Immersive Technology in Stroke Rehabilitation: A Scoping Review of Effectiveness, Challenges and Future Direction

Vanitha Jayaraj^{*}, Keerthana A K, Sathya Siva, Daniel A, Santhana Lakshmi S, Vignesh Srinivasan, Prathap Suganthirababu Saveetha College of Physiotherapy, Saveetha Institute of Medical and Technical Sciences, Chennai, India

Abstract

Stroke rehabilitation has traditionally relied on physical and occupational therapies to improve motor and cognitive functions. Recently, immersive technologies, including Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR), have emerged as innovative tools for enhancing recovery. These technologies offer engaging, tailored rehabilitation experiences, potentially improving stroke outcomes. This scoping review synthesizes recent studies on immersive technologies in stroke rehabilitation, focusing on clinical trials, pilot studies, and systematic reviews published in the past decade. Findings indicate that VR, AR, and MR interventions show promise in improving motor function, gait rehabilitation, and cognitive recovery. VR-based interventions, including treadmill training and mirror therapy, have demonstrated benefits such as increased walking speed and enhanced upper limb motor function. However, challenges remain, including participant selection bias, small sample sizes, and a lack of long-term follow-up. Additionally, issues such as physical discomfort, safety concerns, and the need for personalized therapy were noted. The diversity of stroke severity and patient heterogeneity further complicate generalizability. Immersive technologies hold significant potential in stroke rehabilitation by providing engaging and effective therapies. However, challenges such as safety, accessibility, and scalability must be addressed. Future research should focus on larger, multicenter trials with diverse patient populations, long-term follow-ups, and integrating advanced technologies like AI and motion tracking to optimize immersive interventions for stroke recovery.

Keywords: Immersive Technology, Rehabilitation, Stroke, Virtual Reality.

Introduction

Stroke, as defined by the World Health Organization (WHO), is the sudden onset of neurological dysfunction lasting more than 24 hours or leading to death, resulting from a vascular cause [1]. It remains a leading cause of long-term disability worldwide, with a complex interplay of modifiable and non-modifiable risk factors such as hypertension, diabetes. hyperlipidemia, atrial fibrillation, smoking, physical inactivity, and alcohol consumption contributing to its onset [2, 3]. Beyond the immediate medical emergency, stroke often results in profound physical, cognitive, and emotional impairments, severely diminishing quality of life for survivors and imposing a considerable burden on caregivers and healthcare systems alike [4, 5]. Optimal stroke management extends beyond acute interventions, requiring a comprehensive and sustained rehabilitation approach. Multidisciplinary rehabilitation, initiated early in the recovery process, has been associated with better functional outcomes, largely due to the brain's capacity for neuroplasticity-the ability to reorganize neural pathways in response to injury [6, 9, 10]. Personalized rehabilitation plans tailored to the individual's functional needs and recovery trajectory are critical for maximizing therapeutic benefits and enhancing long-term outcomes [11]. Traditional rehabilitation modalitiesincluding physical, occupational, and speech therapies-have long served as the cornerstone of stroke recovery [12]. However, these interventions are often intensive, costly, and confined to clinical settings, which may limit access and reduce patient adherence over time [13]. Moreover, the repetitive nature of these therapies can lead to decreased engagement and motivation among patients, while also placing significant demands rehabilitation on professionals [14]. Although services are commonly delivered through interdisciplinary teams across inpatient, outpatient, and homebased settings [15, 16], they are frequently constrained by fixed schedules or predefined treatment durations that may not align with the individual pace of recovery [17]. These limitations underscore the pressing need for more adaptable, accessible, and patientcentered rehabilitation solutions. Emerging immersive technologies-including virtual reality (VR), augmented reality (AR), and mixed reality (MR)-offer promising avenues to address these challenges [19]. Immersive virtual reality (IVR), typically experienced head-mounted displays (HMDs), through engaging 3D environments that creates simulate real-world tasks, enabling patients to perform therapeutic activities in a controlled, interactive setting. These platforms also generate performance data, which can be used to tailor interventions and track progress [20]. The growing availability of commercial VR systems and supportive evidence from clinical trials further reinforces the viability of IVR in rehabilitation contexts [21]. Augmented reality (AR), by superimposing digital information onto the physical environment, facilitates realtime feedback and enhances motor learning, offering patients a more engaging and responsive therapeutic experience [22, 23]. Its ability to integrate seamlessly into physical

spaces fosters a sense of embodiment and adaptable creates scenarios that reflect individual needs and capabilities [24, 25]. Mixed reality (MR), which blends the immersive qualities of VR with the contextual awareness of AR, enables complex interactions between virtual and real-world elements. This hybrid approach has shown particular promise in supporting motor skill acquisition, functional task training, and increased motivation [26, 27]. Recent advances in digital technologies and medical devices are revolutionizing stroke rehabilitation by empowering patients to take an active role in their recovery journey. These innovations are increasingly being tested in clinical settings, demonstrating potential to enhance functional outcomes and support sustained engagement. This scoping review aims to explore the role of immersive technologies in stroke rehabilitation. It critically examines current applications of VR, AR, and MR, identifies existing limitations, and discusses emerging directions for research and clinical practice. By evaluating the potential of these technologies to complement or transform traditional rehabilitation strategies, this review seeks to contribute to a more responsive and individualized approach to stroke recovery.

