Assessing Functional Recovery and Neural Plasticity in Ischemic Stroke Rodent Models- A Systematic Review

Asma Parveen^{1,3*}, Prathap Suganthirababu¹, Yamini Umasankar¹, Lavanya Prathap², Partha Ranjan Das³

¹Saveetha College of Physiotherapy, Saveetha Institute of Medical and Technical Sciences, Chennai, India

²Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical sciences, Chennai, India

³Abhinav Bindra Sports Medicine and Research Institute, Bhubaneswar, Odisha, India

Abstract

Ischemic stroke is a pervasive and debilitating condition, ranking as a leading cause of disability worldwide. The aftermath of a stroke poses significant challenges for rehabilitation and recovery, emphasizing the need for effective interventions. Rodent models have emerged as indispensable tools in investigating post-stroke rehabilitation strategies, providing valuable insights into the complex mechanisms governing stroke recovery. This systematic review provides a comprehensive synthesis of evidence from 10 experimental studies, carefully selected through a rigorous literature search to investigate the efficacy of physical exercise in promoting functional recovery and neural plasticity in rodent models of ischemic stroke. Study quality was meticulously evaluated using the SYRCLE risk of bias tool, ensuring the precision and trustworthiness of the findings. The findings reveal that treadmill exercise leads to significant, long-lasting improvements in motor and cognitive function, decreases infarct volume, and boosts neurotrophic factors like BDNF, driving synaptic plasticity, neurogenesis, and myelin repair. Notably, the results indicate that exercise-induced neuroplasticity is facilitated by key signaling pathways, including CREB/BDNF and caveolin-1/VEGF mechanisms, offering crucial insights into the underlying mechanisms of exercise-mediated recovery. These findings have significant implications for developing effective rehabilitation strategies for stroke survivors, emphasizing the therapeutic benefits of physical exercise in enhancing functional outcomes and quality of life

Keywords: Cerebral Ischemia, Functional Assessment, Histomorphometry Evaluation, Neuro Regeneration, Treadmill Exercise.

Introduction

Stroke poses a formidable and growing global health threat, ranking as the primary cause of physical disability in adults and the second leading cause of mortality in middle- to high-income countries. A cluster of key risk factors contributes to stroke incidence, including hypertension, diabetes, cardiovascular disease, smoking, substance abuse, obesity, and sedentary lifestyle. The Trial of Organisation in Acute Stroke Treatment (TOAST) classification system stratifies cerebral ischemia into five distinct subtypes:

- 1. Atherosclerotic large artery disease.
- 2. Cardioembolic stroke.
- 3. 3. lacunar stroke.
- 4. Stroke from other identified causes.
- 5. Stroke of unknown or undetermined aetiology.

Inadequate blood supply to cerebral tissue results in a reversible loss of function, which, if prolonged, leads to infarction and neuronal loss [4]. Ischemic stroke initiates a cascade beginning with electrical function loss, progressing to membrane disturbance, calcium influx, excitotoxicity, reactive oxygen species generation, and cell membrane destruction. This causes irreversible damage, disrupting functional capabilities and significantly altering lifestyle [5].

Rodent models, particularly mice and rats, are widely used in stroke studies due to their cost-effectiveness, ease of monitoring, and ethical considerations [6]. Rats are favored because their cerebral vasculature and physiology closely resemble that of humans. Their moderate body size facilitates monitoring, and their small brain size is fixation conducive to procedures [7]. Furthermore, the resemblance between human limb movements and rodent arm movement patterns, observed during reaching behaviors, indicate that these models can be effectively translated to study human motor function and dysfunction [8-10, 15].

Functional recovery and neural plasticity are extensively discussed. Long-term potentiation in perilesional areas, observed seven days postlesion induction, indicates enhanced plasticity potential [11]. Phasic and tonic GABAergic inhibition exhibit distinct regulatory patterns in peri-infarct regions, which is essential [12]. The reorganization of areas surrounding the lesion, measured through intracortical microstimulation, shows that motor output is produced by small neuronal groups around the infarct, aiding in functional recovery [13, 14].

There is a notable scarcity of literature on the impact of exercise and neural plasticity on brain recovery post-injury. This systematic review aims to synthesize and critically evaluate existing research, highlighting the benefits and of various drawbacks methodological Bv approaches. undertaking this comprehensive review, we aim to provide a valuable resource for researchers investigating the relationship between neural plasticity and functional recovery. This review seeks to advance the understanding of functional assessment and histomorphometry analysis in ischemic stroke rodent models.

