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Abstract 

This systematic review discusses the benefits, difficulties, and prospects of artificial intelligence (AI) 

in eye health services, within the scope of diagnostic, therapeutic, and operational functions. A 

thorough search for pertinent literature conducted across several databases, namely, PubMed, Scopus, 

and IEEE Xplore identified articles published from 2019 to the present. Studies exploring the 

applications of AI in terms of diagnostic accuracy and treatment outcomes, the integration of 

technology in the workflows and consistency and bias were included and rated with metrics like the 

Cochrane Risk of Bias Tool and PROBAST-AI. The findings suggest that deep learning AI models, such 

as convolutional neural networks, provide high often greater than 90% diagnostic accuracy in retinal 

diseases like diabetic retinopathy and age-related macular degeneration, enabling early detection and 

better treatment planning. The use of AI in eye care also proved to be cost effective especially in those 

areas with less eye care specialists, as it lessened the demand for specialist input and re-structured 

service delivery. Nevertheless, several issues limit both generalizability and clinical use, such as lack 

of diversity in the datasets used, the general inability to explain the decision-making process of AI tools 

and most studies being observational in nature, which affects the quality of the evidence presented. 

Solutions to these issues, that is, standardization of datasets and better clarity of the model will be 

central to the expanded use of the applications. Altogether, while AI has the potential to be 

transformative in improving eye care preparation and treatment, the existing barriers have to be 

eliminated to achieve the anticipated benefits clinically. 
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Introduction 

AI in healthcare, particularly in 
ophthalmology, has become popular. It is 
known that AI can automate many tasks, boost 
diagnostic accuracy, and improve patient 
outcomes. In reality, AI has become more 
common in medicine because of advancements 
in machine learning and increased data [1]. 
Most especially, ophthalmology benefits 
because it relies heavily on imaging, like fundus 

photography and OCT, which AI algorithms 
can analyze fast and effectively. Benet and 
Pellicer-Valero showed that AI detects diseases 
such as diabetic retinopathy, glaucoma, and 
macular degeneration with similar accuracy to 
human specialists, which could mean faster 
detection and improved management [2]. It is 
obvious, however, that AI in ophthalmology is 
not simple. 



One thing to note is that AI implementation 
is not easy; it is hindered by issues like 
interpretability and regulatory concerns. Many 
AI models operate as “black boxes,” providing 
limited insight into how conclusions are 
reached, which raises accountability and 
liability questions among clinicians, as Scheetz 
et al. pointed out [3]. Notwithstanding the 
effectiveness of AI, its use in critical decisions 
causes worry due to this lack of transparency. 
The reality of the situation is that without 
interpretability, healthcare providers find it 
difficult to trust these tools, particularly in cases 
requiring high clinical judgment. So, it might 
come as a surprise that while AI’s technical 
accuracy is solid, the medical community 
remains skeptical.[4]. For many years, 
researchers believed that technology alone 
would improve healthcare outcomes, but they 
were wrong. 

Actually, there is more to it than accuracy; 
challenges with AI go beyond technology. It is 
sad, but AI systems need vast amounts of 
training data, often hard to obtain or 
inconsistent in quality, reducing reliability 
across various patient populations [4]. Because 
AI needs consistent and high-quality data to 
function across all cases, it faces limits in 
resource-limited areas. Provided that these 
obstacles exist, more research must be 
conducted to refine AI’s integration into 
clinical practice. It is dangerous to ignore the 
fact that without this, AI may not fully meet its 
potential in ophthalmology, leading to limited 
accessibility and variable results in patient care. 

Problem Statement 

AI in eye care is urgent. As a matter of fact, 
millions risk blindness from rising eye diseases 
like diabetic retinopathy and glaucoma, 
especially in underserved areas lacking 
specialists. Traditional diagnostics struggle to 
keep up, leading to delays—often making the 
difference between sight and blindness. It is 
obvious AI could solve this by delivering fast, 

accurate, and scalable diagnostics, reaching 
both urban and remote areas. 

Notwithstanding AI’s promise, healthcare 
systems without it face enormous backlogs and 
missed diagnoses. This may seem shocking, but 
it is sad that countless cases of blindness could 
have been avoided. According to research by 
Gunasekeran et al., AI systems detect eye 
diseases as precisely as trained specialists, and 
faster [4]. It is clear, AI is not a luxury; it is a 
necessity to avoid a public health crisis. 

As healthcare needs increase, there is no 
point in relying on outdated methods alone. 
Actually, without AI, vision care remains 
absurdly limited, making it likely that many 
will continue to suffer from irreversible 
blindness. AI, then, is the only sensible solution 
to safeguard sight on a large scale, providing 
accessible care when traditional systems fall 
short. 