Methodology

The objective of this paper is to present a comprehensive analysis of the effectiveness of immersive technologies in stroke rehabilitation, while also highlighting their limitations (Table 1). A systematic search strategy was employed to identify relevant literature published in scholarly databases and peer-reviewed journals. Boolean operators were used to filter the search, incorporating keywords related to immersive virtual reality, augmented reality, mixed reality, stroke rehabilitation, and their respective synonyms. Key databases, including PubMed, Embase, Scopus, and Google Scholar, were thoroughly explored to retrieve pertinent studies (Figure 1) [28].

Studies were selected for inclusion based on the following criteria:

- 1. They investigated the use of immersive virtual reality, augmented reality, or mixed reality interventions in stroke rehabilitation.
- 2. Participants were adult stroke survivors aged 18 years and above.
- 3. Publications were written in English.
- 4. Studies assessed outcomes associated with motor and cognitive recovery following stroke.
- 5. The research design comprised clinical trials or randomized controlled trials (RCTs).
- 6. Only studies published within the last five years (from November 2023) were considered to ensure the inclusion of the most current evidence.

Studies that did not meet these criteria or were duplicate entries were excluded. A rigorous quality assessment was conducted on the shortlisted articles. Two independent reviewers evaluated each study, considering potential sources of bias, methodological robustness, and relevance to the research question. Articles that did not meet the predefined quality standards were excluded from the review. Following the quality assessment, data extraction commenced. Relevant data were systematically gathered from the selected studies by two independent reviewers. Any discrepancies arising during this process were resolved through discussion and consensus. Extracted data included sample characteristics, details of the intervention, outcome measures, as well as findings related to the effectiveness and limitations of the interventions in stroke rehabilitation.

In recent years, immersive technology-based therapies have emerged as promising tools in stroke rehabilitation, offering innovative ways to engage patients in interactive and enjoyable recovery activities. A growing body of research has investigated the efficacy and challenges of these interventions in enhancing motor and cognitive recovery among stroke survivors (Table 2).

Current Evidence on the Effectiveness of Immersive Technology in Stroke Rehabilitation

Immersive Virtual Reality in Stroke Rehabilitation

Immersive virtual reality (VR) is gaining momentum as an innovative tool in stroke rehabilitation, largely due to its ability to engage patients, enhance motivation, and deliver personalized, interactive therapeutic experiences. By simulating customizable immersive environments, VR supports neuroplasticity and aligns with rehabilitation goals across motor and cognitive domains. Clinical applications of immersive VR have yielded encouraging results. For instance, rhythm-based games such as Beat Saber have been effectively employed to motivate patients with chronic stroke, promoting both physical activity and psychological engagement through a state of "flow" [29]. Similarly, immersive VRbased treadmill training has shown promise in improving gait speed, demonstrating high usability and minimal adverse effects [30]. However, the use of head-mounted displays (HMDs) presents challenges such as user discomfort and visual occlusion, which may affect both safety and user experience [30]. Additional studies involving individuals with stroke and multiple sclerosis have found VR treadmill training to increase therapeutic engagement and walking speed. Nevertheless, short session durations, small sample sizes, and limited assessments of overground walking constrain the generalizability of these findings [31]. Patients with sensory impairments may also experience difficulty due to the high reliance on visual and proprioceptive input within immersive VR environments. In upper limb rehabilitation, platforms such as MNVR-Rehab-grounded in mirror neuron theoryhave demonstrated the potential to enhance motor recovery through repetitive, goaloriented activities in patients recovering from subacute stroke [32]. These approaches activate neuroplastic mechanisms and offer early indications of efficacy. On a biological level, immersive VR has been associated with beneficial shifts in molecular biomarkers, including increased levels of brain-derived neurotrophic factor (BDNF) and reductions in oxidative stress markers such as HO-1 and 8-OHdG, suggesting a neurophysiological basis for recovery [33]. The cognitive benefits of immersive VR are also becoming more evident. In patients with acute post-stroke cognitive deficits, VR-based interventions have improved engagement and participation in therapy [34]. Although most studies report improvements in hand strength, dexterity, and coordination, translating into increased functional independence [35, 36], many are limited by small sample sizes and a lack of long-term outcome data. Moreover, few studies have incorporated objective attention metrics, compared different types of VR (e.g., 360versus computer-generated degree video environments), or evaluated corresponding brain activation during therapy sessions [37]. Overall, immersive VR holds substantial promise in advancing stroke rehabilitation through adaptive, engaging, and patientcentered interventions. Nonetheless, addressing methodological limitations existing and evaluating long-term outcomes will be critical to validating its clinical effectiveness and scalability.

