Analyzing COVID-19 Vaccination Discourse on Twitter/X in the United States and United Kingdom

Download Article

DOI: 10.21522./TAJMHR.2016.05.02.Art017

Authors : Kashim I. A

Abstract:

This study conducted a sentiment analysis of COVID-19 vaccine-related tweets posted between December 2020 and November 2021, using data from Twitter/X to explore public perception in the UK and the USA. The goal was to contribute to the growing use of digital tools in understanding public attitudes during pandemics and to provide actionable insights for policymakers and health professionals. A total of 194,378 English tweets were initially collected using Twitter Apify and pre-processed to remove punctuation, stop words, and emoticons, resulting in 144,911 usable tweets. From these, 42,311 tweets (24%) were identified as originating from the UK and USA based on location-specific keywords. Sentiment analysis was performed using the VADER lexicon-based tool, categorizing tweets on a five-point scale ranging from strongly positive to strongly negative. Statistical analyses, including Student’s t-test, Z-test, Pearson’s correlation, and the Mann-Kendall test, were used to compare sentiment patterns. Topic modeling using Latent Dirichlet Allocation (LDA) was also employed to identify recurring themes. The findings revealed notable differences in sentiment between the two countries, with statistically significant variation in all sentiment categories except for the ‘positive’ category. The study offers meaningful insights into public sentiment dynamics and underscores the potential for data-driven communication strategies in public health policymaking.

References:

[1].   Lal, P., Kumar, A., Kumar, S., Kumari, S., Saikia, P., Dayanandan, A., Adhikari, D., & Khan, M. L., 2020, The dark cloud with a silver lining: Assessing the impact of the SARS COVID-19 pandemic on the global environment. Science of the Total Environment, 732, 139297. https://doi.org/10.1016/j.scitotenv.2020.139297

[2].   United Nations Development Programme (UNDP). 2020, COVID-19 and human development: Exploring global preparedness and vulnerability. http://hdr.undp.org/sites/default/files/covid19_and_human_development_0.pdffacility

[3].    Kose, A., & Sugawara, N., 2020, Understanding the depth of the 2020 global recession in 5 charts. World Bank Data Blog. https://blogs.worldbank.org/opendata/understanding-depth-2020-global-recession-5-charts

[4].   World Health Organization, 2020, COVID-19 pandemic triggers 25% increase in prevalence of anxiety and depression worldwide. https://www.who.int/news/item/02-03-2022-covid-19-pandemic-triggers-25-increase-in-prevalence-of-anxiety-and-depression-worldwide

[5].   Srivatsa, S., and Stewart, K. A., 2020, How should clinicians integrate mental health into epidemic responses? AMA Journal of Ethics, 22(1), E10–E15. https://doi.org/10.1001/amajethics.2020.10

[6].   Brooks, S. K., Webster, R. K., Smith, L. E., Woodland, L., Wessely, S., Greenberg, N., and Rubin, G. J., 2020, The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. The Lancet, 395(10227), 912–920. https://doi.org/10.1016/S0140-6736(20)30460-8

[7].   Doğan, B., Balcioglu, Y. S., & Elçi, M., 2024, Multidimensional sentiment analysis method on social media data: Comparison of emotions during and after the COVID-19 pandemic. Kybernetes. Advance online publication. https://doi.org/10.1108/K-09-2023-1808

[8].   Gnatyshak, D., Garcia-Gasulla, D., Alvarez-Napagao, S., Arjona, J., & Venturini, T., 2022, Healthy Twitter discussions? Time will tell. arXiv Preprint arXiv:2203.11261. https://arxiv.org/abs/2203.11261

[9].   Russell, S., Rao-Graham, L., & Mcnaughton, M., 2024, Mining social media data to inform public health policies: A sentiment analysis case study. Revista Panamericana de Salud Pública, 48, e79. https://doi.org/10.26633/RPSP.2024.79

[10].  Ancín Rípodas, M., Pindado Tapia, E., and Sánchez García, M., 2022, New trends in the global digital transformation process of the agri-food sector: An exploratory study based on Twitter. Elsevier BV. https://core.ac.uk/download/555192413.pdf

[11].  Mohammad, A., Kausar, A. S., & Nasar, M., 2021, Public sentiment analysis on Twitter data during COVID-19 outbreak. International Journal of Advanced Computer Science and Applications, 12(2). https://doi.org/10.14569/IJACSA.2021.0120214

[12].  Tsai, M. H., and Wang, Y., 2021, Analyzing Twitter data to evaluate people's attitudes towards public health policies and events in the era of COVID-19. International Journal of Environmental Research and Public Health, 18(12), 6272. https://doi.org/10.3390/ijerph18126272

[13].  Martin, S., Poduval, S., & Ullah, N., 2024, A snapshot of COVID-19 vaccine discourse related to ethnic minority communities in the United Kingdom between January and April 2022: Mixed methods analysis. JMIR Publications Inc. https://core.ac.uk/download/603248378.pdf

[14].  Shi, M., Wang, X., Wang, Y., (Jasmine), and Wanta, W., 2024, Tracking attention about COVID-19 vaccines on Twitter and newspapers: A dynamic agenda-setting approach. DigitalCommons@URI. https://core.ac.uk/download/619414602.pdf

[15].  Huang, X., Wang, S., Zhang, M., Hu, T., Hohl, A., She, B., et al., 2022, Social media mining under the COVID-19 context: Progress, challenges, and opportunities. International Journal of Applied Earth Observation and Geoinformation, 113, 102967. https://doi.org/10.1016/j.jag.2022.102967

[16].  Joseph, T., 2024, Natural language processing (NLP) for sentiment analysis in social media. International Journal of Computing and Engineering, 6, 35–48. https://doi.org/10.47941/ijce.2135