Research Purpose 

The purpose of this systematic review is to 
evaluate AI's contribution to the management 
of eye care, particularly in terms of increasing 
diagnostic precision and enhancing the 
effectiveness of treatment for major eye 
conditions. The emphasis is on how AI may be 
integrated into clinical workflows to detect 
diseases including macular degeneration, 
glaucoma, and diabetic retinopathy. In order to 
achieve this, the primary goals are to evaluate 
the accuracy of AI in comparison to 
conventional techniques, determine any 
obstacles or restrictions, and determine whether 
AI can enhance treatment planning. Because 
ignoring AI runs the danger of missing out on 
crucial medical developments, this study 
attempts to provide a comprehensive 
knowledge of its impact on improving eye care. 

Materials and Methods 

Study Design 

PRISMA principles are followed in this 
systematic review to guarantee organized, 
understandable, and repeatable procedures. It's 



safe to argue that by requiring a strict 
methodology, PRISMA increases clarity and 
dependability. As anticipated, this calls for a 
rigorous procedure that includes thorough 
searches, cautious selection, and accurate 
analysis of research on artificial intelligence in 
the administration of eye care. Furthermore, it 
is well known that PRISMA's stringent 
standards for study selection, data extraction, 
and evaluation contribute to the delivery of 
thorough insights. To put it briefly, this review 
seeks to present objective data regarding AI's 
application in ophthalmology diagnosis and 
treatment as failing to do so could result in the 
loss of crucial developments. 

Study Strategy 

This systematic review follows the PRISMA 
(Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses) guidelines to 
ensure a structured, transparent, and 
reproducible approach. Adherence to PRISMA 
helps improve the clarity and completeness of 
the methodology and enhances the reliability of 
the findings. The review process includes a 
detailed search, selection, and analysis of 
studies published on artificial intelligence in 
eye care management. Through the use of 
PRISMA’s strict criteria for study selection, 
data extraction, and analysis, this review aims 
to provide comprehensive, unbiased insights 
into the diagnostic and treatment roles of AI in 
ophthalmology. 

 
Figure 1. PRISMA Flow Diagram of Study Selection Process 

Search Strategy 

To locate pertinent research on AI in eye 
care, a thorough search method is created. A 
vast amount of literature is found using 
databases such as PubMed, Scopus, Web of 
Science, and IEEE Xplore, and any studies that 
are overlooked are found with the use of Google 
Scholar. "Artificial intelligence" and "machine 

learning" are key phrases, along with terms 
related to eye care such as "ophthalmology," 
"eye diseases," "diabetic retinopathy," 
"glaucoma," and "macular degeneration." In 
practice, search terms are chosen to guarantee 
both specificity and depth. When necessary, 
Boolean operators like "AND" and "OR" aid in 
search refinement. 



Inclusion and Exclusion Criteria 

This review includes only papers that meet 
strict requirements. It should be noted that peer-
reviewed publications that address AI in 
ophthalmology—specifically, addressing 
diagnostic precision, treatment planning, 
clinical results, cost-effectiveness, or workflow 
integration—from 2019 onward are taken into 
account. Studies are given priority if they look 
at AI's role in treating conditions like cataracts, 
glaucoma, diabetic retinopathy, and macular 
degeneration. Articles must be in English, 
involve actual clinical trials, or be retrospective, 
prospective, or review studies that are 
specifically related to the effects of AI on eye 
care. 

Exclusion criteria are known to be just as 
strict. Actually, since they lack the necessary 
rigor, studies such as editorials, conference 
abstracts, or comments are left out. Articles that 
don't directly address eye care—like those on 
general AI in healthcare—or that have unclear 
methodology or small sample sizes are also 
disqualified. Additionally, research that focuses 
solely on technical AI features without any 
therapeutic significance is not recognized. To 
put it briefly, these stringent standards 
guarantee that only pertinent, excellent research 
advances our knowledge of AI's true effects on 
patient outcomes and therapeutic applications 
in eye care. 

Data Extraction 

In actuality, the data extraction in this 
research focuses on important details to 
evaluate the influence of AI in eye care. The 
systematic collection of important details, such 
as study design, sample size, AI model, and 
targeted eye illnesses, is noteworthy. Metrics 
like sensitivity, specificity, and predictive 
values that demonstrate AI's diagnostic 
capabilities are included in primary data. As 
anticipated, information on patient 
improvement rates, treatment success, and cost-
effectiveness is also gathered to assess AI's 
wider effects. 

In order to achieve this, information on AI 
integration is included, particularly how well it 
meshes with current clinical workflows. With 
two separate researchers examining all the data 
and reaching a consensus on any discrepancies, 
it should come as no surprise that accuracy and 
consistency are given top importance. 

Risk of Bias Assessment 

Realistically, determining the possibility of 
bias in this situation is not an easy task. It is well 
recognized that the Cochrane Risk of Bias Tool 
looks at selection, performance, detection, and 
reporting bias. The risk level for each study is 
indicated as low, high, or unclear, making any 
restrictions that might affect validity explicit. 
Furthermore, the Newcastle-Ottawa Scale 
(NOS) emphasizes outcomes, comparability, 
and selection for observational research. 

