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Abstract 

Preeclampsia (PE) is a pregnancy complication characterized by the onset of high blood pressure 

after 20 weeks of gestation with proteinuria and abnormal liver enzymes. The early diagnosis and 

prophylactic use of aspirin can reduce the long-term complications of PE. In the current study, we 

utilized machine learning tools for the differential diagnosis of EOPE and LOPE based on 

demographic, clinical, and biochemical data. We employed SYBR green-based real-time PCR to study 

the differential expression of hsa-miR-4743-5p, miR-149-5p, miR-331-5p, and miR-483-5p in both 

forms of PE. A classification and regression tree (CART) model was developed to differentiate between 

EOPE and LOPE. This was achieved by determining thresholds of systolic blood pressure (SBP), 

Diastolic Blood Pressure (DBP), Mean Arterial Pressure (MAP), Body Mass Index (BMI), urine protein, 

and SGOT. The RT-PCR-based DEM profile identified an association of miR-4743-5p with both forms 

of PE; miR-149-5p with EOPE, and miR-331-5p and miR-483-5p with LOPE. MiRDip analysis revealed 

that genes targeted by these miRs influence TGF beta signaling in EOPE; cholesterol and lipid 

homeostasis and NOTCH2 signaling in LOPE. In conclusion, SBP, MAP, BMI, urine protein, DBP, and 

SGOT are key determinants of EOPE and LOPE. The DEM profile clearly distinguished EOPE and 

LOPE. 
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Introduction 

Preeclampsia is a pregnancy complication 

characterized by the onset of high blood 

pressure after 20 weeks of gestation with 

proteinuria, and abnormal liver enzymes. This 

condition increases the risk of morbidity and 

mortality in both the mother and the fetus. 

Long-term complications of preeclampsia can 

be reduced by early diagnosis followed by the 

use of aspirin as a prophylactic measure 

throughout pregnancy. 

Yang et al. reported 2.9% and 2.3% 

prevalence of preeclampsia in the Swedish and 

Chinese populations, respectively [1]. Obesity 

and nulliparity were strongly associated with 

PE in both populations [1]. Tyrmi et al reported 

19 genome-wide associations with PE which 

regulate blood pressure traits, placental 

development, uterine spiral artery remodeling, 



renal function, and proteostasis maintenance in 

pregnancy serum [2]. Muldoon et al. observed 

that prophylactic use of aspirin is not beneficial 

in reducing the recurrence among individuals 

with twin pregnancies, previous history of 

preeclampsia, or hypertension [3]. Hercus et al. 

have shown that new paternity and increasing 

birth and pregnancy intervals were associated 

with increased risk of PE in multiparous women 

[4]. Stitterich et al identified family history of 

PE, hypertension, high mid-upper arm 

circumflex, urinary tract infection/diarrhea 

during pregnancy, low socioeconomic status, 

inadequate fruit intake, and unhygienic 

conditions as risk factors for PE among 

Africans [5]. Dai et al demonstrated an 

association of in vitro fertilization and growth 

discordance with PE in dichorionic twins [6]. 

Fox et al. observed the association of egg 

donation and pre-pregnancy obesity with PE 

risk [7]. Jaatinen et al have shown an increased 

risk of PE in women with type 1 diabetes, 

chronic hypertension, dyslipidemia, early 

menarche, depression, and subfertility [8]. 

Weitzner et al. have shown that second-

trimester maternal markers can distinguish 

early-onset PE (EOPE) from late-onset PE 

(LOPE), specifically alpha-fetoprotein (AFP) 

and unconjugated estriol (UE3) showing higher 

multiple of the medians in EOPE than LOPE 

[9]. 

Suksai et al. proposed a multivariate risk-

scoring model for PE with age, BMI, number of 

fetuses, history of PE, adverse prenatal 

outcomes, interval between pregnancies, parity, 

presence or absence of renal disease, 

hypertension, autoimmune disease, diabetes, 

and mean arterial pressure (MAP) as predictors 

[10]. This model showed an AUC of 0.77 in 

predicting PE and the need for aspirin 

prophylaxis [10]. 

Choorakuttil et al used an integrated first-

trimester ultrasound assessment of PE at 11 to 

14 weeks of gestation with mean arterial blood 

pressure and mean uterine artery pulsatility 

index (UTPi), which showed 90.4% sensitivity, 

98.1% negative predictive value, 16.7-fold odds 

ratio, and 6.64-folds likelihood ratio for preterm 

PE [11]. Chaemsaithong et al observed higher 

multiples of the median (MoM) for MAP, UTPi, 

and lower MoM for a mean placental growth 

factor (PlGF) in women with preterm 

preeclampsia [12]. 

In the current study, we have used machine 

learning tools for the differential diagnosis of 

EOPE and LOPE based on demographic, 

clinical, and biochemical data. In a few 

representative samples, we have studied the 

expression of four microRNAs in EOPE and 

LOPE to verify their utility in the differential 

diagnosis and to evaluate the role of miR-

targeted genes in explaining the disease 

pathophysiology of both forms of PE. 