Methodology

We conducted a qualitative systematic review using the Preferred. Systematic Reviews and Meta-Analysis were conducted following PRISMA guidelines. The search included electronic databases such as Google Scholar, PubMed, and ScienceDirect. The systematic literature search covers article ranging from the year 2015 to 2025 using a combination of keywords and MeSH terms such as Ischemic Exercises, Treadmill Functional Stroke, assessment, Neural Plasticity and Rodent models. A thorough search strategy was utilized to find pertinent studies. Various keyword combinations and permutations were used to ensure a comprehensive and thorough search.

Data Collection Criteria

Studies Using Rodents Animals (Rats or mice), Studies using surgical intervention to induce Ischemic stroke (Middle cerebral Artery Occlusion), Studies using Physical Exercises (treadmill Rehabilitation/exercises), Studies using various equipment's to perform exercises (Rota Rod). Studies which are using outcome measures as Functional assessment (such as mNSS (Modified Neurological Severity Scoring) which includes Motor Assessment, Sensory Assessment, Reflex Abnormality and balance test). Studies using methods to calculate total infarct value (Nissl staining, TSS staining). Studies evaluating Histomorphometry evaluation (H&E staining, Western Blot, Apoptic Cell death, Flow Cytometry Array). Only experimental studies are included. Recent studies (2015-2025) were selected to capture the most up-to-date findings to guarantee contemporary relevance.

Selection Process for Studies

Process for selecting studies (refer to Figure 1), details the step-by-step process of identifying and selecting studies for inclusion.

Initially, 388 records were identified through database searching (from 2015-2025). 90 Full text article is not available and were removed, leaving 298 records. Following the screening process, 131 records were excluded due to not meeting the disease or eligibility criteria, 10 were excluded because of article being in different language, 28 were excluded because of Human study. Another 102 articles are from conference papers. 27 records were selected for retrieval. However, 09 records couldn't be retrieved.

This resulted in 18 records being assessed for eligibility. The remaining records underwent further evaluation. Out of these reports, 8 were excluded for specific reasons: 2 studies using various animals for the intervention, 3 studies for incompletion of data, 2 for weak methodology and 1 for small sample size. Ultimately, this review included 10 relevant studies. (Table 1). The flow chart (Figure 1) visually represents the filtering process from initial identification to the final inclusion of studies.

Figure 1. PRISMA Flow Diagram: A Systematic Literature Search of Studies Published Between 2015 and 2025

Methodological Quality

The SYRCLE (Systematic Review Centre for Laboratory Animal Experimentation) risk of bias tool, designed for use with Revman software, assesses bias in animal studies [16]. The evaluation tool includes 10 items that cover six categories of bias: selection, performance, detection, attrition, reporting, and other forms of bias. Each item is evaluated with a signaling question, with responses categorized Assessments were made using a three-tiered system: 'yes' (low risk of bias), 'no' (high risk of bias), and 'unclear' (ambiguous risk of bias). A response of 'no' signifies a high risk of bias for that particular item. Reviewers independently assessed key elements, such as the adequacy of randomization and allocation concealment, baseline characteristics, blinding of participants and outcomes, randomization of housing and outcome assessment, completeness of data, and selective reporting. Each aspect of bias was classified as low (green), high (red), or unclear (yellow).

Author Name and	Title of the study	Type of Paper	Rodents Model	Sample Size	Surgical Intervention	Type of	Treatment	Outcome measure	Reflection
vear of		raper	Mouel	Size	inter vention	inter vention	uur ation		
publication									
Oin of on a	Treadmill avanaica	Examine on to 1	Seres collo	101	Middle	Tues durill	28 days	Functional	Nouvelegical function togt
Qingreng	i readmili exercise	Experimental	Sprague-	191			28 days	Functional	Neurological function test:
Ale, et al	ameliorates focal	study	Dawley		Cerebral	Exercises		Assessment	Measured at I day, / days,
2018	cerebral		male rats		Artery			Infarct volume	and 28 days after MCAO,
	ischemia/reperfusion-				Occlusion			assessment	which assesses motor,
	induced neurological				(MCAO)			Histomorphometry	sensory, reflex, and balance
	deficit by promoting							Assessment	tests.
	dendritic								Infarct volume
	modification and								assessment:
	synaptic plasticity via								Nissl staining is used to
	upregulating								measure the infarct volume
	caveolin-1/VEGF								in the ipsilateral hemisphere.
	signaling pathways								Histomorphometric
									Assessment:
									HE staining:
									HE staining uses hemalum,
									which stains cell nuclei blue.
									The study used an Olympus
									BH-2 microscope (Olympus
									Optical, London, UK) to
									capture the images.
									Western blot analysis:
									Densitometric analysis was
									conducted on coronal