It is worth noting that these tools make it 
simpler to recognize and lessen bias. Ignoring 
bias could result in skewed results and other 
ridiculous effects. Therefore, using these 
evaluations eliminates any uncertainty 
regarding the dependability of AI's function in 
eye care and enables a more thorough review. 

Data Synthesis and Analysis 

Data synthesis in this study will focus on 
summarizing AI’s effectiveness in eye care 
through narrative synthesis, especially because 
studies often differ in method, model, and 
outcome. As it is known, narrative synthesis is 
essential when comparing studies on varied 
conditions, AI techniques, and clinical settings, 
which makes direct comparison cumbersome. 
To that end, diagnostic accuracy, treatment 
outcomes, cost-effectiveness, and workflow 
integration will be strictly analyzed, offering a 
clear picture of AI’s real contributions and 
limitations in ophthalmology. 

Meta-analysis will be tried to get pooled 
estimates for research that share techniques and 
results. A meta-analysis would undoubtedly 
focus on diagnostic accuracy metrics such as 
sensitivity and specificity in diseases like 



glaucoma and diabetic retinopathy, offering a 
direct examination of AI's efficacy. Sensitivity 
analysis will be performed to identify variables 
such as sample size or model differences when 
discrepancies are discovered. 

It is important to remember that this 
evaluation refrains from oversimplifying 
results by drawing ambiguous or generalized 
generalizations. Only dependable, clinically 
relevant data are provided because accuracy 
counts. Broad interpretations are not allowed; it 
is safe to assume that the final evaluation will 
only be influenced by insights supported by 
evidence. This paper provides clear, practical 
conclusions on the dependability of AI in eye 
care settings using narrative synthesis and 
possible meta-analysis. 

Results 

Study Selection 

The selection of the studies for this review 
adheres to PRISMA principles, guaranteeing 
repeatability and clarity at every stage. It should 
be noted that the PRISMA flow diagram 
includes every step, beginning with database 
searches using IEEE Xplore, Web of Science, 
PubMed, and Scopus. Since researchers had 
long been aware of database anomalies, 
eliminating duplicate items was crucial to 
improving the dataset's quality. Following the 
anticipated title and abstract screening, papers 
that were unrelated to AI in eye care were 
eliminated; those that were centered on general 
healthcare or unrelated technologies were not 
appropriate in this context. 

Full-text versions of possibly pertinent 
studies were acquired for a thorough eligibility 
evaluation following the initial screening. In 
order to be included in the review, which 
focused on peer-reviewed studies that looked at 
AI in clinical workflows, treatment planning, or 
eye diagnostics from 2019 onward, it seems 
safe to assume that studies had to satisfy 
specific inclusion and exclusion criteria. As is 
well known, in order to prevent ludicrous 
results, studies that lacked methodological rigor 

or were not specifically related to eye care were 
disregarded. 

In actuality, only research that satisfied all 
the requirements made it to the final analytic 
stage. This methodical technique made 
guaranteed that only high-quality, pertinent 
research guided the review conclusions, 
demonstrating AI's involvement in eye care, so 
long as PRISMA clearly delineated each 
decision point. Ignoring this level of detail 
when choosing studies is risky since it could 
result in biased findings and flimsy 
conclusions. 

Study Characteristics 

Studies in this review cover a broad range of 
characteristics, showing the diverse ways AI is 
applied in eye care. Sample sizes vary widely, 
with some studies having fewer than 100 
participants while others involve thousands in 
multicenter trials. Smaller studies often focus 
on early proof-of-concept validation, which 
obviously limits generalizability. Larger 
studies, on the other hand, aim to measure real-
world effectiveness in bigger populations, 
offering more reliable evidence for AI’s 
potential in clinical settings. It feels safe to say 
that larger sample sizes bring stronger 
conclusions, but what may be overlooked is that 
smaller studies still provide important early 
insights. 

When it comes to AI models, studies feature 
various machine learning and deep learning 
algorithms suited to specific needs in 
ophthalmology. Convolutional Neural 
Networks (CNNs) dominate, especially for 
image-based diagnostics in conditions like 
diabetic retinopathy, glaucoma, and macular 
degeneration. CNNs are valued for processing 
large volumes of imaging data efficiently, 
which is particularly important for tasks like 
analyzing fundus photographs and interpreting 
OCT scans. Other models—such as support 
vector machines, random forests, and ensemble 
models—appear less often but serve to boost 



diagnostic accuracy through their unique 
strengths. 

Outcome measures in these studies fall into 
categories like diagnostic accuracy, treatment 
effects, cost-effectiveness, and workflow 
integration. Diagnostic accuracy is typically 
measured by sensitivity, specificity, and AUC 
values, which show how well AI models detect 
or rule out diseases compared to human 
specialists. As it is known, higher sensitivity 
and specificity indicate stronger diagnostic 
performance, which in turn suggests AI’s 
potential reliability. In terms of treatment 
outcomes, studies examine AI’s impact on 
disease progression, patient response, and 
overall health improvements, offering a fuller 
picture of AI’s effectiveness beyond 
diagnostics. 

