Assessing Median Nerve Regeneration in Rodent Models– A Systematic Review

Dhanusia S*, Yamini Umasankar, Prathap Suganthirababu, Santhana Lakshmi S, Asma Parveen

Saveetha College of Physiotherapy, Saveetha Institute of Medical and Technical Sciences, Chennai, India

Abstract

Peripheral nerve injuries (PNI), particularly median nerve injuries, lead to significant motor and sensory impairments, affecting daily function and quality of life. Rodent models are extensively used for studying nerve regeneration due to their physiological similarity to humans. Accurate assessment of nerve regeneration is critical for evaluating therapeutic approaches, yet existing methods lack standardization and comprehensive analysis. A systematic review was conducted following PRISMA guidelines, searching databases including PubMed, Google scholar and science direct from 2013 to 2024. Inclusion criteria focused on studies using rodent models to investigate median nerve regeneration with surgical interventions and reporting functional, physiological, histomorphometry, or molecular outcomes. Out of 110 studies, 13 studies were selected and reviewed. The review identified various assessment techniques includes, Functional test evaluates motor and sensory recovery. Electrophysiological test measure nerve conduction velocity and muscle action potentials. Histological analyses examine nerve morphology, myelination, and axonal regeneration. Molecular methods assess gene expression and protein markers. A multimodal approach combining these methods provides the most comprehensive evaluation of nerve regeneration. This systematic review highlights the current state of median nerve regeneration in rodent models. The results suggest that rodent models are a valuable tool for studying nerve regeneration and evaluating potential therapeutic interventions. However, there is a need for standardization in the methods used to assess nerve regeneration, as well as the reporting of study results.

Keywords: Electrophysiology Assessment, Functional Assessment, Histomorphometry Measure, Peripheral Nerve Injury.

Introduction

Peripheral nerve injuries (PNI) can occur due to a variety of factors, such as traumatic incidents, complications arising from surgical procedures, and unintended consequences of medical interventions [1]. These injuries have the potential to cause significant harm to the structure and proper functioning of nerves [2]. Peripheral Nerve Injury (PNI) disrupts nervebody communication, causing motor/sensory impairments, physical disabilities, and chronic neuropathic pain [3]. Peripheral nerve damage significantly impacts quality of life, cognitive function, social relationships, and economic stability. PNI's repercussions extend beyond physical limitations, affecting emotional wellbeing and overall well-being [4, 5].

The median nerve is essential for precise hand and forearm movements, facilitating both delicate motor functions and everyday tasks [6]. Nerve damage can severely impair motor skills (dexterity, grip) and sensory perception in the affected limb. This trauma often has lasting consequences, significantly impacting daily life and mobility [7]. These impairments substantially diminish an individual's quality of life, making everyday tasks challenging and hindering participation in previously routine activities [8].

Untreated median nerve injuries in the forearm can have severe consequences, significantly impairing hand function [9]. Approximately 8 million median nerve injuries are reported annually in the United States, emphasizing their prevalence and significance. Prompt recognition and proper management are crucial to prevent long-term disability and ensure optimal recovery outcomes [10].

Rodent models, namely rats and mice, play a vital role in advancing our knowledge of peripheral nerve regeneration within the realm of medical research [11]. Rodent models are extensively utilized among various pre-clinical models and techniques for evaluating nerve regeneration following injury [12-14]. The most significant advantage of using rodents as model organisms lies in their striking anatomical, physiological, and genetic parallels with humans [15, 16]. These models enable cost-effective, in-depth evaluations of treatments for nerve regeneration. Insights from rodent studies inform clinical trial design and guide therapeutic interventions [17].

Accurate assessment of nerve regeneration plays a crucial role in evaluating the efficacy of treatments targeting this process. In rodent models, a range of methodologies have been devised for the evaluation of median nerve regeneration, encompassing diverse approaches such as behavioural analysis(measures of motor and sensory function, such as grip strength, locomotor activity, and sensory threshold testing)[18],electrophysiological

testing(measures of nerve conduction velocity, compound muscle action potential, and electromyography)[19], histological examination(measures of nerve morphology, myelination and axonal regeneration)and molecular biological techniques(measures of gene expression, protein levels, and cellular markers of regeneration)[20]. These various methods offer valuable insights into different facets of nerve regeneration, including the degree of regrowth, reinnervation patterns, and the subsequent functional recovery of the nerve [21, 22].