Immersive Augmented Reality in Stroke Rehabilitation

Immersive augmented reality (AR) is also emerging as a valuable adjunct in stroke rehabilitation, offering the potential to enhance therapeutic outcomes while easing therapist workload. A feasibility study conducted during the COVID-19 pandemic highlighted AR's ability to reduce in-person contact by enabling therapists to shift from repetitive physical assistance to more instructional and supervisory roles [38]. However, the evidence surrounding the clinical effectiveness of AR, particularly in patients with subacute and chronic stroke, remains mixed. For example, a comparative trial between treadmill-based C-Mill therapy and overground FALLS training found no significant differences in primary walking outcomes, though secondary outcomes-such cardiovascular fitness as and walking practice—favored the C-Mill group [39]. Emerging technologies like the RobExReha platform, which combines robotic-assisted arm therapy with AR-based gaming, have shown initial safety and usability in neurologically impaired patients with intact cognition. Similarly, devices like the Microsoft HoloLens have received favorable feedback from patients, reinforcing the feasibility and acceptability of AR in rehabilitation contexts [40]. While immersive AR appears to support patient engagement and facilitate autonomous training, evidence regarding its long-term efficacy and applicability across diverse stroke populations remains limited. Further research is needed to fully establish its therapeutic potential and define best practices for implementation.

Immersive Technology in Stroke Rehabilitation: Challenges and Future Directions

Despite the growing enthusiasm for immersive technologies in neurorehabilitation, several challenges continue to hinder their widespread clinical adoption. While increased motivation and engagement are frequently reported with VR interventions, selection bias is common, as participants are often selfselected and more likely to be technologically inclined [29]. Furthermore, heterogeneity in patient cohorts and the frequent exclusion of with individuals severe cognitive or communication impairments limit the external validity of many findings [36]. Although improvements in motor outcomes-such as increased walking speed—are commonly documented, many interventions rely heavily

on visual input, posing challenges for patients with somatosensory deficits [32, 39]. Short intervention durations and a general lack of long-term follow-up data further constrain conclusions regarding sustained benefits [39-41]. Moreover, side effects such as dizziness and visual fatigue necessitate careful session structuring and regular breaks to ensure patient safety [34]. Recent innovations, such as the VIRTUE platform, offer low-cost, minimally supervised cognitive rehabilitation solutions, but challenges related to device compatibility and scalability-particularly with headsets like the Oculus Quest 2-remain unresolved [35]. Meanwhile, VR-based mirror therapy systems like BeSTEP show promise in chronic stroke populations, and could benefit from additional features such as EMG integration, eye/head tracking, and multiple camera angles to enhance exercise variability and therapeutic engagement [36]. However, methodological limitations persist across the literature. These include a lack of standardized outcome limited measures, personalization of interventions, high attrition rates, and insufficient use of control groups or blinded assessors. The logistical constraints introduced by the COVID-19 pandemic have only exacerbated these issues. To move the field forward, future studies must explore haptic feedback systems, advanced hand-tracking technologies, and secure home-based VR platforms that safeguard user privacy. Devices like RobExReha illustrate the potential for precision-targeted therapy, but also highlight current limitations in accessibility and adaptability for broader stroke populations [40]. Ultimately, addressing bias introduced by unblinded assessments and dual-role therapists well-designed, requires multicenter randomized controlled trials with larger, more diverse populations and extended follow-up periods. Such rigor will be crucial in technologies establishing immersive as evidence-based standards in stroke rehabilitation.

Limitations and Recommendations

review explored This scoping the effectiveness of immersive technologies in stroke rehabilitation but is not without its limitations. One key constraint was the exclusion of non-English language studies, which may have led to the omission of valuable research conducted in other parts of the world. This introduces a degree of linguistic bias and may limit the global relevance and comprehensiveness of the review's conclusions. Another limitation was the decision to include only studies published within the past five years. While this approach ensures that the review reflects recent advancements, it may have inadvertently excluded earlier, foundational research that could provide important historical context and insights into the trajectory of immersive technologies in neurorehabilitation. Although the findings highlight the growing promise of immersive technologies—such as virtual reality (VR), augmented reality (AR), and mixed reality (MR)-in supporting stroke recovery, several critical research gaps remain. Notably, there is a clear need for well-designed comparative studies that assess how these technologies perform relative to traditional rehabilitation methods. Such studies are essential not only for determining clinical effectiveness but also for evaluating costefficiency and practical feasibility, which are key considerations for widespread adoption in routine clinical settings. In addition, the longterm effects of immersive interventions on functional recovery and quality of life in stroke survivors are still underexplored. Longitudinal research is necessary to understand whether the benefits of these technologies are sustained over time and to what extent they contribute to meaningful, lasting improvements in patient outcomes. Beyond clinical measures, future studies should also investigate how immersive environments affect patient engagement, motivation, and social interaction-factors known to play a crucial role in the success of rehabilitation programs.

Finally, the temporal scope of the current review may limit its ability to fully capture the development and refinement of immersive technologies, particularly MR applications, over time. Expanding the timeframe and scope in future work will allow for a more nuanced understanding of both the evolution of these tools and the ongoing challenges in their implementation. As the field continues to evolve, sustained research and innovation will be vital to realizing the full potential of immersive technologies and advancing a more personalized, engaging, and effective model of stroke rehabilitation.