Cost-effectiveness is another key measure, 
looking at resource savings from faster 
diagnoses or reduced reliance on specialists. 
Workflow integration, assessed by factors like 
time saved and improved efficiency, shows 
how smoothly AI tools can fit into existing 
clinical practices. For many years, researchers 
knew about efficiency challenges in healthcare, 
and AI seems to address these, yet real-world 
results vary. 

These studies highlight both strengths and 
limitations, depending on the model, disease 
focus, and clinical setting. This diversity in 
applications, outcomes, and reliability forms a 
foundation for assessing AI’s role in improving 
patient outcomes, though much depends on 
individual study contexts. 

Diagnostic Accuracy of AI Models 

AI models show high diagnostic accuracy for 
various eye diseases, often matching or even 
exceeding human specialists. For diabetic 
retinopathy (DR), convolutional neural 
networks (CNNs) consistently reach 
sensitivities above 90%, making them reliable 
for early detection. Bali and Bali confirm that 
these AI models detect DR progression 
accurately, helping clinicians catch even mild 

cases early [1]. But it is no surprise that AI’s 
performance depends heavily on image quality. 
Poor-quality images lead to misdiagnoses, 
raising concerns about AI’s practical use in 
real-world settings where images vary. 

As expected, AI performs well for glaucoma, 
too, with sensitivity rates between 85–92% on 
OCT images. Yet one thing to note is that in 
complex cases, these tools often struggle. 
According to Scheetz et al., specificity may 
drop when normal optic nerve variations are 
misinterpreted as glaucomatous changes, 
causing false positives [4]. It feels safe to say 
AI is promising, but not foolproof for glaucoma 
screening, suggesting clinical oversight 
remains essential. 

AI’s accuracy in age-related macular 
degeneration (AMD) is also high, exceeding 
88% when analyzing both fundus and OCT 
images. Benet and Pellicer-Valero noted AI’s 
ability to detect early AMD signs, aiding in 
preventive treatments.[2] However, one 
sensible reason for concern is limited datasets; 
with a lack of diverse populations, AI’s 
robustness across demographics is 
questionable. It may look like AI can generalize 
globally, but in reality, it needs broader datasets 
to ensure reliability across different regions. 

Retinopathy of prematurity (ROP) sees high 
AI sensitivity, often above 90%, which makes 
these models useful in pediatric care where 
close monitoring is key. Yet what may be 
overlooked is the “black-box” nature of AI, 
where decisions lack transparency. 
Gunasekeran et al. suggest this limitation raises 
ethical and trust issues in critical areas like 
infant care, meaning AI must become more 
interpretable [4]. 

AI models show impressive diagnostic 
accuracy across eye diseases but face key 
challenges. Inconsistent data quality, limited 
demographics, and interpretability issues create 
gaps in AI’s reliability. To that end, AI needs 
refinement before it can provide consistent real-
world solutions. It is clear that AI holds 
potential, yet practical challenges remain, 



which must be addressed for effective clinical 
application. 

Treatment Outcome Comparisons 

Artificial intelligence (AI) greatly improves 
treatment outcomes in eye care. It enables 
faster, more precise interventions. Studies show 
AI models often outperform or match 
traditional methods, especially in managing 
diabetic retinopathy (DR), glaucoma, and age-
related macular degeneration (AMD) [1]. One 
thing to note is that AI systems excel at early 
detection, which allows timely treatment and 
stops disease progression. Benet and Pellicer-
Valero confirm that AI detects early DR with 
high accuracy, improving chances for 
successful treatment and preventing severe 
complications [2]. 

Comparing treatment outcomes with and 
without AI reveals stark advantages. As it is 
known, AI reduces human error and enhances 
patient management. Yin, Ngiam, and Teo 
found AI-driven planning provides 
personalized treatments, reducing risks of 
mistakes [5]. In AMD management, AI predicts 
responses to anti-VEGF therapies, often 
leading to better visual outcomes than standard 
care. Fasler et al. found that AI-supported 
treatment, integrated with clinical decision-
making, improves visual acuity more 
effectively than traditional methods.[6] This 
could mean that AI has a stronger impact when 
it assists clinicians. 

AI’s efficiency extends to referral pathways. 
Han et al., found that an AI-powered 
teleophthalmology system for retinal disease 
referrals reduces false positives and clinic 
visits, which saves resources [7]. Shimura et al.  
similarly found AI improves diabetic macular 
edema (DME) monitoring, allowing real-time 
adjustments that lead to better outcomes.[8] Yet 
AI alone has limits. Tran, Riveros, and Ravaud 
note AI models need diverse datasets to adapt 
effectively, cautioning against relying solely on 
AI across varied demographics [9]. 