Nonetheless, an essential gap exists in the current literature concerning a thorough examination and comparison of these assessment methodologies specifically in the context of median nerve regeneration in rodent models. This systematic review aims to synthesize and critically evaluate existing highlighting the benefits research, and of drawbacks various methodological undertaking this approaches. By comprehensive review, we aim to deliver a valuable resource that will aid researchers working in the domain of peripheral nerve regeneration. Ultimately, this review intends to catalyse advancements in the field by enhancing our understanding of effective assessment techniques and promoting the development of more impactful treatments for injuries affecting the median nerve.

Methodology

A systematic literature search was conducted following PRISMA guidelines. Electronic databases, including Google Scholar, PubMed, and Science direct, were searched. The search spanned from 2013 to 2024 using a combination of keywords and MeSH terms such as Median Nerve Regeneration, Rodents, Functional, Histomorphometry, Electrophysiological Assessment. Α comprehensive search strategy was employed studies. Various to identify relevant permutations and combinations of these keywords ensured a thorough search.

Data Collection Criteria

Studies using rodent models (rats or mice) for median nerve regeneration research, Studies employing surgical interventions (e.g., nerve transection, crush injury) to induce nerve damage. Studies using various treatments or interventions (e.g., nerve grafts, stem cells, growth factors) to enhance nerve regeneration. Studies reporting outcomes measures such as: Functional assessments (e.g., grip strength, locomotor activity), Physiological evaluation (e.g., nerve conduction velocity, electromyography, Histomorphometry evaluation (e.g., fibre density, nerve myelination) and Molecular assessment were included. Studies published in English language are considered. Only experimental studies are included. Recent studies (2013-2024) were selected to capture the most up-to-date findings to guarantee contemporary relevance.

Study Selection Process

The study selection process (Figure 1), details the step-by-step process of identifying

and selecting studies for inclusion. Initially, 110 records were identified through database searching (from 2013-2024). 55 duplicates were removed, leaving 45 records. After screening, 13 records were excluded.32 records were selected for retrieval. However, 11 records couldn't be retrieved.

This resulted in 21 records being assessed for eligibility. The remaining records underwent further evaluation. Out of these 21 reports, 8 were excluded for specific reasons: 3 due to being narrative/expert reviews, 1 for having a small population size, and 4 for poor methodology. Finally, 13 studies were included in the review (Table 1). The flow chart (Figure 1) visually represents the filtering process from initial identification to the final inclusion of studies.

Figure 1. Prisma Flow Chart for Literature Published between 2013 to 2024

Methodological Quality

The SYRCLE (Systematic Review Centre for Laboratory Animal Experimentation) risk of bias tool [23], is designed for assessing bias in animal studies using Revman software. It includes ten items addressing six types of bias: selection, performance, detection, attrition, reporting, and other biases. Each item is evaluated using a signalling question, with responses categorized as "yes" (low risk of bias), "no" (high risk of bias), or "unclear" (unclear risk of bias). A response of "no" indicates a high risk of bias for that particular item. Reviewers independently assessed key elements such as the adequacy of randomization and allocation concealment, baseline characteristics, blinding of participants and outcomes, randomization of housing and outcome assessment, completeness of data, and selective reporting. Each aspect of bias was classified as low (green), high(red), or unclear (yellow).

Author name	Study title	Type of	Rodents	Sample	Interventional	Treatment	Outcome Measure	Reflection
and Year of		Study	Model	Size	surgery	Duration		
Publication								
Barton, M., et	Laser-activated	Experimental	Long	80	Nerve	12 weeks	Nerve tensile test	Nerve tensile test:
al 2013	adhesive films	study	Evans		transection		Histomorphometry	Tensiometer (Instron, MA,
	for suture less		rat				evaluation	USA) was used to measure the
	median nerve						Electrophysiology	repair strength and recorded
	anastomosis						assessment	using Merlin IX software.
								Histomorphometry
								evaluation:
								Transverse and longitudinal
								sections (5-10 mm thickness)
								were made at specific locations
								relative to the repair site for
								further analysis.
								Longitudinal haematoxylin and
								eosin(H&E),
								Transverse H&E,
								Transverse Luxol Fast Blue
								LFB.
								Median Nerve
								Morphometric :
								Nerve Area (mm ²), Diameter
								(mm),
								Myelinated fibres Number,
								Fibre diameter (mm),
								Fibre Area (mm ²),
								Axon diameter (mm),

