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol, 21(2):67-84.

[11].  Sato, F., Kohsaka, A., Bhawal, U. K., Muragaki, Y., 2018, Potential roles of Dec and Bmal1 genes in interconnecting circadian clock and energy metabolism. Int J Mol Sic, 19(3):781.

[12].  Kume, K., Zylka, M. J., Sriram, S., Shearman, L. P., Weaver, D. R., Jin, X., Reppert, S. M., 1999, mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell, 98(2):193-205.

[13].  Ueda, H. R., Chen, W., Adachi, A., Wakamatsu, H., Hayashi, S., Takasugi, T., Hashimoto, S., 2002, A transcription factor response element for gene expression during circadian night. Nature, 418(6897):534-539.

[14].  Hamaguchi, H., Fujimoto, K., Kawamoto, T., Noshiro, M., Maemura, K., Takeda, N., Kato, Y., 2004, Expression of the gene for Dec2, a basic helix–loop–helix transcription factor, is regulated by a molecular clock system. Biochem, 382(1):43-50.

[15].  Bunger, M. K., Wilsbacher, L. D., Moran, S. M., Clendenin, C., Radcliffe, L. A., Hogenesch, J. B., Bradfield, C. A., 2000, Mop3 is an essential component of the master circadian pacemaker in mammals. Cell, 103(7):1009-1017.

[16].  Doi, M., Hirayama, J., Sassone-Corsi, P., 2006, Circadian regulator CLOCK is a histone acetyltransferase. Cell, 125(3):497-508.

[17].  Kondratov, R. V., Kondratova, A. A., Gorbacheva, V. Y., Vykhovanets, O. V., Antoch, M. P., 2006, Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev, 20(14):1868-1873.

[18].  Kondratov, R. V., Gorbacheva, V. Y., Antoch, M. P., 2007, The role of mammalian circadian proteins in normal physiology and genotoxic stress responses. CurrTop DevBiol, 78:173-216.

[19].  Taniguchi, H., Fernández, A. F., Setién, F., Ropero, S., Ballestar, E., Villanueva, A., Esteller, M., 2009, Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies. Cancer Res, 69(21):8447-8454.

[20].  Hameed, M. A., Hamed, O. M., 2023, Detection of P53 suppressor gene mutation in women with breast cancer in Mosul city. AIP Conference Proceeding, 2834(1), 020007.

[21].  Ramadan, Z. J., Hamed, O. M., Khalaf, I. H., 2020, Detection of genetic variation for some genes that related with recurrent spontaneous abortion in Nineveh Province. Biochemical and Cellular Archives 2, 20(2), 6407–6414.

[22].  Sanford, A. z. B. A., da Cunha, L. S., Machado, C. B., de Pinho Pessoa, F. M. C., Silva, ANDS, Ribeiro, R. M., Moreira-Nunes, C. A., 2022, Circadian rhythm dysregulation and leukemia development: the role of clock genes as promising biomarkers., Int J Mol Sci., 23(15):8212.

[23].  Xiang, K., Xu, Z., Hu, Y. Q., He, Y. S., Wu, G. C., Li, T. Y., Wang, D. G., 2021, Circadian clock genes as promising therapeutic targets for autoimmune diseases. Autoimmun Rev., 20(8):102866.

[24].  Haimes, J., Kelley, M., Dharmacon, Now Part of GE Healthcare, Lafayette, CO, USA, 2013. Demonstration of a ΔΔCq Calculation Method to Compute Thermo Scientific Relative Gene Expression from qPCR Data. Lafayette, CO: Thermo Scientific.

[25].  Samblas, M., Milagro, F. I., Gómez-Abellán, P. J. A., Martínez, M., Garaulet, M., 2016, Methylation on the circadian gene BMAL1 is associated with the effects of a weight loss intervention on serum lipid levels. J Biol Rhythms, 31(3):308-317.