For high-risk scenarios, AI’s impact depends 
on embedding it into clinical workflows. 
Goldstein et al. argue AI cannot fully realize its 
benefits without optimized workflows, 
especially in complex settings [10]. Not to 
mention, Shukla et al. found that AI in 
teleophthalmology increases access to eye care, 
especially in remote areas, reducing disparities 
in treatment [11]. This might mean that AI has 
a role in bridging healthcare gaps, though its 
reliability in different settings remains a 
concern. 

Despite advances, inconsistencies exist 
across demographics and care environments. AI 
tools need extensive validation and diverse data 
to work effectively across all patient groups. 
Even though AI’s role in eye care is promising, 
evidence suggests full-scale adoption requires 
tackling ethical, interpretability, and workflow 
issues. 

Cost-Effectiveness of AI in Eye Care 

In reality, studies confirm that AI in eye care 
saves costs and improves access and quality. 
For many years, researchers knew about costly 
screening methods for retinopathy of 
prematurity. But they got a real surprise with 
the discovery of AI-driven solutions, which, as 
Morrison et al. found, could cut expenses by 
reducing unnecessary consultations [12]. 
Notwithstanding, it improves early detection. 
The reality is that this change removes the need 
for repeated follow-up visits, thus lowering 
direct medical costs and relieving healthcare 
workers. It may look like traditional methods 
work, but, observed carefully, AI is clearly 
more efficient. 

Actually, Wolf et al. claimed that AI-based 
diabetic retinopathy screening is more cost-
effective, especially at higher adherence rates, 
as it leads to fewer visits [13]. This was 
unexpected—so unexpected, in fact, that it 
outperformed usual screening methods for costs 
when adherence exceeded 23%. One sensible 
reason for this is that point-of-care systems 
make each screening session cheaper. 



It is also likely that, in underserved regions, 
AI is advantageous. As Fuller et al. pointed out, 
AI screening in low-income populations cuts 
expenses by nearly a quarter [14]. This was a 
shocking finding—something that cannot be 
ignored because it points to reduced costs and 
wider accessibility. 

As it is known, Lin et al. reported that setting 
up AI systems may be expensive, yet the 
savings from streamlining processes outweigh 
these costs [15]. The reality of the situation is 
that ignoring AI's cost-saving potential could 
bring unwanted outcomes, such as missed 
opportunities for early intervention in eye care. 

AI Integration with Clinical Workflows 

AI integration in clinical workflows remains 
challenging due to the need for standardized, 
seamless data exchange between AI models and 
existing systems. Effective AI implementation 
involves not only technical deployment but also 
workflow adjustments, including data 
validation and clinician feedback systems. 
Studies highlight the importance of AI systems 
adapting to clinical workflows for sustainable 
use. For example, Erdal et al. note that 
workflow optimization, such as real-time 
feedback loops, enhances usability and 
accuracy in clinical settings [16]. Goldstein et 
al. reinforce that successful AI adoption 
requires comprehensive workflow alignment, 
particularly in diverse clinical settings [10]. 

Risk of Bias and Quality Assessment 

Evaluation of AI research in eye care reveals 
both advantages and disadvantages. A lot of 
studies followed rigorous design guidelines. In 
fact, images from standardized datasets were 
used. improves reproducibility and manages 
variables that can cause confusion. Research by 
Keel and van Wijngaarden shown that AI in 
OCT interpretation was applied to large, 
consistent datasets. lessens the variation in 
diagnostic results [17]. It is clear that reliability 
is increased by standardized methods. 
However, it could fail to capture the variety of 

real-world environments. There are differences 
in imaging conditions and patient 
demographics in practice. 

Despite its advantages, it should be noted 
that generalizability is limited by the absence of 
different datasets. AI models frequently exhibit 
performance reductions when applied to 
diverse populations or imaging devices, 
according to studies like the one by 
Gunasekeran et al [4]. This could imply that the 
reliability of AI is doubtful for a range of patient 
populations. Ignoring the idea that AI's 
accuracy is impacted by diversity is risky. 
Unwanted consequences, such as less accurate 
diagnoses in underrepresented populations, will 
undoubtedly result from ignoring this. 

The black-box nature of AI models is 
another common problem. Trust and clinical 
acceptance are hindered by a number of 
research. Ting et al. state that there is a risk 
when AI diagnostic tools are not interpretable 
[18]. Clinicians could find it difficult to 
comprehend or verify outcomes produced by 
AI. The capacity to incorporate AI into clinical 
practice is impacted by a lack of transparency. 
Without a clear understanding of the results, 
providers might be reluctant to rely on 
algorithms. It demonstrates how complicated 
the integration of AI is. 

Studies that commonly lacked blinding 
during data analysis stages are highlighted by 
bias assessment tools like PROBAST-AI and 
the Cochrane Risk of Bias Tool. can cause bias 
in performance. For example, blinding for 
analysts was frequently not used in research 
that used retrospective observational data. 
might compromise impartiality while assessing 
AI performance. Furthermore, a large number 
of investigations were observational rather than 
randomized controlled trials, such as those 
conducted by Kelly et al [19] and Gunasekeran 
et al [4] makes it difficult to determine the exact 
cause of AI's efficacy. 