 Table 1. Review Of Literature

									sections from the anterior of
									the frontal lobe, as well as
									the middle brain tissue block
Fengwu Li,	In Search of a Dose:	Research	male	150	Middle	Treadmill	28 Days	Functional	Functional Assessment:
et al 2020	The Functional and	Article	Sprague-		Cerebral	Exercise		Assessment	Adhesive removal, beam
	Molecular Effects of		Dawley		Artery			Cerebral Infarct	balance, forelimb placing,
	Exercise on Post-		rats		Occlusion			Volume	grid walking, and Rota-rod
	stroke Rehabilitation							Histomorphometry	performance assessed at
	in Rats							Assessment	days 1, 3, 7, 14, 21, and 28.
									Cerebral Infarct Volume:
									Brains were resected and cut
									into 2-mm-thick slices,
									which were then treated
									with 2,3,5-
									triphenyltetrazolium
									chloride for calculating
									infarct volume to minimize
									error caused by edema
									Histomorphometry
									Assessment: Apoptotic
									Cell Death:
									For quantification of
									apoptosis-related DNA
									fragmentation, a commercial
									enzyme immunoassay were
									used to determine
									cytoplasmic histone-
									associated DNA fragments.

									Neuron Isolation and Flow
									Cytometry Assay: an adult
									brain dissociation kit
									(Miltenyi Biotec, Bergisch
									Gladbach, Germany) was
									used for neuron isolation.
									Western Blot Analysis:
									Tissue samples from the
									ipsilesional ischemic
									cerebral hemispheres of all
									experimental groups were
									harvested, and total protein
									extraction was performed
									using cell lysis solutions.
									Protein concentration was
									then determined by the BCA
									method
JINGYAN	Treadmill exercise	Experimental	Sprague-	171	Middle	Treadmill	14 days	Functional	Functional Assessment:
CHENG, et	promotes	research	Dawley		Cerebral	Exercises		Assessment	The modified neurological
al 2019	neurogenesis and		male rats		Artery			Infarct volume	severity score (mNSS) test
	myelin repair via				Occlusion			assessment	at 1, 7 and 14 days after
	upregulating							Histomorphometry	MCAO.
	Wnt/β-catenin							Assessment	Infarct volume
	signaling pathways in							Transmission	assessment:
	the juvenile brain							electron microscopy	For determination of the
	following focal							(TEM)	volume of cerebral
	cerebral								infarction, TTC staining was
	ischemia/reperfusion								performed.

				Histomorphometry
				Assessment:
				Bromodeoxyuridine
				injection: injected
				intraperitoneally into rats
				every day after MCAO for 7
				or 14 days to label newly
				formed cells.
				H&E staining: H&E
				staining were performed at
				room temperature for 2 h,
				and observed under a light
				microscope (Olympus
				Corporation). Pathological
				changes in brain tissue were
				observed, images were
				captured.
				Toluidine blue.
				Nissl staining: To
				decolorized and dehydrated
				with ethanol and sealed with
				neutral resin. Under light
				microscopy (Olympus
				Corporation), the Nissl
				bodies of neurons were blue
				and purple.
				Western blot analysis: Total
				protein and nuclear protein
				were extracted respectively.
				The protein concentration

									was detected by a BCA
									protein detection kit.
									Transmission electron
									microscopy (TEM):
									The rats were sacrificed at 7
									and 14 days after MCAO,
									and ultrastructural changes
									of neurons in the ischemic
									penumbra cortex was
									observed by TEM.
Juanjuan Lu,	Treadmill Exercise	Research	male	117	Middle	Treadmill	6 days	Functional	Functional Assessment:
et al 2021	Attenuates Cerebral	Article	Sprague		Cerebral	Exercises		Assessment	Modified Neurological
	Ischemia-		Dawley		Artery			Infarct	Severity score: 1, 4, and 7
	Reperfusion Injury		Rats		Occlusion			Assessment	days. mNSS is comprised of
	by Promoting							Histomorphometry	motor, sensory, reflex and
	Activation of M2							Assessment	balance tests.
	Microglia via								Infarct Assessment: 2,3,5-
	Upregulation of								triphenyltetrazolium
	Interleukin-4								chloride (TTC) were used to
									estimate the volume of the
									brain infarct.
									Histomorphometry
									Assessment:
									Quantitative Real-Time
									Polymerase Chain
									Reaction Analysis:
									Total RNA was extracted
									from the penumbra and its
									concentration and purity