 Table 1. Review Of Literature

-					1	1		
								Axon Area (mm ²), Myelin density (mm ²). Electrophysiology: Flexor Digitorum superficialis
								and flexor carpi radialis were
								measured using EMG
								Nerve conduction (Compound
								action potential - CAP).
Beck-	Sensoric	Experimental	Wistar	20	Nerve	15 weeks	Functional	Functional assessment:
Broichsitter,	Protection after	study	rat		transection		assessment	Grasping test Rats are lifted
B. E., et al	Median Nerve						Histomorphometry	by tail, allowing them to grasp
(2014).	Injury:						evaluation	an 8x14cm wire grid attached
	Babysitter-							to an electronic balance.
	Procedure							Histomorphometry analysis:
	Prevents							Axon and nerve fibre diameter
	Muscular							were measured Nerve fiber
	Atrophy and							metrics were calculated.
	Improves							
	Neuronal							
	Recovery							
Casal, D., et	Reconstruction	Experimental	Wistar	120	Nerve Defect	100 days	Functional	Functional
al., 2018	of a 10-mm-	study	rat		Model with		assessment	Grasping test
	long median				Silicone		Electroneuromyogr	Pin prick test: von Frey
	nerve gap in an				Conduit and		aphy assesement	filament used
	ischemic				Ischemic		Histomorphometric	Ladder run test: forelimb
	environment				Simulation		evaluation	strength, coordination, stepping
	using							and placement were measured.
	autologous							

			-					
	conduits with							Walking track analysis: FIJI
	different							free software used.
	patterns of							Infrared
	blood supply: A							thermography:Digital
	comparative							thermometer used
	study in the rat							Electroneuromyography
								Assessment
								Muscle Weight
								Neurological stimulation
								threshold,
								Motor stimulation threshold,
								Latency,
								Neuromuscular transduction
								velocity,
								CMAPS amplitude
								and duration were measured.
								Histomorphometry
								Evaluation
								Nerve fibre diameter,
								Myelination, Conduction
								velocity was measured.
Colonna, M.	The Use of a	Experimental	Wistar	16	Nerve	7 months	Functional	Functional assessment
R., et al <u>2</u> 019	Hypoallergenic	study	rat		transection		assessment	Graspingtest:
	Dermal Matrix						Histomorphometry	(BS-GRIP Grip Meter) was
	for Wrapping in						assessment	used to quantitatively measure
	Peripheral							muscle function.
	Nerve Lesions							Histomorphometry
	Regeneration:							assessment:

	Functional and Quantitative							Nerve fibre metrics were measured.
	A palveis in an							
	Experimental							
	Animal Madal							
Coradinia J.	Evaluation of	Experimental	Wistar	48	Nerve	3 weeks	Muscle strength -	Muscle strength flexor
G., et al., 2015	grip strength in	study	rat		compression:		grip strength meter	digitorum muscle function
	normal and				Four chromed			measured using grip strength
	obese Wistar				Catgut 4.0			meter.
	rats submitted				sutures are			
	to swimming				placed around			
	with overload				the median			
	after median				nerve,			
	nerve				approximately			
	compression				1 mm apart.			
Daeschler, S.	Clinically	Experimental	Sprague	60	Nerve	8 weeks	Functional muscle	Functional muscle testing
C., et al 2018	Available Low	study	Dawley		transection		testing	Grasping test,
	Intensity						Electrodiagnostic	Muscle wet weight
	Ultrasound						evaluation	The FDS muscle was harvested
	Devices do not						Histological	and weighed on an Ohaus
	Promote						analysis	microscale.
	Axonal							Electrodiagnostic evaluation
	Regeneration							CMAP and distal latencies
	After Peripheral							were measured using EMG
	Nerve							device
	Surgery—A							Histological analysis
	Preclinical							
	Investigation of							