Although research demonstrates a dedication 
to methodological rigor, there are still issues 
with generalizability, interpretability, and bias 



reduction. Future research is anticipated to be 
crucial in tackling these concerns. Ignoring 
these problems will undoubtedly have 
unintended consequences. Therefore, 
enhancements are required to improve the 
clinical utility and dependability of AI 
applications in eye care. 

Discussion 

AI is proving effective for diagnosing eye 
diseases like diabetic retinopathy, glaucoma, 
and macular degeneration. It is no surprise that 
convolutional neural networks (CNNs) are 
reaching high levels of diagnostic accuracy. In 
fact, research by Anton et al. [20] and Ting et 
al. [18] noted that these models often meet or 
surpass the accuracy of human specialists. It is 
shocking how CNNs can reach sensitivities 
over 90% for diabetic retinopathy and age-
related macular degeneration. One thing to note 
is that early detection from AI reduces 
irreversible vision loss risk, as Betzler et al. [21] 
highlighted. Because of such accuracy and 
speed, it feels safe to say AI can lighten the 
clinical workload while improving access to 
eye care. 

AI in clinical settings offers a strange but 
obvious advantage. Automating diagnostics 
removes tedious, repetitive tasks. Not to 
mention, in teleophthalmology, AI models 
make care more accessible and cheaper in 
underserved regions. Storås et al. explained 
how this AI use improves access where 
specialists are scarce [22]. When presented with 
this kind of problem, AI seems like a simple 
answer. Yet, according to Ting et al., 
integrating real-time AI tools into clinical 
workflows also boosts decision-making [18]. 
As expected, freeing clinicians from routine 
tasks lets them focus on complex cases, noted 
Ji et al [23]. For many years, researchers knew 
about the need for scalable solutions in 
ophthalmology. So it might come as a surprise 
that AI might actually meet this demand. 

However, there are issues. Shetty et al. 
argued that AI models depend on diverse and 

quality data, which impacts real-world 
performance [24]. One sensible reason for this 
is that limited data can mean lower accuracy 
with varied demographics or devices. 
Notwithstanding, AI models risk reduced 
reliability without better data diversity. Zhang 
et al. argued the “black-box” nature of AI 
creates doubt, as healthcare providers struggle 
to trust systems they cannot fully understand. 
Actually, this lack of transparency limits trust 
and slows clinical adoption [25]. 

Another major barrier is the need for 
technical infrastructure. According to Xu et al., 
AI requires investment in tech, workflow, and 
training [26]. The reality of the situation is that 
resource-limited settings face delays in 
adopting AI. Wen et al. pointed out that these 
barriers are no surprise, as expected. It is sad 
but clear that costs, not benefits, determine the 
pace of AI adoption [27]. 

Therefore, AI holds strong promise in eye 
care for high diagnostic accuracy, better 
efficiency, and greater access. Yet, issues like 
data diversity, model transparency, and 
infrastructure must improve. Ignoring these 
problems will by no doubt lead to unwanted 
outcomes, like inconsistent reliability across 
settings. 

Comparative Analysis 

AI is making big strides in eye care, 
especially with diseases like diabetic 
retinopathy and age-related macular 
degeneration. According to research by Keel 
and Wijngaarden, AI-driven optical coherence 
tomography (OCT) matches specialist-level 
accuracy when classifying retinal images [28]. 
This was most unexpected. It is obvious, then, 
that AI models in eye care are performing well, 
and sometimes even exceed traditional 
diagnostic tools. 

But in broader healthcare, AI faces big 
hurdles. As a matter of fact, outside of eye care, 
other specialties like cardiology or oncology 
demand varied data—from genetic codes to 
imaging scans. Bhagat explained that AI in 



healthcare needs sophisticated algorithms 
because of data diversity, which is not as much 
of an issue in eye care [29]. Not to mention, the 
consistency achieved in eye care does not carry 
over to all healthcare AI applications. 

One thing to note is that AI’s role in 
treatment differs widely across fields. In 
hematology, Walter et al. argued that AI can 
achieve diagnostic precision at a “superhuman” 
level, especially when spotting cellular patterns 
[30]. Yet, as Petersson et al. explained, human 
expertise is still needed to validate these AI 
findings [31]. Eye care, however, has already 
embraced autonomous AI tools, even FDA-
approved for primary care. Not surprising, this 
level of independence does not extend to other 
fields, which require human validation at each 
stage. 

Economic factors also favor eye care AI. 
According to Morrison et al., AI reduces 
diagnostic costs and eliminates follow-ups [12]. 
In contrast, Macrae argued that broader 
healthcare AI faces hefty investments due to 
strict regulations, a barrier to adoption [32]. 
Notwithstanding, AI in eye care clearly shows 
more potential for streamlined costs. 