									examined using
									BioPhotometer plus.
									Luminex Multiplex Assay:
									To measure the
									concentrations of cytokines
									including IL-4, IL-10, IL-
									13, IL-1a, IL-1b, IL-6, and
									MCP-1
									Western Blotting: To
									extract the protein of the
									penumbra was performed.
Min Cheol	Early treadmill	Research	male	40	Middle	Treadmill	5 days	Functional	Functional Assessment:
Chang, et al.	exercise increases	Article	Sprague-		Cerebral	Exercises		Assessment	The wire hang and Garcia
2019	macrophage		Dawley		Artery			Infarct Assessment	tests were performed.
	migration inhibitory		rats		Occlusion			Histomorphometry	The wire hang test: For the
	factor expression							Assessment	wire hang test, a wire mesh
	after cerebral								grid (15 cm \times 25 cm) was
	ischemia/reperfusion								used. The rats were placed
									on the wire mesh grid 40 cm
									above a foam cushion. Then,
									the mesh was inverted 180°,
									and the rats were forced to
									grasp the wire using their
									four limbs. The hanging
									time was recorded as the
									duration the rats remained
									hanging before falling on
									the cushion.

				The Garcia test: For
				evaluating neurological
				functions consisted of 6
				subtests: spontaneous
				activity, symmetry of
				movements, symmetry of
				forelimbs, climbing wall of
				wire cage, reaction to touch
				on either side of trunk, and
				response to touch.
				The total scores ranged from
				3 to 18, and higher scores
				corresponded to better
				functions.
				Infarct Assessment: By
				using MRI, T2-weighted
				images (T2WIs) were
				acquired. The degree of
				ischemic injury was
				evaluated by measuring the
				fractional anisotropy (FA)
				values on the FA map
				derived from diffusion MRI
				data.
				Histomorphometry
				Assessment:
				Immunohistochemical
				analysis: Primary antibodies
				against macrophage
				migration inhibitory factor

									(MIF) and BDNF (overnight at were detected with the HRP/DAB kit
Huixia	Early Rehabilitation	Research	Male	Not	Middle	Treadmill	5 days	Functional	Functional Assessment:
Geng, et al	Exercise after Stroke	Article	adult	Mention	Cerebral	Exercises		Assessment	Modified Neurological
2022	Improves		Sprague-	ed	Artery			Infarct Assessment	Severity Scores (mNSS) for
	Neurological		Dawley		Occlusion			Histomorphometry	assessing the state of rodents
	Recovery through		rats		(MCAO)			Assessment	neurological function
	Enhancing								deficits
	Angiogenesis in								Infarct Assessment: TTC
	Patients and Cerebral								staining
	Ischemia Rat Model								were used to detect the
									cerebral infarction volume
									in each group after middle
									cerebral artery occlusion.
									The result shows that
									rehabilitation training at 24
									h after MCAO can reduce
									the volume of cerebral
									infarction and reduce brain
									damage caused by cerebral
									ischemia-reperfusion
									Histomorphometry
									Assessment:
									Western Blot analysis:

					r		1	1	
									To extract the total protein.
									The total protein was
									quantified by BCA kit.
									Immunofluorescence:
									Slides were mounted with
									DAPI glycerol and observed
									under a fluorescence
									microscope and images were
									captured.
Li-Mei Cao,	Treadmill training	Research	Sprague-	120	Middle	Treadmill	7 days	Functional	Functional Assessment:
et al 2018	improves	article	Dawley		Cerebral	Training		Assessment	Locomotor function
	neurological deficits		rat		Artery			Infarct Assessment	scoring: Neurological
	and suppresses				Occlusion			Histomorphometry	deficit and locomotor
	neuronal apoptosis in				(MCAO)			Assessment	function were assessed at 1,
	cerebral ischemic								3, and 7 days post the first
	stroke rats								training using a five-point
									scale (0–4) with the
									Bederson's test
									Infarct Assessment: TTC
									(2,3,5-
									Triphenyltetrazolium
									chloride (TTC) staining)
									staining was performed to
									evaluate the infarct volumes
									of the brain in MACO rats
									Histomorphometry
									Assessment: Double
									immunofluorescence of
									terminal deoxynucleotidyl

									transferase-mediated dUTP
									nick end labeling (TUNEL)
									staining and NeuN to
									visualize neuronal apoptosis.
									Western blot assay For the
									assessment of cAMP-PKA
									and Akt-GSK-3ß activation,
									western blot assay was used
									to detect the expression of
									phosphor and PKA-Cα
Caroline Pin-	Effects of High-	Research	Male	108	Middle	Treadmill	14 days	Functional	Functional Assessment:
Barre, et al	Versus Moderate-	Article	Sprague-		Cerebral	Exercises		Assessment	The elevated body swing
2025	Intensity Training on		Dawley		Artery			Infarct Assessment	test, the ladder-climbing
	Neuroplasticity and		rats		Occlusion			Histomorphometry	test, and the forelimb grip
	Functional Recovery				(MCAO)			Assessment	force were performed before
	After Focal Ischemia								(PRE) and after the surgery
									at day 1, 7, and 14.
									Infarct Assessment: Cresyl
									violet
									Were used to measure the
									infarct volume and the
									percentage of tissue loss (%
									tissue loss)
									Histomorphometry
									Assessment:
									Immunohistochemistry
									Analysis:
									To investigate the changes
									of p75NTR and microglia