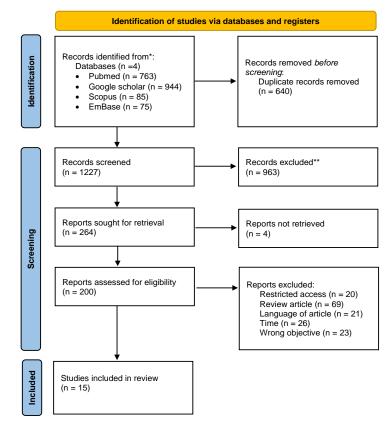


Figure 1. Literature search flowchart

Figure 1. Literature Search Flowchart

Table 1. Methodology

Methodology aspect	Description						
Aim	To provide a comprehensive overview of the efficacy of						
	immersive technology in stroke rehabilitation, focusing on						
	its limitations.						
Search Strategy	Employed a comprehensive search strategy using relevant						
	terms related to immersive virtual reality, augmented						
	reality, mixed reality, stroke rehabilitation and synonyms						
	with Boolean operators.						
Databases Searched	PubMed, Embase, Scopus, Google Scholar, and other						
	relevant academic databases were searched for eligible						
	articles.						

Inclusion Criteria	Studies were considered for inclusion based on the							
	following criteria:							
	• They examined stroke rehabilitation using immersive							
	virtual reality, augmented reality, or mixed reality							
	interventions.							
	• The participants were adult stroke survivors aged 18							
	years or older.							
	• The studies were published in English.							
	They assessed outcomes related to motor and							
	cognitive recovery in stroke rehabilitation.							
	• The research design included clinical trials or							
	randomized controlled trials (RCTs).							
	• - Only studies published within the past five years							
	(from November 2023) were included to ensure the							
	review reflects the latest evidence.							
Exclusion Criteria	Duplicate publications or studies that did not fit the							
	predetermined criteria were not included.							
Data Extraction	Information on the research design, sample							
	characteristics, intervention details, outcome measures,							
	and key results about stroke rehabilitation outcomes were							
	extracted by two independent reviewers.							
Data Analysis	Qualitatively compiled the results of several research,							
	discovering themes, trends, or patterns pertaining to the							
	results of stroke rehabilitation.							

Conclusion

In conclusion, this review highlights the transformative potential of immersive technologies-including virtual reality (VR), augmented reality (AR), and mixed reality (MR)-in advancing stroke rehabilitation. These emerging tools offer a dynamic, interactive platform that can significantly enhance patient engagement by simulating task-specific activities and fostering а heightened sense of presence. Such features may help counteract the apathy and disengagement often observed in conventional rehabilitation, ultimately promoting greater motivation and participation among stroke survivors.

Despite their promise, the widespread adoption of immersive technologies in clinical settings is not without challenges. Issues such as cost, accessibility, patient variability, data privacy, and the need for training among both patients and healthcare professionals must be carefully navigated. However, the findings of this review underscore the importance of a patient-centred informed approach, implementation strategies, and strong interdisciplinary collaboration. With thoughtful integration, immersive technologies have the potential to not only complement traditional rehabilitation methods but also to reshape the future of stroke recovery by enhancing outcomes and enriching the rehabilitation experience.

Title and author of the	Immersive	Participants	Rehabilitation's	Intervention	Primary outcome measures	Conclusion	Limitations
study	technology		goal				
Virtual reality gaming in	VR	N=7	Enhance motor	The commercially	Fugl-Meyer Assessment of Upper	Participants with	The sample included
rehabilitation after stroke -			function	available HTC Vive	Extremity	chronic stroke found	participants of different
user experiences and				head-mounted VR		VR gaming to be	genders, ages, and
perceptions Gustavsson, M				system was used,		engaging and	cultural backgrounds but
et al., 2022				featuring five different		motivating, reporting a	excluded individuals with
				games: NVIDIA VR		positive experience	severe cognitive or
				Funhouse, The Lab,		and improvements in	communication
				Beat Saber, Climbey,		their daily activities.	impairments.
				and Pierhead Arcade.			
Immersive virtual reality	VR	N= 4	Enhance motor	Treadmill training	Walking speed and heart rate	Increased walking	Overground walking, was
during gait rehabilitation			function	without VR, while the		speed demonstrated in	not assessed
increases walking speed				second included two		gait rehabilitation.	Within the study where
and motivation: a usability				VR-based treadmill			they pooled findings from
evaluation with healthy				conditions in pseudo-			a heterogeneous and
participants and patients				randomized order,			small group of patients
with multiple sclerosis and				each lasting about 7.5			with stroke.
stroke Winter C et al.,				minutes.			with subre.
2021							
Immersive virtual reality-	VR	N= 40	Enhance motor	The imVR group	Fugl-Meyer assessment (FMA-UE)	The imVR improves	No blinding of subjects.
based rehabilitation for			function	activities: cooking in a	and the Barthel Index (BI)	the recovery of UE	
subacute stroke: a				virtual kitchen,		functional capabilities.	Not explored the
randomized controlled trial				popping balloons,			mechanism for those
Huang, Q et al., 2024				punching dolls,			significant brain regions.
				shooting basketballs,			
				collecting eggs, and			
				tidying a virtual office.			