[17].  Al-Garadi, M. A., Yang, Y. C., and Sarker, A., 2022, The role of natural language processing during the COVID-19 pandemic: Health applications, opportunities, and challenges. Healthcare, 10(11), 2270. https://doi.org/10.3390/healthcare10112270

[18].  Wang, J., 2022, Twitter sentiment analysis: Applications in healthcare and finance. Digital Commons @ NJIT. https://core.ac.uk/download/553171699.pdf

[19].  Brülisauer, F., Gunn, G., Munaf, S., and O’Hare, A., 2023, Text mining of veterinary forums for epidemiological surveillance supplementation. https://core.ac.uk/download/586806895.pdf

[20].  Zolnoori, M., Huang, M., Patten, C. A., Balls-Berry, J. E., Goudarzvand, S., Brockman, T. A., Sagheb, E., and Yao, L., 2019, Mining news media for understanding public health concerns. Journal of Clinical and Translational Science, 5(1), e1. https://doi.org/10.1017/cts.2019.434

[21].  Dalili, M., & Dastani, M., 2020, The role of Twitter during the COVID-19 crisis: A systematic literature review. Acta Informatica Pragensia, 9, 10. https://doi.org/10.18267/j.aip.138

[22].  Borghini, F., Bruni, A., Garcia, F., Lombardi, L., & Santoro, E., 2022, Sentiment and emotional analysis of risk perception in the Herculaneum Archaeological Park during COVID-19 pandemic. MDPI AG. https://core.ac.uk/download/542494988.pdf

[23].  Al-Ramahi, M. A., El Noshokaty, A., El-Gayar, O., Nasralah, T., & Al-Azzam, I., 2022, A comparative analysis of anti-vax discourse on Twitter before and after COVID-19 onset. Digital Commons @ Texas A&M University–San Antonio. https://core.ac.uk/download/559434265.pdf

[24].  Bor, D., Lee, B. S., & Oughton, E. J., 2023, Quantifying polarization across political groups on key policy issues using sentiment analysis. arXiv. http://arxiv.org/abs/2302.07775

[25].  Duggal, Y. N., Liu, Z., & Thakur, N., 2023, Analyzing public reactions, perceptions, and attitudes during the Mpox outbreak: Findings from topic modeling of tweets. arXiv. http://arxiv.org/abs/2312.11895

[26].   Ale-rasool, A., Bertozzi, A. L., Bozhidarova, M., Brantingham, P. J., & Szekely, P., 2023, Hate speech and hate crimes: A data-driven study of evolving discourse around marginalized groups. arXiv. http://arxiv.org/abs/2311.11163

[27].   Cinelli, M., Quattrociocchi, W., Galeazzi, A., Valensise, C. M., Brugnoli, E., Schmidt, A. L., Zola, P., Zollo, F., & Scala, A., 2020, The COVID-19 social media infodemic. Scientific Reports, 10, 16598. https://doi.org/10.1038/s41598-020-73510-5

[28].   Lyu, H., Wang, J., Wu, W., Duong, V., Zhang, X., Dye, T. D., & Luo, J., 2020, Social media study of public opinions on potential COVID-19 vaccines: Informing dissent, disparities, and dissemination. arXiv preprint arXiv:2012.02165. https://arxiv.org/abs/2012.02165

[29].   Wicke, P., & Bolognesi, M. M., 2020, Framing COVID-19: How we conceptualize and discuss the pandemic on Twitter. arXiv preprint arXiv:2004.06986. https://arxiv.org/abs/2004.06986

[30].   Jang, H., Rempel, E., Roth, D., Carenini, G., & Janjua, N. Z., 2021, Tracking COVID-19 discourse on Twitter in North America: Infodemiology study using topic modeling and aspect-based sentiment analysis. Journal of Medical Internet Research, 23(2), e25431. https://doi.org/10.2196/25431

[31].  Acharjee, A., Kaushal, A., Khanna, D., Mandal, A., & Arora, A., 2023, Analysis of the opinions of individuals on the COVID-19 vaccination on social media. CORE. https://core.ac.uk/download/572708048.pdf

[32].  Gong, X., Gruebner, O., Hohl, A., Hu, T., Huang, X., She, B., et al., 2022, Social media mining under the COVID-19 context: Progress, challenges, and opportunities. Elsevier BV. https://www.zora.uzh.ch/id/eprint/220551/1/2022_Huang_1_s2.0_S1569843222001601_main.pdf

[33].  Erdem, B., 2021, The role of social media in the times of the COVID-19 pandemic. European Journal of Social Sciences, 4, 110. https://doi.org/10.26417/559ysz86o

[34].  Guntuku, S. C., Sherman, G., Stokes, D. C., Agarwal, A. K., Seltzer, E., Merchant, R. M., & Ungar, L. H., 2020, Tracking mental health and symptom mentions on Twitter during COVID-19. Journal of General Internal Medicine, 35(9), 2798–2800. https://doi.org/10.1007/s11606-020-05988-8

[35].  Alam, M., Chen, Y., & Sack, H., 2022, Analyzing social media for measuring public attitudes towards controversies and their driving factors: A case study of migration. Springer. https://core.ac.uk/download/534983044.pdf

[36].  Brambilla, M., Javadian Sabet, A., Kharmale, K., & Sulistiawati, A. E., 2022, Graph-based conversation analysis in social media. Big Data and Cognitive Computing, 6(4), 113. https://doi.org/10.3390/bdcc6040113

[37].  Bao, S., Corcoran, J., Gruebner, O., Hu, T., Huang, X., & Wang, S., 2022, A global portrait of expressed mental health signals towards COVID-19 in social media space. Elsevier BV. https://www.zora.uzh.ch/id/eprint/225076/1/2022_Gruebner_1_s2.0_S156984322200348X_main.pdf