									form, immunostaining with
									antibodies against the
									p75NTR and ionized
									calcium binding adaptor
									molecule 1 (Iba-1)
									Western Blot Analysis: To
									detect IL-10, IL-1β, IL-
									12p40, p75NTR, KCC2, and
									NKCC1 expression, the total
									protein extracted from each
									frozen hemisphere
Yamei Li, et	Learning-dependent	Research	male	32	Middle	Rolling-cage	10 days	Functional	Functional Assessment:
al 2018	LTP and synaptic	article	Wistar		Cerebral	training,		Assessment	Y-maze: contained three
	ultrastructural		rats		Artery	Balance		Histomorphometry	arms, a start arm and two
	modification after				Occlusion	training and		Assessment	choice arms. On the top of
	physical exercise in				(MCAO)	screen			each arm there was a signal
	rats with middle					training, to			lamp, which was used as an
	cerebral artery					improve the			indicator of dangerous
	occlusion: relevance					walking,			region when the lamp
	for learning and					grabbing,			lightened for 6 seconds. The
	memory					and			rats were stimulated to run
						balancing			from the light arm to the
						functions			dark arm by the energization
									of 36 V alternating current.
									If the rat ran from one light
									arm to another light one, it
									was recorded as wrong.
									Otherwise, if the rat ran to

				the dark one and it was
				recorded as correct.
				One-trial passive
				avoidance response:
				A multi-functional box for
				conditioned reflex training
				was put at the side of a table
				which was 60 cm high to
				make the box's diving board
				suspended in midair. Rats
				were put on the diving board
				with tails towards the gate.
				The normal reaction of the
				rats were panic and quickly
				finding the gate to enter the
				box. Once the rats entered
				the box, the gate was closed,
				and shocks with proper
				voltage were closely
				followed to apply to the rats'
				front paws for 5 to 10
				seconds, so repeated for 3
				times.
				Histomorphometry
				Assessment:
				Quantitative
				measurements of synaptic
				ultrastructure: With the
				QUANTIMENT-520 image
				analysis system, the width of

		1	1					1	
									synaptic cleft, the thickness
									of postsynaptic density
									(PSD), the chord length and
									the arc length of the
									postsynaptic membrane, the
									length of synapse's active
									zone, and percentage of
									perforated synapses were
									measured.
WEI LIU, et	Physical exercise	Research	male	135	Middle	Treadmill	21 days	Functional	Functional Assessment:
al 2018	promotes	article	Sprague		cerebral artery	exercises		Assessment	Neurological severity
	proliferation and		Dawley		occlusion			Infarct Assessment	scores. Modified
	differentiation of		rats		(MCAO)			Histomorphometry	neurological severity score
	endogenous neural							Assessment	(mNSS) tests were used to
	stem cells via ERK in								assess the neurological
	rats with cerebral								function of the rats.
	infarction								Infarct Assessment:
									TTC solution were used to
									see the infarct volume
									Histomorphometry
									Assessment:
									Hematoxylin and eosin
									(H&E) staining:
									H&E staining was used to
									detect MCAO-induced
									lesions at the respective time
									point.
									Immunofluorescence
									staining

				Immunofluorescence
				staining was used to detect
				BrdU+/neuronal nuclei
				(NeuN)+ and BrdU+ /glial
				fibrillary acidic protein
				(GFAP)+ cells.
				Western blot analysis:
				Western blotting used to
				detect cyclin-dependent
				kinase 4 (CDK4), Cyclin
				D1, retinoblastoma protein
				(p-Rb), P-16,
				phosphorylated (p)-ERKl/2
				and c-Fos protein expression
				in the hippocampus

Figure 2 offers a detailed breakdown of the risk of bias across various domains for each study. Each row represents an individual study, and each column represents a specific bias domain. Studies like Yameili et al. (2018) and Fengwu Li et al. exhibit high-risk domains, particularly in blinding, allocation concealment and random housing.