Materials and Methods 

Recruitment of Subjects 

In a multicentric study, 99 women (33 

healthy pregnant women, 33 EOPE women, and 

33 LOPE women) in the Department of 

Obstetrics and Gynecology, Saveetha Institute 

of Medical and Technical Sciences, Chennai, 

Fernandez hospitals and and ESIC hospitals 

Hyderabad between January 2020 and March 

2022. All participants consented to the study. 

The Institutional ethics committees of 

Saveetha, ESI (008/09/2019/IEC/SMCH: 

ESIC-ESICMC/SNR/IEC-S101/12-2020) and 

Fernandez hospital (Fernandez-EC Reference 

No. 32 2020) approved the study protocol. The 

study complies with the Declaration of 

Helsinki. 

Documenting Demographic, Clinical, and 

Biochemical Data 

We have collected demographic details such 

as age, height, weight, and gestational age. The 

blood pressure was monitored in both arms. 

Mean arterial blood pressure was calculated 

using the following formula: 

MAP =  1/3 (Systolic blood pressure)  +

 2/3 (Diastolic blood pressure). 



A battery of routine tests specifically SGOT, 

SGPT, urine protein, and urine creatinine was 

performed on all the subjects. Heart rate and 

respiratory rate were also monitored. Women 

with persistent hypertension, gestational 

diabetes, autoimmune disorders, and other 

inflammatory disorders were excluded. 

Real-Time PCR for Differential Expression 

of miRs 

We collected whole blood samples in special 

microRNA Pax tubes and stored them at -20°C 

until processing. We have used SYBR green-

based real-time PCR to study the differential 

expression of hsa-miR-4743-5p, hsa-miR-149-

5p, hsa-miR-483-5p, and hsa-331-5p miRs in 

EOPE and LOPE. miRDip module was used to 

identify genes targeted by these miRs. STRING 

database was used to explore protein-protein 

interactions. 

Classification and Regression Tree Model 

for Predicting EOPE/LOPE 

We have used machine learning tools to 

generate a classification and regression tree 

(CART) model. The input variables were age, 

height, weight (body mass index), systolic 

blood pressure (SBP), diastolic blood pressure 

(DBP), Mean arterial pressure (MAP), urine 

protein, urine creatinine, SGOT and SGPT.The 

output variables are controls, EOPE, and 

LOPE. The model identifies the most 

significant variable and determines its threshold 

that distinguishes one group from another at 

each step. The tree’s apex was the most 

significant variable, while the branches are 

other variables at different levels of 

significance in establishing the differential 

diagnosis. 

Statistical Analysis 

We used the Student t-test to compare the 

distribution of continuous variables between 

two groups. ANOVA was used since there were 

more than two groups. Pearson correlation 

coefficient was used to establish the correlation 

between the two given variables. Logistic 

regression was used for multivariate analysis to 

assess the contribution of many variables 

towards EOPE and LOPE. 

Results 

 

Figure 1. Distribution of demographic, clinical, and biochemical variables in EOPE and LOPE. (A) Age 

showed no significant association with EOPE and LOPE. (B) Body mass index (BMI) is higher in LOPE 

followed by EOPE than the controls. (C) Systolic blood pressure (SBP) is higher in LOPE and EOPE than in the 

controls. (D) Diastolic blood pressure (DBP) is higher in LOPE than controls. No such association with EOPE. 

(E) Heart rate (HR) in EOPE is lower than that of controls. (F) Respiratory rate (RR) has no significant 

association with EOPE and LOPE. (G)SGOT levels are higher in LOPE followed by EOPE. (H) SGPT levels 

are higher in LOPE followed by EOPE. 

As shown in Figure 1, age showed no 

statistically significant association with either 

EOPE or LOPE. LOPE cases exhibited higher 

body mass index (31.03 ± 2.71 kg/m2, 



p=0.000001) followed by EOPE (29.62±2.28 

Kg/m2, p=0.0002) than the controls (27.47 

±2.45 Kg/m2).BP is elevated in LOPE (146.97 

± 6.00 mmHg, p =2.7 x 10-12) and EOPE 

(144.27 ±6.73 mmHg, p=2.9 x 10-12) when 

compared to controls (124.69 ±4.86 mmHg). 

DBP is elevated only in LOPE (90.18 ± 6.84 

mmHg, p=0.0015), but not EOPE (86.30 ±5.12 

mmHg) in comparison to controls (85.52 ±5.66 

mmHg). MAP levels are higher in LOPE 

(109.17 ±5.35 mmHg, p= 5.8 x 10-9) followed 

by EOPE (105.63 ±3.29 mmHg, p=4.5 x 10-8) 

than the controls (98.63 ±4.61 mmHg). 

Heart rate z(HR) is indistinguishable 

between LOPE and controls (77.70 ±7.10 vs. 