Table 2. Study Characteristics

A novel fully immersive	VR	N= 28	Enhance motor	VR rehabilitation tasks	Fugl-Meyer Upper Extremity (FM-	The MNVR-Rehab	The number of
virtual reality environment			function	of reaching, grasping,	UE) and Barthel Index (BI)	improves the recovery	participants is relatively
for upper extremity				and releasing-colored		of UE functional	small.
rehabilitation in patients				balls, tailored to each		capabilities of	
with stroke Mekbib DB et				patient's abilities. After		subacute stroke	No follow-up evaluations
al., 2021				each session, the		patients with	The control group
				therapist adjusted task		moderate-to-severe UE	included were also the
				complexity based on		impairments.	same stroke patients,
				the patient's			although untreated using
				performance.			MNVR therapy.
Effects of virtual reality-	VR	N= 30	Enhance motor	HTC VIVE	Fugl-Meyer Assessment for upper	The application of	A similar difference in
based motor control			function	commercial VR	extremity (FMA-UE) and active	immersive VR-based	serum biomarker level in
training on inflammation,				headset, which	range of motion (AROM)	training improves	healthy adults remains to
oxidative stress,				includes an HMD, two		upper extremity motor	be examined.
neuroplasticity and upper				controllers, and two		performance	Less sample size
limb motor function in				infrared emitters.			Not identified the
patients with chronic							biomarker sensitive to
stroke: a randomized							
controlled trial Huang, C.							VRT at the chronic stage, at regular intervals across
Y et al., 2022							a longer period.
Immersive Virtual Reality	VR	N= 40	Enhance	The Unity 2D come	Montered Cognitive Assessment	It halms those with	0 1
for the Cognitive	VK	N=40	cognitive	The Unity 3D game development platform	Montreal Cognitive Assessment (MoCA) test and the Cognitive	It helps those with severe cognitive	The sample size is relatively small.
Rehabilitation of Stroke			C	in combination with		-	relatively small.
			function		Assessment of Minnesota (CAM)	impairment and reduce	The final assessment at
Survivors Chatterjee K et al., 2022				the Virtual Reality Toolkit (VRTK) has		the duration of hospital	three months is lag.
al., 2022						stay.	
				been used to develop			
				VIRTUE			

Feasibility and	VR	N= 11	Enhance	Leap Motion hand	The Fugl-Meyer Assessment-Upper	It enhanced motor	Limited sample size and
psychophysical effects of			cognitive	tracking camera.	Extremity subset (FMA-UE),	recovery and psycho-	number of interventions.
immersive virtual reality-			function	Mitigating these by	Modified Rankin Scale (MRS)	physical effects such	
based mirror therapy				using black infrared		as	
Heinrich C et al., 2022				absorbent cloth on the		tingling/paraesthesia	
				table and by limiting		during the	
				hand exercises to basic		interventions in stroke	
				movements.			
Effectiveness of	VR	N= 52	Enhance motor	VR Based Game	Fugl-Meyer Assessment's- Upper	It showed increased	Some additional clinical
Immersive Virtual Reality-			function	Intervention Plus	Extremity (FMA-UE), Action	dexterity, improved	outcome measures may
Based Hand Rehabilitation				Conventional Physical	Research Arm Test (ARAT), Box	range of motion, hand	require to be considered
Games for Improving				Therapy,	and Block Test (BBT), Modified	strength, and griping.	for further assessment of
Hand Motor Functions in				(VRGI+CPT)) The	Barthel Index (MBI) and Stroke-	Also improves the	VR-based hand games.
Subacute Stroke Patients				patient played each	Specific Quality of Life (SSQOL)	patient's ability to	
F. Amin et al., 2024				game level twice in		synchronize their hand	
				easy and difficulty		motions with visual	
				levels.		stimuli, cognitive	
						engagement within	
						visual training aspects	
						was incorporated into	
						the games.	
Effect of Leap Motion-	VR	N= 65	Enhance motor	The VR device	Fugl-Meyer Upper Extremity	Immersive VR	High dropout rates
based 3D Immersive			function	featuring four games: a	(FMUE) assessment. The Action	applications in	
Virtual Reality Usage on				cube handling game	Research Arm Test (ARAT),	rehabilitation has a	
Upper Extremity Function				for grip using Leap	Functional Independence Measure	positive impact on	
in Ischemic Stroke Patients				Motion; a tree	(FIM), Performance Assessment of	upper extremity	Single-center design.
Ögün, M. N et al., 2021				decorating game for	Self-Care Skills—instrumental	function and daily life	
				complex hand	activities of daily living (PASS-	activities for stroke	
				motions; a kitchen	IADL), and Performance	patients.	