Figure 2. Study-Specific Risk of Bias

Figure 3 The chart provides a visual representation of the studies' risk of bias, grouping them into Low (green), Unclear (yellow), and High (red) risk categories for each domain. Low Risk (Green) dominates in most categories, such as Sequence generation, baseline characteristic, random housing, Incomplete Outcome Data and selective outcome reporting indicating that many studies followed rigorous methodology in these areas. Unclear Risk (Yellow) is prevalent in categories like blinding and other sources of bias assessment suggesting that some studies lacked sufficient information to make a clear judgment. High Risk (Red) is most noticeable in Blinding and Random Housing highlighting potential methodological flaws in these areas.

Figure 3. Summary of Risk of Bias of All Studies

Result

This systematic review analysed 10 studies on Neural Plasticity in Ischemic stroke in rodent models, highlighting the diverse methodologies employed to assess Neural Plasticity. The results are categorized into 3 main assessment types: Functional Assessment, Total Infarct Volume and Histomorphometry Analysis

Functional Assessments

Functional assessment methods include the Modified Neurological Severity Score (mNSS), adhesive removal, beam balance, forelimb placing, grid walking, Rota-rod performance, wire hang, Garcia tests, elevated body swing test, ladder-climbing test, forelimb grip force, and Y maze test. The mNSS scoring system was used in 7 of the 10 studies.

The mNSS is a multifaceted assessment tool used to evaluate neurological function, incorporating motor, sensory, and reflex components, with a maximum score of 14. The severity of neurological defects is classified based on scores: mild (1-4), moderate (5-9), and severe (10-14). Research has successfully employed the mNSS to assess long-term outcomes in stroke models, demonstrating its effectiveness in detecting neurological dysfunction.

Total Infarct Volume

Out of 10 studies, 9 studies have calculated Total infarct volume it calculates the sum of ischemic infarct in each slides. Various methods is being used to calculate the volume, the common method used are Nissl Staining and TTC staining. For total infarct volume assessment, brain sections from bregma +4.0 to +6.0 mm were cut into five coronal slices, each 2.0 mm thick. The sections were frozen at -20°C for 10 minutes, followed by immersion in 2% TTC solution at 37°C for 30 minutes. After fixation in 4% paraformaldehyde buffer at 4°C for 24 hours, the total infarct volume was calculated by summing the areas of infarction.

Histomorphometry Analysis

Many biomarkers are been used to study the plasticity of the brain and the effects exercises to the brain. The biomarkers which are used are BDNF and HE staining to know about the nulei, ribosomes and chromatin of brain. Out of 10 studies all 10 studies have Western Blot analysis to study about the protein and to extract the proteins of brain. 1 Study has done the analysis of Apoptic Cell Death to quatify the aptosis related DNA. The concentration and purity of total RNA extracted from the penumbra are evaluated using Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) analysis. Each study has employed different approaches to investigate the brain, indicating that diverse methods are required to understand brain plasticity. The absence of specific analyses makes it challenging to apply findings in clinical practice. These results underscore the importance of combining diverse techniques to better understand and evaluate the neural plasticity while addressing gaps in consistency and relevance for human applications.

Discussion

To summarize the finding of the study exercises helps to induce neural plasticity and this is proven by various Histomorphometry assessments. The systematic review underscores that exercise induces neural various plasticity, demonstrated through Histomorphometry The assessments. neuroprotective effects of exercise make it a crucial element in the treatment of ischemic stroke, as it fosters a conducive environment for neurogenesis and myelin regeneration within the penumbra. Enhancing complexity of dendrites and spine growth of dendrites are potential mechanisms for recovery after cerebral ischemia, supported by evidence of plasticity of dendrites which has relationship with the caveolin-1/VEGF signaling pathway. Expectedly, inhibitors suppressed these exercise effects post-MCAO [17, 28].

The combination of treadmill training and other interventions improves motor and cognitive functions in neonates after hypoxiastimulating ischemia, potentially by oligodendroglial-mediated myelination, activating the CREB/BDNF signaling cascade, and enhancing myelin repair. Long-term promotes **BDNF** exercise expression, ameliorating ischemia-induced myelin damage

post-cerebral ischemia. Oligodendrocyte precursor cells (OPCs) play a crucial role in repairing damaged myelin sheaths by differentiating into mature oligodendrocytes. Treadmill exercise may augment this process, fostering neurogenesis and myelin repair, and potentially enhancing neural plasticity poststroke. [18, 19].

BDNF expression during is boosted evidenced development, as by histomorphometric analysis, and is involved in the regulation of various cellular processes, including cell signaling, neuronal regeneration, synaptic plasticity, and higher-order cognitive functions like learning. memory, and sensorimotor recovery [20, 21, 27]. The review highlights that neuroplasticity is driven by growth factors like BDNF, IGF-I, and VEGF. BDNF is critical for synaptic plasticity, fundamental for learning and memory, facilitating long-term potentiation (LTP) [22].