	an FDA- Approved Device							Myelinated axon number and axon distribution density were measured
Ferreira, M.	Effects of two	Experimental	Wistar	24	Crush injury	21 days	Functional	Functional evaluation
C., et al 2019	intensities of	study	rat				evaluation	Grasping test
	treadmill						Histomorphometry	Histomorphometry analysis
	exercise on						analysis	Number of myelinated fibres
	neuromuscular							Fibre diameter
	recovery after							Axon diameter
	median nerve							Thickness of myelin sheath
	crush injury in							Ratio of axon diameter to fibre
	Wistar rats							diameter were measured.
Heinzel J.C.,	Evaluation of	Experimental	Lewis's	10	Median nerve	12 weeks	Functional analysis	Functional analysis
et al., 2021	Functional	study	rat		resection with		Electrophysiologica	Catwalk XT:
	Recovery in				autograft repair		l analysis	Automated gait analysis system
	Rats After							was used. 14 parameters were
	Median Nerve							measured
	Resection and							Reflex based grasping :
	Autograft							A grip strength Meter (Ugo
	Repair Using							Basile, Italy) measured
	Computerized							forelimb grip strength in rats.
	Gait Analysis							Electrophysiological analysis:
								Neuromax Emg Used, CMAP
								amplitude and latency were
								measured.

Ho, C. Y., et	Electroacupunct	Experimental	Sprague-	21	Silicone Rubber	5 weeks	Histomorphometry	Histomorphometry analysis:
al., (2013)	ure and	study	Dawley		Tube		analysis	axon number, Endo neural
	Acupuncture		rats		Entubulation		Electrophysiologica	area, total nerve area, blood
	Promote the						l analysis	vessel number, blood vessel
	Rat's						Functional	area were measured.
	Transected						assessment	Electrophysiological analysis:
	Median Nerve							latency, amplitude, MAP area,
	Regeneration							NCV were measured.
								Grasping analysis: Square
								grids were used.
Lamia,A et al	Does Pulsed	Experimental	Wistar	24	microsurgical	12 weeks	Functional	Functional assessment
2014	Magnetic Field	study	rat		coaptation		assessment	Grasping test:
	Therapy						Histomorphometry	wire grid (8 x 14cm) used.
	Influence Nerve						evaluation	Histomorphometry
	Regeneration in							assessment:
	the Median							Total number of nerve fibers,
	Nerve Model of							density, surface area, axon
	the Rat?							diameter, nerve fiber diameter,
								myelin thickness were
								measured.
Machado et	Stretch-induced	Experimental	Wistar	36	Stretch and	30 days	functional analysis	functional analysis
al., 2013	nerve injury: a	study			crush injury		histomorphometry	Grasping test
	proposed						analysis	Grid (1.5 mm diameter, 86.14
	technique for						measurement of	cm long) was used.
	the study of						neurotrophic factor	Response to mechanical
	nerve						in the median nerve	stimulation:
	regeneration							Using von Frey filament
	and evaluation							method.
	of the influence							

	of gabapentin							Response to electrical
	on this model							stimulation:
								Assessed by neurostimulator
								histomorphometry analysis
								Four nerve regeneration
								parameters were quantified:
								Degeneration debris (%)
								Connective tissue area (%)
								Myelinated fibre area (%)
								Myelinated fibre density (per
								mm²)
								measurement of neurotrophic
								factor in the median nerve:
								BDNF and NGF levels were
								then measured using ELISA
								kits from R&D Systems.
Marcioli, M.	Neurotrophin	Experimental	Wistar	18	Nerve	6 days	Histomorphometric	Histomorphometric Analysis,
A. R., et al	expression and	study	rat		compression:		Analysis	Axon count expression of
2018	histomorphome				Four chromed			neurotrophins, nerve growth
	tric evaluation				Catgut 4.0			factor (NGF), and brain-
	in Wistar rats				sutures are			derived neurotrophic factor
	subjected to				placed around			(BDNF) by RT-PCR.
	neural				the median			
	mobilization				nerve,			
	after				approximately			
	compression of				1 mm apart.			
	the median							
	nerve							

Stößel, M., et	Reflex-based	Experimental	Lewis's	16	Nerve	12 weeks	Functional test	Functional test
al 2017	grasping,	study	rat		transection		Electrophysiologica	Grasping test (reflex based):
	skilled forelimb						l test	Grip strength meter used.
	reaching, and						Histomorphometry	Staircase test:
	electrodiagnosti						evaluation	Staircase apparatuses, each
	c evaluation for							consisting of 7 steps with 3
	comprehensive							sugar pellets were used to
	analysis of							assess motor function
	functional							Electrophysiological studies
	recovery—The							CMAP Amplitude area,
	7-mm rat							amplitude height, nerve
	median nerve							conduction velocity was
	gap repair							measured
	model revisited							Histomorphometric
								Cross sectional area of distal
								nerve segment, number of
								myelinated axons, nerve fibre
								density, axon diameter, fibre
								diameter, myelin thickness,
								fibre diameter distribution was
								measured.