				game for forearm	Assessment of Self-Care Skills-		
				movements; and a	basic activities of daily living		
				drumming game for	(PASS-BADL)		
				upper extremity			
				movements.			
The effect of balance	VR	N=44	Enhance motor	FIVR training utilized	Timed up-and-go test, Berg balance	Participants showed	Not suitable and difficult
training using touch			function	the Oculus Quest 2, a	scale, Gait velocity (km/h), Step	improvement in	for the patient to follow.
controller-based fully				head-mounted display	length (cm), Stride length (cm),	balance by performing	All interventions were
immersive virtual reality				(HMD), with	Single support time (sec)	goal-directed upper	
devices on balance and				commercially		extremity movements	performed on a flat
walking ability in patients				available sports games		while standing,	surface to mitigate the
with stroke: A pilot RCT				on the device.		inducing postural sway	risk of falling during the
Kwak HD et al., 2024						and anticipatory	intervention period.
						postural adjustments.	
360° immersive virtual	VR	N=45	Enhance motor	The recorded videos	Fugl-Meyer Assessment for upper	The 360MT seems to	Follow-up assessments
reality-based mirror			function	were edited using	extremity (FMA-UE)	be a more beneficial	and comparisons between
therapy for upper				Final Cut Pro (Apple,		choice than TMT for	360MT and VRMT using
extremity function and				USA), where they		upper extremity	computer-generated
satisfaction among stroke				were mirrored and		rehabilitation in stroke	graphics were not
patients: a randomized				adjusted for distance		patients. This	conducted.
controlled trial Jo, S et al.,				(X-axis -10° and Y-		innovative approach	
2024				axis +10°), then		provides an immersive	The duration of patients'
				displayed through a		and engaging therapy	concentration during the
				Pico G2 VR 4K head-		experience, potentially	interventions was not
				mounted display (Pico,		enhancing patient	measured.
				China).		outcomes.	

Performing a shortened	VR	N=30	Enhance motor	The immersive VR	Fugl-Meyer Assessment for upper	ARAT-VR is a	The test was designed
version of the Action			function	adaptation of the	extremity (FMA-UE)	reliable, valid, and	using hand-tracking
Research Arm Test in				Action Research Arm		user-friendly tool for	technology, which did not
immersive virtual reality to				Test (ARAT-VR)		assessing upper limb	allow for the provision of
assess post-stroke upper				includes 19 tasks		activity in individuals	tactile feedback.
limb activity Burton Q et				categorized into four		with stroke, offering	
al., 2022				subtests: grasp, grip,		the potential to	
				pinch, and gross		enhance assessment	
				movement.		frequency, enable	
						remote evaluations,	
						and support	
						neurorehabilitation.	
Augmented reality for	AR	N=129	Enhance motor	The AR uses a	Fugl-Meyer Assessment with Upper	The AR system	Requirement of training
stroke rehabilitation during			function	Microsoft Kinect V2	Extremity and Lower Extremity	automates monotonous	using specific equipment.
COVID-19 Yang, Z. Q et				camera to track patient	(FMA-UE and FMA-LE), Berg	practice tasks,	
al., 2022				movements, a	Balance Scale (BBS), Functional	allowing participants	
				TV/monitor for	Ambulation Category (FAC).	to practice	
				instructions and real-		independently, freeing	
				time feedback, and AR		trainers to focus on	
				software enhanced		teaching	
				with AI for training.			
Walking-adaptability	AR	N=40	Enhance motor	Treadmill-based C-	10MWT	C-Mill therapy	No control group
therapy after stroke: results			function	Mill therapy (CT) and		improves the amount	
of a randomized controlled				overground FALLS		of walking practice an	Assessors, neither
trial Timmermans, C et al.,				program (FP)		important ingredient of	physical therapists nor
2023						effective interventions	participants were blind to
						of walking speed and	group allocation
						walking adaptability	Only one center study
						after stroke.	

Robotic arm training in	AR	N=18	Enhance motor	RobExReha, LBR iiwa	Quebec User Evaluation of	Robotic arm training	The Reference Group,
neurorehabilitation			and cognitive	robotic arm (KUKA	Satisfaction with assistive	improves upper	contrarily, additionally
enhanced by augmented			function	AG, DE) further	technology [QUEST], workload Raw	extremity from	included patients with
reality – a usability and				interfaced with a	Task Load Index [RTLX] and a	neurological causes	left-sided impairments.
feasibility study de Crignis				custom-made Unity	questionnaire for rating visual	and good cognitive	Study does not reflect the
AC et al., 2023				application (Unity	perception of the gaming scenario	function. Notably, the	wide variation of
				Technologies, US) for		good acceptance and	neurological patients
				the HoloLens		perception of the game	potentially training with
				(Microsoft Inc., US)		using the HoloLens is	robotic devices.
						promising.	Not blinded the patients,
							therapists and assessors
							were aware of which
							system they were
							evaluating.

Conflict Of Interest

The authors declare that there is no conflict of interest regarding the publication of this study.

References

[1]. Sacco, R. L., Kasner, S. E., Broderick, J. P., et al., 2013, An updated definition of stroke for the 21st century. *Stroke.*, 44(7):2064–2089. doi:10.1161/STR.0b013e318296aeca.