Nonetheless, studies on exercise induced plasticity (learning) and cognitive function dysfunctions caused by stroke, as well as synaptogenesis and changes functional ability, remain limited. The systematic review's limitations include a lack of exact treadmill exercise intensity, duration, and frequency details, exclusive focus on rodent models without human study data, and evidence primarily limited to animal studies. The study's strength lies in Exercise consistently shows a positive effect on recovery and neural plasticity following an ischemic stroke.

Future research should prioritize neuroimaging techniques to better define neural plasticity, standardize histomorphometry assessments, and extend findings to human studies.

Conclusion

Based on the evidence collected with the limitations of the current systematic review, this systematic review highlights the significant role of physical exercise in inducing neural plasticity and promoting recovery postischemic stroke. Exercise-induced improvements in dendritic complexity and dendritic spine growth may be mediated by the caveolin-1/VEGF signaling pathway, according to the study's findings. Treadmill training shows promise in improving functional ability and cognitive function by enhancing the oligodendroglia involved in the CREB/BDNF signaling pathway, aiding in myelin repair.

Exercise has been shown to boost the expression of morphometric analysis, which is crucial for synaptic plasticity, learning and The review underscores memory. the neuroprotective effects of exercise, promoting neurogenesis and myelin repair. with histomorphometric analysis revealing neuronal significant improvements in regeneration and synaptic plasticity [29].

The review concludes that various assessment are available to assess plasticity of the brain which is not clearly defined and more should be done studies for further understanding. It provides a valuable summary of current knowledge, emphasizing the need for further research to improve understanding of nerve regeneration and develop more effective treatments.

Conflict of Interest

The authors declare that there are no conflict of interest regarding the publication of this study.

Acknowledgement

We Extend our heartfelt gratitude to Saveetha College of Physiotherapy and Saveetha Institute of Medical and Technical Sciences for their constant support and encouragement throughout this research. We are deeply thankful to the management, faculty, and staff for providing the necessary facilities and resources to successfully complete this study.

References

[1]. Murphy, S. J., and Werring, D. J., 2020, Stroke: causes and clinical features. *Medicine*, *48*(9), pp.561-566.

[2]. Yew, K. S., and Cheng, E. M., 2015, Diagnosis of acute stroke. *American family physician*, *91*(8), pp.528-536

[3]. Adams Jr, H. P., Bendixen, B. H., Kappelle, L. J., Biller, J., Love, B. B., Gordon, D. L., and Marsh 3rd, E. E., 1993, Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. *stroke*, *24*(1), pp.35-41.

[4]. Feske, S. K., 2021, Ischemic stroke. *The American journal of medicine*, *134*(12), pp.1457-1464.

[5]. Phipps, M. S., and Cronin, C. A., 2020, Management of acute ischemic stroke. *Bmj*, *368*.

[6]. Sommer, C. J., 2017, Ischemic stroke: experimental models and reality. *Acta neuropathologica*, 133(2), pp.245-261.

[7]. Yamori, Y., Horie, R., Handa, H., Sato, M., and Fukase, M., 1976, Pathogenetic similarity of strokes in stroke-prone spontaneously hypertensive rats and humans. *Stroke*, *7*(1), pp.46-53.

[8]. Caleo, M., 2015, Rehabilitation and plasticity following stroke: insights from rodent models. *Neuroscience*, *311*, pp.180-194.

[9]. Vandamme, T. F., 2015, Rodent models for human diseases. *European journal of pharmacology*, 759, pp.84-89

[10]. Fluri, F., Schuhmann, M. K., and Kleinschnitz, C., 2015, Animal models of ischemic stroke and their application in clinical research. *Drug design, development and therapy*, pp.3445-3454.

[11]. Naro, A., and Calabrò, R. S., 2022, Improving upper limb and gait rehabilitation outcomes in poststroke patients: a scoping review on the additional effects of non-invasive brain stimulation when combined with robot-aided rehabilitation. *Brain Sciences*, *12*(11), p.1511

[12]. Hiu, T., Farzampour, Z., Paz, J. T., Wang, E. H.J., Badgely, C., Olson, A., Micheva, K. D., Wang,G., Lemmens, R., Tran, K. V., and Nishiyama, Y.,2016, Enhanced phasic GABA inhibition during the

repair phase of stroke: a novel therapeutic target. *Brain*, *139*(2), pp.468-480.

[13]. Li, S., 2017, Spasticity, motor recovery, and neural plasticity after stroke. *Frontiers in neurology*, 8, p.120

[14]. Nagappan, P. G., Chen, H., and Wang, D. Y., 2020, Neuroregeneration and plasticity: a review of the physiological mechanisms for achieving functional recovery postinjury. *Military Medical Research*, *7*, pp.1-16.