Study-Specific Risk of Bias (Figure 2) provides a study-by-study breakdown of the risk of bias across various domains. Each row represents an individual study, and each column represents a specific bias domain. Studies such as Casal, D et al and Colonna, M.R et al exhibit high-risk domains, especially in "Allocation Concealment" and "Blinding," raising concerns about potential selection and performance bias. These studies may have methodological flaws that weaken their credibility. All other Studies exhibit consistently low risk, making their findings highly reliable.

The bar chart (Figure 3) shows the proportion of studies classified under Low Risk of Bias (Green), Unclear Risk of Bias (Yellow),

and High Risk of Bias (Red) for each bias domain. Low Risk (Green) dominates in most categories, such as baseline characteristic, random housing, Incomplete Outcome Data, selective outcome reporting indicating that many studies followed rigorous methodology in these areas. Unclear Risk (Yellow) is prevalent in categories like sequence generation, allocation concealment, blinding and random outcome assessment suggesting that some studies lacked sufficient information to make a clear judgment. High Risk (Red) is most noticeable in Allocation Concealment, Blinding, Random and Outcome Assessment, highlighting potential methodological flaws in these areas.

Figure 2. Study-Specific Risk of Bias

Figure 3. Summary of Risk of Bias of all Studies

Result

This systematic review analysed 13 studies on median nerve regeneration in rodent models, highlighting the diverse methodologies employed to assess nerve repair and recovery. The results are categorized into four main assessment types - Functional Assessments, Electrophysiological Testing, histology and molecular analysis.

Functional Assessments

Functional assessment includes, techniques such as grasping tests, ladder test, staircase test, and gait analysis were commonly used to evaluate motor and sensory recovery in rodents. Out of 13 studies, 10 studies used grasping test to evaluate motor function particularly grip strength and fore limb function. The test involves placing a rodent on a grasping apparatus consisting of a horizontal bar or grid, allowing it to grasp the bar with its forelimbs. The grasping time, or the duration the rodent can maintain its grip, is measured, and some apparatuses also record the grasping force exerted by the rodent. Sensory assessment is done using von Frey filament is used in 2 studies, while gait analysis (e.g., Catwalk XT system) and walking track analysis were used to analyse the variables of gait in rodent. Ladder run test and stair case test were widely used to measure forelimb strength, coordination, stepping and placement and to assess motor function.

Electrophysiological Testing

Electrophysiological Testing such as muscle function of flexor digitorum superficialis and flexor carpi radialis were measured using EMG device. Measurements such as nerve conduction velocity, compound muscle action potentials (CMAPs), amplitude, duration and distal latency assessments are assessed in 6 studies. This electro physiological testing provides quantitative data on nerve functionality and recovery.

Histological Evaluations

Histomorphometry methods analysed myelination, axonal density, and nerve fibre morphology. Techniques such as H&E and Luxol Fast Blue staining assessed nerve structure and integrity post-regeneration. Our review highlighted studies where these parameters significantly correlated with histological findings, such as Density of fibre, axon diameter, fibre diameter, myelin thickness, myelin thickness/axon diameter (M/d), fibre diameter /axon diameter (D/d), axon diameter / fibre diameter (d/D), reinforcing the reliability of electrophysiological evaluations in determining the success of regeneration.

Molecular Analysis

Molecular markers like neurotrophic factors (e.g., NGF, BDNF) and gene expression levels were studied to understand the biological processes underlying nerve regeneration.

The findings indicate that a multimodal approach integrating functional. electrophysiological, histological, and molecular assessments provides а comprehensive evaluation of nerve regeneration. However, standardization of methodologies across studies is lacking, limiting comparability and translation to clinical applications. These results underscore of combining the importance diverse techniques to better understand and evaluate nerve regeneration while addressing gaps in relevance consistency and for human applications.