[2]. Maruvada, S. S., Sornavalli, V., Poonambalaganapathi, & Gowri Sankar, A., 2025. Mini mental state examination (MMSE) as a predictor of cognitive recovery in acute stroke. *Romanian Journal of Neurology*, 24(1):25–30. Doi:10.37897/RJN.2025.1.5.

[3]. O'Donnell, M. J., Xavier, D., Liu, L., et al., 2010, Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. *Lancet.*, 376(9735):112–123. doi:10.1016/S0140-6736(10)60834-3.

[4]. Roth, E. J., Harvey, R. L., Rehabilitation of stroke syndromes. In: Physical Medicine and Rehabilitation.

[5]. TP, A., 1990, Rehabilitation of patients with completed stroke. In: Krusen's Handbook of Physical Medicine and Rehabilitation., 656–673.

[6]. Herpich, F., Rincon, F., 2020, Management of acute ischemic stroke. *Crit Care Med.*, 48(11):1654–1663.

doi:10.1097/CCM.00000000004597.

[7]. Chen, X., Liu, F., Yan, Z., et al., 2018, Therapeutic effects of sensory input training on motor function rehabilitation after stroke. *Medicine.*, 97(48):e13387.

doi:10.1097/MD.000000000013387.

[8]. Joypriyanka, M., Surendran R., Sathish Kumar, P. J, Sivasangari A. Game therapy for speciallyabled individuals with PPO reinforcement learning in VR-based educational games. In: *Proceedings of the 5th International Conference on Data Intelligence and Cognitive Informatics (ICDICI* 2024). 2024.

Doi:10.1109/ICDICI62993.2024.10810847

Acknowledgement

I sincerely thank Saveetha College of Physiotherapy for the guidance and timely help throughout the project.

[9]. Coleman, E. R., Moudgal, R., Lang, K., et al., 2017, Early rehabilitation after stroke: a literature review. *Curr Atheroscler Rep.*, 19(12):59. doi:10.1007/s11883-017-0686-6.

[10]. Puderbaugh, M., Emmady, P. D., 2023, Neuroplasticity. In: StatPearls. St. Petersburg (FL): *StatPearls Publishing*.

[11]. Cirstea, M. C., Levin, M. F., 2000,Compensatory strategies for reaching in stroke.Brain.,123(5):940–953.

doi:10.1093/brain/123.5.940.

[12]. Li, W., Luo, Z., Jiang, J., Li, K., Wu, C., 2023, The effects of exercise intervention on cognition and motor function in stroke survivors: a systematic review and meta-analysis. *Neurol Sci.*, 44(6):1891– 1903. doi:10.1007/s10072-023-06636-9.

[13]. Teasell, R., Meyer, M. J., McClure, A., et al., 2009, Stroke rehabilitation: an international perspective. *Top Stroke Rehabil.*, 16(1):44–56. doi:10.1310/tsr1601-44.

[14]. Huang, Q., Wu, W., Chen, X., et al., 2019, Evaluating the effect and mechanism of upper limb motor function recovery induced by immersive virtual-reality-based rehabilitation for subacute stroke subjects: study protocol for a randomized controlled trial. *Trials.*, 20(1):104. doi:10.1186/s13063-019-3177-y.

[15]. Bhavani Sowndharya, B., Mathan Muthu, C. M., Vickram, A. S., Saravanan, A., 2025. Bioethical considerations in the application of artificial intelligence in spinal surgery. *Brain Spine Lett.*, 10:104161. doi:10.1016/j.bas.2024.104161.

[16]. Bonnyaud, C., Gallien, P., Decavel, P., et al., 2018, Effects of a 6-month self-rehabilitation programme in addition to botulinum toxin injections and conventional physiotherapy on limitations of patients with spastic hemiparesis following stroke (ADJU-TOX): protocol study for a randomised controlled, investigator blinded study. *BMJ Open.*, 8(8):e020915. doi:10.1136/bmjopen-2017-020915.

[17]. Nik Ramli, N. N., Asokan, A., Mayakrishnan, D., et al., 2021, Exploring stroke rehabilitation in Malaysia: are robots better than humans for stroke recuperation? *Malays J Med Sci.*, 28(4):14–23. doi:10.21315/mjms2021.28.4.3.

[18]. Rikhof, C. J. H., Leerskov, K. S., Prange-Lasonder, G. B., et al., 2024, Combining robotics and functional electrical stimulation for assist-as-needed support of leg movements in stroke patients: a feasibility study. *Med Eng Phys.*, 130:104216. doi:10.1016/j.medengphy.2024.104216.

[19]. Suh, A., Prophet, J., 2018, The state of immersive technology research: A literature analysis. *Comput Human Behav.*, 86:77–90. doi:10.1016/j.chb.2018.04.019.

[20]. Slater, M., Sanchez-Vives, M. V., 2016,Enhancing our lives with immersive virtual reality.FrontRobotAI.,3:74.doi:10.3389/frobt.2016.00074.

[21]. Diriba Kenea, C., Gemechu Abessa, T., Lamba, D., Bonnechère, B., 2024, Technological features of immersive virtual reality systems for upper limb stroke rehabilitation: a systematic review. *Sensors (Basel).*, 24(11):3546. doi:10.3390/s24113546.