Implications for Clinical Practice 

AI is proving highly effective in eye care, 
especially for detecting diabetic retinopathy 
and macular degeneration. In reality, AI 
models—particularly convolutional neural 
networks (CNNs)—often achieve diagnostic 
accuracy on par with or even above that of 
traditional tools. Research by Keel and 
Wijngaarden found that AI-based optical 
coherence tomography (OCT) can classify 
retinal images with accuracy similar to that of 
specialists [17]. This was most unexpected and 
shows AI’s growing value in ophthalmology. It 
is no surprise, then, that AI is seen as 
transformative for eye care. 

Yet integrating AI into other areas of 
healthcare presents different challenges. Unlike 
eye care, which benefits from standardized 
imaging data, fields like cardiology and 

oncology require more varied data. Bhagat 
explained that AI in these fields needs 
sophisticated algorithms to manage genetic 
data, imaging, and more [28]. Because of this 
data diversity, AI in healthcare settings outside 
eye care faces more obstacles. It is obvious that 
AI consistency in eye care is less attainable in 
these other fields, where complexity limits 
reliability. 

The role of AI in treatment also varies. In 
hematology, Walter et al. argued that AI 
achieves remarkable precision, even detecting 
complex cellular patterns with superhuman 
accuracy [29]. But human validation is still 
essential here. On the other hand, AI in eye care 
operates more autonomously, with many 
diagnostic tools even FDA-cleared for use in 
primary care settings. Petersson et al. noted that 
this independence is rare in healthcare, where 
interpretability and clinical validation are often 
non-negotiable [31]. In short, AI’s autonomy in 
eye care contrasts with its reliance on human 
oversight elsewhere. 

Economic factors further underscore these 
differences. AI in eye care reduces costs by 
streamlining diagnostics and reducing follow-
up visits. Morrison et al. reported that these cost 
savings make AI in eye care economically 
advantageous [12]. But Macrae noted that other 
healthcare AI applications face substantial 
regulatory costs, which can slow adoption [31]. 
It is also likely that the economic feasibility of 
AI will continue to favor eye care over other 
areas. 

AI shows unique advantages in eye care: 
high diagnostic accuracy, reduced costs, and 
potential for autonomous use. But in other 
healthcare fields, data diversity, high costs, and 
the need for interpretability limit AI’s 
immediate impact. These differences suggest 
AI’s potential varies widely by field and calls 
for tailored approaches across healthcare 
settings. 



Challenges and Limitations of Current 

Research 

AI research in eye care faces major 
limitations that hold back its effectiveness and 
adoption. In reality, a primary issue is the lack 
of standard datasets. Data quality varies widely 
in eye care studies, from image resolution to 
device types and patient demographics. 
According to Yuan and Xiao, these 
inconsistencies create models that perform well 
in controlled settings but struggle in real-world 
clinics [32]. It feels safe to say that without 
consistent data, diagnostic accuracy and 
generalizability remain out of reach (Armato et 
al.) [33]. 

Another challenge comes from algorithmic 
bias. In reality, many AI models carry biases 
from their training data, leading to unequal care 
outcomes across demographic groups. Kelly et 
al., mentioned that such biases in AI worsen 
disparities, making diagnostics less reliable for 
certain populations [19]. To that end, Keel and 
van Wijngaarden argued that AI models trained 
on homogenous data lack robustness [17]. It is 
also likely that these models fail to handle 
variations in disease presentations, risking 
misdiagnoses in underrepresented groups. 

Interpretability poses a similar problem. 
Most AI models are "black boxes," giving 
results without explaining how decisions were 
made. This lack of transparency limits clinician 
trust, making it difficult to apply AI in critical, 
high-stakes cases. Benet and Pellicer-Valero 
emphasized that without clear decision 
pathways, clinicians hesitate to trust AI in 
patient care [2]. In fact, Yuan and Xiao 
suggested that adding interpretability could 
boost acceptance, though this remains rare in 
ophthalmology [32]. 

Infrastructure is another hurdle. 
Implementing AI demands heavy investments, 
such as for data management and staff training, 
which are often out of reach for many clinics. 
Reis et al. pointed out that these costs limit AI 
adoption to well-funded institutions, creating a 
gap in access to care [34]. The reality is that 

without financial support, AI’s practical use 
remains limited. 

Finally, regulatory challenges add 
complexity. Rules on AI lag behind 
technological advancements, creating 
uncertainty over model approval and patient 
safety. Armato et al., noted that adaptive 
regulations are needed to ensure safe 
deployment in eye care [33]. 

In summary, dataset inconsistencies, biases, 
lack of transparency, infrastructure needs, and 
unclear regulations create hurdles that must be 
addressed for AI to become a reliable tool in 
ophthalmology. 

Strengths and Limitations of the Review 

In reality, following PRISMA guidelines 
seems like a strong start. Obviously, this adds 
transparency and makes findings easier to trust. 
According to van Dijk et al., a broad search 
method using many databases means fewer 
studies are ignored, making it feel safe to say 
the review covers a lot on AI in eye care [35]. 
It feels like this approach should allow a 
balanced view, showing both positives and 
limitations. Using recent studies offers a view 
on the current state of AI, especially as older 
studies might not reflect recent advances in 
deep learning. 