Discussion

The assessment methods for median nerve regeneration in rodent models are varied, each with its advantages and limitations. In our systematic review, we identified several commonly used techniques, including electrophysiological measurements, histological analysis, and functional recovery assessments. Electrophysiological assessment, particularly sensory nerve action potentials (SNAPs) and motor nerve action potentials (MNAPs), remains a gold standard for evaluating nerve regeneration [24]. These methods provide quantitative data on conduction velocity and amplitude, offering a direct measure of nerve function [25].

On the other hand, histological analysis is a key quality control method for assessing nerve tissue regeneration. It requires a solid understanding of nerve histology and regeneration, along with technical proficiency [26]. Histological methods, including myelin staining and axonal density assessments, allow for a detailed analysis of the morphological changes in the nerve and surrounding tissue [27]. While histology provides crucial insights into the structural integrity of the regenerated nerve, it is important to note that these methods are invasive and often require terminal procedures, limiting their longitudinal applicability [28].

The tests used in functional assessment in rodents help researchers to evaluate the animal's motor function, sensory function, and overall behaviour [18]. Several functional tests described in this paper rely heavily on the rat's motivation and cooperation, driven by the expectation of receiving a food reward [29]. Developing sensitive behavioural tests is vital for accelerating the development of translational therapies that can effectively address functional deficit in rodent model [30].

The selection of assessment method should be tailored to the specific research question and the stage of nerve regeneration under study. The lack of correlation between evaluation methods highlights the importance of incorporating multiple outcome measures in therapeutic studies to capture the full spectrum of recovery after nerve damage [20]. A multimodal approach is often recommended, integrating electrophysiological, histological, and functional measures to provide я comprehensive overview of nerve regeneration [21]. In addition to conventional assessment tools, emerging biomaterials like carbon nanotubes (CNTs) are being explored for their role in supporting nerve regeneration [31].

One major limitation of this systematic review is that it only focuses on rodent models, which may not accurately translate to human nerve regeneration. Additionally, this review may oversimplify the intricate process of human nerve regeneration, which can be impacted by factors like age, comorbidities, and individual differences. Further research is needed to standardize these assessment methods to improve comparability across studies and ensure that findings can be effectively translated to clinical settings. Future investigations might also explore innovative techniques and non-invasive imaging assessments to monitor nerve regeneration, thus advancing the field towards more ethical and efficient research practices in rodent models of nerve injury.

Conclusion

This systematic review of 13 articles provides a comprehensive analysis of median regeneration in rodent nerve models, emphasizing the importance of a multi-modal assessment approach. The review reveals the complexity of nerve regeneration, involving significant changes in functional, behavioral, histological, and electrophysiological outcomes. This review underscores crucial factors affecting regeneration outcomes, such as injury timing and repair techniques. It provides a valuable summary of current knowledge, emphasizing the need for further research to improve understanding of nerve regeneration and develop more effective treatments.

Conflict Of Interest

The authors declare that there is no conflict of interest regarding the publication of this study.

Acknowledgement

We Extend our heartfelt gratitude to Saveetha College of Physiotherapy and Saveetha Institute of Medical and Technical Sciences for their constant support and encouragement throughout this research. We are deeply thankful to the management, faculty, and staff for providing the necessary facilities and resources to successfully complete this study.

References

[1]. Lopes, B., Sousa, P., Alvites, R., Branquinho, M., Sousa, A. C., Mendonça, C., Atayde, L. M., Luís, A. L., Varejão, A. S., and Maurício, A. C., 2022, Peripheral nerve injury treatments and advances: One health perspective. *International Journal of Molecular Sciences*, 23(2), pp.918. https://doi.org/10.3390/ijms23020918

[2]. Modrak, M., Talukder, M. A. H., Gurgenashvili, K., Noble, M., and Elfar, J. C., 2020, Peripheral nerve injury and myelination: Potential therapeutic strategies. *Journal of Neuroscience Research*, 98(5), pp.780-795. https://doi.org/10.1002/jnr.24538

[3]. Kraus, G. E., 2024, 14 Peripheral neuropathies. In *Handbook of Medical Aspects of Disability and Rehabilitation for Life Care Planning* (pp. 1-XX).