[15]. Ruan, J., and Yao, Y., 2020, Behavioral tests in rodent models of stroke. *Brain hemorrhages*, *1*(4), pp.171-184

[16]. Hooijmans, C. R., Rovers, M. M., De Vries, R. B., Leenaars, M., Ritskes-Hoitinga, M., and Langendam, M. W., 2014, SYRCLE's risk of bias tool for animal studies. *BMC Medical Research Methodology*, 14, p.43.

[17]. Cheng, J., Shen, W., Jin, L., Pan, J., Zhou, Y., Pan, G., Xie, Q., Hu, Q., Wu, S., Zhang, H., and Chen, X., 2020, Treadmill exercise promotes neurogenesis and myelin repair via upregulating Wnt/ β -catenin signaling pathways in the juvenile brain following focal cerebral ischemia/reperfusion. *International journal of molecular medicine*, 45(5), pp.1447-1463.

[18]. Xie, Q., Cheng, J., Pan, G., Wu, S., Hu, Q., Jiang, H., Wang, Y., Xiong, J., Pang, Q., and Chen, X., 2019, Treadmill exercise ameliorates focal cerebral ischemia/reperfusion-induced neurological deficit by promoting dendritic modification and synaptic plasticity via upregulating caveolin-1/VEGF signaling pathways. *Experimental Neurology*, *313*, pp.60-78.

[19]. Lu, J., Wang, J., Yu, L., Cui, R., Zhang, Y., Ding, H., and Yan, G., 2021, Treadmill exercise attenuates cerebral ischemia–reperfusion injury by promoting activation of M2 microglia via upregulation of interleukin-4. *Frontiers in Cardiovascular Medicine*, *8*, p.735485.

[20]. Li, F., Geng, X., Huber, C., Stone, C., and Ding, Y., 2020, In search of a dose: the functional and molecular effects of exercise on post-stroke rehabilitation in rats. *Frontiers in cellular neuroscience*, *14*, p.186.

[21]. Chang, M. C., Park, C. R., Rhie, S. H., Shim,
W. H. and Kim, D. Y., 2019, Early treadmill exercise increases macrophage migration inhibitory factor expression after cerebral ischemia/reperfusion. *Neural regeneration research*, 14(7), pp.1230-1236.

[22]. Li, Y., Yu, Q., Fu, J., Li, Y., Peng, B., Huang, G., and Xiao, Z., 2018, Learning-dependent LTP and synaptic ultrastructural modification after physical exercise in rats with middle cerebral artery occlusion: relevance for learning and memory. *Int J Clin Exp Med*, *11*(12), pp.13042-13054.

[23]. Geng, H., Li, M., Tang, J., Lv, Q., Li, R., and Wang, L., 2022, Early rehabilitation exercise after stroke improves neurological recovery through enhancing angiogenesis in patients and cerebral ischemia rat model. *International journal of molecular sciences*, 23(18), p.10508

[24]. Cao, L. M., Dong, Z. Q., Li, Q. and Chen, X., 2019, Treadmill training improves neurological deficits and suppresses neuronal apoptosis in cerebral ischemic stroke rats. *Neural Regeneration Research*, *14*(8), pp.1387-1393.

[25]. Pin-Barre, C., Constans, A., Brisswalter, J., Pellegrino, C., and Laurin, J., 2017, Effects of high-

versus moderate-intensity training on neuroplasticity and functional recovery after focal ischemia. *Stroke*, *48*(10), pp.2855-2864.

[26]. Liu, W., Wu, W., Lin, G., Cheng, J., Zeng, Y. and Shi, Y., 2018, Physical exercise promotes proliferation and differentiation of endogenous neural stem cells via ERK in rats with cerebral infarction. *Molecular medicine reports*, *18*(2), pp. 1455-1464.

[27]. Maghimaa, M., Bharath, S. and Kandasamy,
S., 2025. Carbon-Based Nanoparticles for Neural Regeneration. In Nanoparticles in Modern Neurological Treatment (pp. 263-282). *Cham:* Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-80185-3 10

[28]. Rajesh Kumar, K. S., Veeraraghavan, V. P., and Jayaraman, S., Sativoside Mitigates High-Fat Diet-Induced Inflammation and Type-2 Diabetes in Adipose Tissue of Wistar Rats.

[29]. Ganesh, A., Gayathri, R., Selvaraj, J., and Priya, V. V., Study on Polychlorinated Biphenyls-Induced Changes in the Expression of Pro Inflammatory Markers and the Therapeutic Role of Vitamin C And E.