[22]. Azuma, R., Baillot, Y., Behringer, R., et al.,
2001, Recent advances in augmented reality. IEEE *Comput* Graph Appl., 21(6):34–47.
doi:10.1109/38.963459.

[23]. Sigrist, R., Rauter, G., Riener, R., Wolf, P., 2013, Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. *Psychon Bull Rev.*, 20(1):21–53. doi:10.3758/s13423-012-0333-8.

[24]. Da Gama, A. E., Chaves, T. M., Figueiredo, L.
S., et al., 2016, MirrARbilitation: A clinicallyrelated gesture recognition interactive tool for an AR rehabilitation system. *Comput Methods Programs Biomed.*, 135:105–114.

doi:10.1016/j.cmpb.2016.07.014.

[25]. Tang, A., Biocca, F., Lim, L., Comparing differences in presence during social interaction in augmented reality versus virtual reality environments: An exploratory study.

[26]. Phan, H. L., Le, T. H., Lim, J. M., Hwang, C.H., Koo, K.-I., 2022, Effectiveness of augmented

reality in stroke rehabilitation: A meta-analysis. *Appl Sci.*, 12(4):1848. doi:10.3390/app12041848.

[27]. Cameirão, M. S., Badia, S. B., Duarte, E., Frisoli, A., Verschure, P. F., 2012, The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. *Stroke.*, 43(10):2720–2728. doi:10.1161/STROKEAHA.112.653196.

[28]. Duff, M., Chen, Y., Cheng, L., Liu, S. M., Blake, P., Wolf, S. L., Rikakis, T., 2013, Adaptive mixed reality rehabilitation improves quality of reaching movements more than traditional reaching therapy following stroke. *Neurorehabil Neural Repair.*, 27(4):306–315.

doi:10.1177/1545968312465195.

[29]. Page, M. J., McKenzie, J. E., Bossuyt, P. M., et al., 2021, The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ.*, 372:n71. doi:10.1136/bmj.n71.

[30]. Gustavsson, M., Kjörk, E. K., Erhardsson, M., et al., 2022, Virtual reality gaming in rehabilitation after stroke: user experiences and perceptions. *Disabil Rehabil.*, 44(22):6759–6765. doi:10.1080/09638288.2021.1972351.

[31]. Winter, C., Kern, F., Gall, D., Latoschik, M. E., Pauli, P., Käthner, I., 2021, Immersive virtual reality during gait rehabilitation increases walking speed and motivation: a usability evaluation with healthy participants and patients with multiple sclerosis and stroke. *J Neuroeng Rehabil.*, 18(1):68. doi:10.1186/s12984-021-00848-w.

[32]. Huang, Q., Jiang, X., Jin, Y., et al., 2024, Immersive virtual reality-based rehabilitation for subacute stroke: a randomized controlled trial. *J Neurol.*, 271(3):1256–1266. doi:10.1007/s00415-023-12060-y.

[33]. Mekbib, D. B., Debeli, D. K., Zhang, L., et al., 2021, A novel fully immersive virtual reality environment for upper extremity rehabilitation in patients with stroke. *Ann NY Acad Sci.*, 1493(1):75–89. doi:10.1111/nyas.14554.

[34]. Chatterjee, K., Buchanan, A., Cottrell, K., et al., 2022, Immersive virtual reality for the cognitive rehabilitation of stroke survivors. *IEEE Trans Neural Syst Rehabil Eng.*, 30:719–728. doi:10.1109/TNSRE.2022.3158731.

[35]. Heinrich, C., Morkisch, N., Langlotz, T., Regenbrecht, H., Dohle, C., 2022, Feasibility and psychophysical effects of immersive virtual realitybased mirror therapy. *J Neuroeng Rehabil.*, 19(1):107. doi:10.1186/s12984-022-01086-4.

[36]. Amin, F., Azad, A., Zubair, M., et al., 2024, Effectiveness of immersive virtual reality-based hand rehabilitation games for improving hand motor functions in subacute stroke patients. *IEEE Trans Neural Syst Rehabil Eng.*, 32:2060–2069. doi:10.1109/TNSRE.2024.3405852.

[37]. Li, P., Wang, Z., Zhang, J., et al., 2023, Virtual reality rehabilitation for stroke patients: a meta-

analysis of randomized controlled trials. *Comput Methods Programs Biomed.*, 225:107037. doi:10.1016/j.cmpb.2023.107037.

[38]. Kwok, Y., Chen, L., Lee, W., et al., 2024, The impact of virtual reality therapy on cognitive and motor rehabilitation in stroke patients: A review of clinical studies. *J Clin Neurosci.*, 81:13–23. doi:10.1016/j.jocn.2024.04.017.

[39]. Serrano, F., Martínez, C., Sánchez, A., et al., 2023, Effectiveness of virtual reality in post-stroke rehabilitation: a comparative meta-analysis. *Arch Phys Med Rehabil.*, 104(6):1235–1245. doi:10.1016/j.apmr.2023.01.052.