[4]. Novak, C. B., Anastakis, D. J., Beaton, D. E., Mackinnon, S. E., and Katz, J., 2011, Biomedical and psychosocial factors associated with disability after peripheral nerve injury. *The Journal of Bone and Joint Surgery*, 93(10), pp.929-936. https://doi.org/10.2106/JBJS.J.00110

[5]. Ciaramitaro, P., Mondelli, M., Logullo, F., Grimaldi, S., Battiston, B., Sard, A., Scarinzi, C., Migliaretti, G., Faccani, G., Cocito, D., and Italian Network for Traumatic Neuropathies, 2010, Traumatic peripheral nerve injuries: Epidemiological findings, neuropathic pain, and quality of life in 158 patients. *Journal of the Peripheral Nervous System*, 15(2), pp.120-127. https://doi.org/10.1111/j.1529-8027.2010.00260.x

[6]. Dun, S., Kaufmann, R. A., and Li, Z. M., 2007,
Lower median nerve block impairs precision grip. *Journal of Electromyography and Kinesiology*,
17(3), pp.348-354.

https://doi.org/10.1016/j.jelekin.2006.02.002

[7]. Kuo, L. C., Hsu, H. M., Wu, P. T., Lin, S. C., Hsu, H. Y., and Jou, I. M., 2014, Impact of distal median neuropathy on handwriting performance for patients with carpal tunnel syndrome in office and administrative support occupations. *Journal of Occupational Rehabilitation*, 24, pp.332-343. https://doi.org/10.1007/s10926-013-9471-8

[8]. Kim, H. J., and Park, S. H., 2014, Median nerve injuries caused by carpal tunnel injections. *The*

Korean Journal of Pain, 27(2), pp.112-117. https://doi.org/10.3344/kjp.2014.27.2.112

[9]. Pederson, W. C., 2014, Median nerve injury and repair. *The Journal of Hand Surgery*, 39(6), pp.1216-1222.

https://doi.org/10.1016/j.jhsa.2014.01.025

[10]. Dydyk, A. M., Negrete, G., and Cascella, M.,2021, Median nerve injury. *StatPearls Publishing*.Available at:

https://pubmed.ncbi.nlm.nih.gov/31971749/

[11]. Ronchi, G., Morano, M., Fregnan, F., Pugliese,
P., Crosio, A., Tos, P., Geuna, S., Haastert-Talini, K., and Gambarotta, G., 2019, The median nerve injury model in pre-clinical research–a critical review on benefits and limitations. *Frontiers in Cellular Neuroscience*, 13, p.288. https://doi.org/10.3389/fncel.2019.00288

[12]. Heinzel, J., Längle, G., Oberhauser, V., Hausner, T., Kolbenschlag, J., Prahm, C., Grillari, J., and Hercher, D., 2021, Corrigendum to "Use of the CatWalk gait analysis system to assess functional recovery in rodent models of peripheral nerve injury-a systematic review". *Journal of Neuroscience Methods*, 348, p.108996. https://doi.org/10.1016/j.jneumeth.2020.108889

[13]. Rajesh Kumar, K. S., Veeraraghavan, V. P., and Jayaraman, S., Sativoside Mitigates High-Fat Diet-Induced Inflammation and Type-2 Diabetes in Adipose *Tissue of Wistar Rats*.

[14]. Ganesh, A., Gayathri, R., Selvaraj, J., and Priya, V. V., Study on Polychlorinated Biphenyls-Induced Changes in the Expression of Pro Inflammatory Markers and the *Therapeutic Role of Vitamin C And E.*

[15]. Prenetha, R., Kavitha, S., Vishnupriya, V., Selvaraj, J., and Gayathri, R., Glyphosate Caused Detrimental Changes in Enzymatic Antioxidants in Rats.

[16]. Vandamme, T. F., 2015, Rodent models for human diseases. *European Journal of Pharmacology*, 759, pp.84-89. https://doi.org/10.1016/j.ejphar.2015.03.046

[17]. Clark, B. D., Barr, A. E., Safadi, F. F., Beitman, L., Al-Shatti, T., Amin, M., Gaughan, J. P., and Barbe, M. F., 2003, Median nerve trauma in a rat model of work-related musculoskeletal disorder. *Journal of Neurotrauma*, 20(7), pp.681-695. https://doi.org/10.1089/089771503322144590

[18]. Shi, X., Bai, H., Wang, J., Wang, J., Huang, L., He, M., Zheng, X., Duan, Z., Chen, D., Zhang, J., and Chen, X., 2021, Behavioral assessment of sensory, motor, emotion, and cognition in rodent models of intracerebral hemorrhage. *Frontiers in Neurology*, 12, p.667511. https://doi.org/10.3389/fneur.2021.667511

[19]. Han, D., Lu, J., Xu, L., and Xu, J., 2015, Comparison of two electrophysiological methods for the assessment of progress in a rat model of nerve repair. *International Journal of Clinical and Experimental Medicine*, 8(2), pp.2392-2399.