Yet, some things stand out as messy. For 
instance, study quality varies wildly. Pattathil et 
al., showed that most AI studies lack set 
datasets and consistent protocols [36]. Because 
of this, comparing results becomes 
cumbersome. A study with one set of patients 
and machines might not look like another. This 
inconsistency creates a problem, making 
generalizations nearly meaningless. As a result, 
many findings appear more like random points 
than a reliable summary. Actually, most studies 
here are observational, which, as Crowther 
mentions, cannot prove cause-effect links. In 
fact, they are, in short, more prone to bias, so 
their conclusions might be weak [37]. 

Publication bias also sneaks in. It’s obvious 
that studies with “good” results get published 



faster, while inconclusive or “bad” results 
don’t. Li and Bartley suggest that positive 
results could lead to an overly rosy view of AI’s 
role.[38] In fact, ignoring the bias here could 
lead to unwanted outcomes like inflated trust in 
AI or poor clinical decisions. And there’s the 
“black-box” issue. Many AI models are closed 
off; nobody can see how they reach 
conclusions. This lack of transparency bothers 
clinicians, who are right to question diagnostics 
they don’t understand, as Pattathil et al., points 
out [36]. 

In short, while the review’s scope is vast, 
study variations, publication bias, and AI’s 
“black-box” nature limit its usefulness. 
Ignoring these issues will, by no doubt, cause a 
lot of setbacks for AI adoption in eye care. So, 
something must be done about standardizing 
study designs to achieve results that clinicians 
and patients can trust. 

Future Directions and Research 

Recommendations 

Building AI models that work well for 
everyone needs diverse datasets. It is obvious 
that many current datasets miss key details, like 
various patient types or imaging settings. As a 
matter of fact, without this variety, findings 
have no meaning. According to experts, model 
transparency is also likely important. 
Notwithstanding, AI still lacks trust because of 
its “black-box” approach. It feels safe to say 
clear models will be easier to use in real clinics. 

It has been suggested that long-term studies 
could assess AI’s impact. One thing to note is 
that short-term trials tell very little about real 
patient results. It is sad, but actually, this limits 
AI’s potential for big healthcare changes. 
Expanding AI into underserved areas, where 
resources are low, shows its scalability and 
limits. These studies might seem simple, but it 
is not as simple as it looks. 

Finally, regulatory guidelines are a must. 
Ignoring them will, by no doubt, lead to risky 
AI use in different clinics. Because of AI’s 
risks, it is about time that safety rules come 

first. To that end, clear policies will support 
safe, ethical use across many health settings. 

Conclusion 

Artificial intelligence promises big 
improvements in eye care. In reality, AI helps 
diagnose diseases like diabetic retinopathy, 
glaucoma, and age-related macular 
degeneration. AI models, especially 
convolutional neural networks, show high 
accuracy. Sensitivities and specificities often 
exceed 90%. It is obvious AI can match human 
specialists. 

Actually, AI is cost-effective in screening 
and early detection. Because of this, there is less 
need for specialist intervention. Not to mention, 
AI-assisted telemedicine helps in underserved 
areas. It expands access to high-quality 
diagnostics where eye care resources are 
limited. 

However, limitations exist in current 
research. Lack of dataset diversity is significant 
issue. As a matter of fact, model interpretability 
is poor. Ignoring such issues will lead to 
unwanted outcomes like bias and misdiagnosis. 

Some researchers suggest standardized 
protocols are needed. Yet integrating AI into 
real-world settings is complex than it seems. 
Something must be done about limitations to 
enable better clinical impact. To that end, more 
research is required. 

In short, AI holds promise but faces 
challenges. This clearly means balance is 
needed. Ignoring issues will lead to unwanted 
outcomes. 

Recommendations and Implications for 

Practice 

Artificial intelligence needs diverse data. As 
a matter of fact, using representative datasets 
makes AI reliable across populations. It is 
obvious diverse data improves models. Yet, 
some say collecting diverse data is 
cumbersome. It is dangerous to ignore the fact 
that limited data leads to unreliable AI. Ignoring 



this will lead to unwanted outcomes like 
misdiagnosis. 

Implementing interpretability measures help 
clinicians trust AI. As it is known, explainable 
AI enhances confidence. Not to mention, wider 
adoption is expected. However, making AI 
explainable is more complex than it seems. 
Some argue AI models are black boxes. It may 
look like AI is simple, but when observed 
carefully, it is complex. 

Integrating AI into teleophthalmology 
improves access in underserved areas. In 
reality, it reduces disparities in eye care—
something that cannot be ignored. Healthcare 
systems should invest in AI infrastructure and 
clinician training. Provided that, AI 
effectiveness is maximized. To that end, better 
outcomes happen. 

Ultimately, thoughtful integration and 
continued research are essential. Ignoring these 
will hinder AI's potential to improve eye care. 
This clearly means balance is needed. 
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