[20]. Wolthers, M., Moldovan, M., Binderup, T., Schmalbruch, H., and Krarup, C., 2005, Comparative electrophysiological, functional, and histological studies of nerve lesions in rats. *Microsurgery*, 25(6), pp.508-519. https://doi.org/10.1002/micr.20156

[21]. Navarro, X., 2016, Functional evaluation of peripheral nerve regeneration and target reinnervation in animal models: A critical overview. *European Journal of Neuroscience*, 43(3), pp.271-286. https://doi.org/10.1111/ejn.13033

[22]. Casal, D., Mota-Silva, E., Iria, I., Alves, S., A., Pen, C., Lourenco-Silva, N., Farinho, Mascarenhas-Lemos, L., Silva-Ferreira, J., Ferraz-М., and Vassilenko, Oliveira. V., 2018. Reconstruction of a 10-mm-long median nerve gap in an ischemic environment using autologous conduits with different patterns of blood supply: A comparative study in the rat. PLOS ONE, 13(4), p.e0195692.

https://doi.org/10.1371/journal.pone.0195692

[23]. Hooijmans, C. R., Rovers, M. M., De Vries, R.
B., Leenaars, M., Ritskes-Hoitinga, M., and Langendam, M. W., 2014, SYRCLE's risk of bias tool for animal studies. *BMC Medical Research Methodology*, 14, p.43. https://doi.org/10.1186/1471-2288-14-43

[24]. Daley, P., Pomares, G., Gross, R., Menu, P., Dauty, M., and Fouasson-Chailloux, A., 2022, Use of electroneuromyography in the diagnosis of neurogenic thoracic outlet syndrome: A systematic review and meta-analysis. *Journal of Clinical Medicine*, 11(17), p.5206. https://doi.org/10.3390/jcm11175206

[25]. Ni, Z., Vial, F., Avram, A.V., Leodori, G., Pajevic, S., Basser, P. J., and Hallett, M., 2020, Measuring conduction velocity distributions in peripheral nerves using neurophysiological techniques. *Clinical Neurophysiology*, 131(7), pp.1581-1588.

https://doi.org/10.1016/j.clinph.2020.04.008

[26]. Chato-Astrain, J., García-García, O. D., Campos, F., Sánchez-Porras, D., and Carriel, V., 2022, Basic nerve histology and histological analyses following peripheral nerve repair and regeneration. In Peripheral Nerve Tissue Engineering and Regeneration (pp. 151-187). *Springer International Publishing.* https://doi.org/10.1007/978-3-030-21052-6_14

[27]. Muzio, M. R., and Cascella, M., 2021, Histology, axon. *StatPearls Publishing*. Available at: https://pubmed.ncbi.nlm.nih.gov/32119275/

[28]. Panagopoulos, G. N., Megaloikonomos, P. D., and Mavrogenis, A. F., 2017, The present and future for peripheral nerve regeneration. *Orthopedics*, 40(1), pp.e141-e156.

https://doi.org/10.3928/01477447-20161019-01

[29]. Casal, D., Mota-Silva, E., Iria, I., Pais, D., Farinho, A., Alves, S., Pen, C., Mascarenhas-Lemos, L., Ferreira-Silva, J., Ferraz-Oliveira, M., and Vassilenko, V., 2020, Functional and physiological methods of evaluating median nerve regeneration in the rat. *Journal of Visualized Experiments*, 158, p.e59767. https://doi.org/10.3791/59767

[30]. Schaar, K. L., Brenneman, M. M., and Savitz,
S. I., 2010, Functional assessments in the rodent stroke model. *Experimental & Translational Stroke Medicine*, 2, p.13. https://doi.org/10.1186/2040-7378-2-13

[31]. Maghimaa, M., Bharath, S. and Kandasamy, S.,
2025. Carbon-Based Nanoparticles for Neural Regeneration. In *Nanoparticles in Modern Neurological Treatment* (pp. 263-282). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-80185-3 10