78.70 ±5.65), however, heart rate is lowest in 

EOPE (74.06 ±4.75, p= 5.7 x 10-5). Respiratory 

rate (RR) showed no significant association 

with EOPE/LOPE. 

SGOT levels are higher in both LOPE (38.98 

± 28.19 U/L, p=1.3 x 10-5) and EOPE (35.14 ± 

26.57 U/L, p=0.00015) than the controls (13.52 

± 3.81 U/L). SGPT levels are also higher in both 

LOPE (50.81 ± 32.37 U/L, p=2.3 x 10-5) and 

EOPE (41.38 ± 29.44 U/L, p=0.016) than the 

controls (22.58 ± 22.40 U/L). 

 
Figure 2. Association of urinary biomarkers with EOPE and LOPE. (A) Urine protein levels are elevated in 

LOPE followed by EOPE. (B) Urine creatine levels are higher in LOPE than controls. (C) The urine 

protein/creatinine ratio is higher in LOPE than in controls. 

As shown in Figure 2, Higher urine protein 

levels were observed in LOPE cases (25.98 ± 

17.34 mg/dl, p=8.3 x 10-6) followed by EOPE 

(18.84 ± 13.43 mg/dl, p=0.0035) than the 

controls (10.20 ± 4.41 mg/dl). Urine creatine is 

elevated in LOPE (156.82 ± 86.45 mg/dl, 

p=0.013) and EOPE (174.77 ± 125.62 mg/dl, 

p=0.054) than the controls (108.54 ± 49.86 

mg/dl). The urine protein/creatinine ratio is 

elevated in LOPE (0.30 ± 0.47, p=0.028) than 

in controls (0.12 ± 0.08), but not in EOPE (0.24 

± 0.32, p=0.55). 

 
Figure 3. Classification and regression tree (CART) model for the differential diagnosis of preeclampsia. 

Systolic blood pressure (SBP), mean arterial pressure (MAP), body mass index (BMI), urine protein, SGOT and 
diastolic blood pressure (DBP) are the key determinants whose thresholds were established for the differential 

diagnosis of preeclampsia. 

As shown in Figure 3, SBP emerged as the 

most significant determinant of preeclampsia. 

All the control women had SBP<137 mmHg 

while all women with PE had SBP >137 mmHg. 



MAP>111.67 mmHg is associated with LOPE. 

Women with MAP<111.67 mmHg and BMI 

<27.97 Kg/m2 had EOPE. Women with 

MAP<111.67 mmHg, urine protein >14.95 

mg/dl, and BMI >31.86 Kg/m2 had LOPE. In 

women with BMI<31.86 Kg/m2, urine 

creatinine >81.35 mg/m2 and DBP <91 mmHg 

is associated with LOPE. DBP>91 mmHg 

contributes to EOPE in women with 

BMI<29.38 while BMI>29.38 leads to LOPE. 

In women with urine protein <14.95mg/dl, 

SBP>148 mmHg was associated with LOPE. If 

SBP<148 mmHg, RR>18 and SGOT>27.5 

contribute to EOPE. This model showed 100% 

accuracy in distinguishing controls, EOPE and 

LOPE. 

 

Figure 4. Differential expression of miRs and its target genes in EOPE and LOPE. (A) Heat map analysis of 

bidirectional clustering analysis of differential expression of miRs indicates the association of miR-331-5p, 

miR-483-5p with LOPE; miR-149-5p with EOPE; and miR-4743-5p with EOPE and LOPE. (B) STRING 

analysis reveals that miR-331-5p affects cholesterol and lipid homeostasis. (C) STRING analysis reveals that 

miR-483-5p affects NOTCH2/VEGF pathway for angiogenesis (D)STRING analysis reveals that miR-149-5p 

affects TGF beta signaling. (E) STRING analysis reveals that miR-4743-5p targets PGF, which one of the key 

biomarker in both EOPE and LOPE. 

As shown in Figure 4, Clustering-based heat 

map analysis of RT-PCR data revealed 

upregulation of miR-149-5p in EOPE. Two 

miRs i.e. miR-331-5p and miR-483-5p showed 

upregulation in LOPE. miR-4743-5p was 

upregulated in both EOPE and LOPE. miRdip 

analysis revealed that miR-149-5p targets 

EDNRA, TFGB2, IL6, IGFBP5, FASLG and 

ADD1 genes and hence likely to influence TGF 

beta signaling. miR-331-5p targets ABCA1, 

SIRT1, SMAD2, ACVR2A, CCNG2, 

SLC7A11, SRGN, PAPPA, ALCAM, ITGAV, 

RELN, CD226, SRGN, and LIFR and hence 

likely to affect cholesterol and lipid 

homeostasis. miR-483-5p targets ALCAM, 

ARHGDIA, BCL2, CBS, CPT1A, FTO, 

HDAC4, IGF2, IL1R1, KDM5C, MAPK1, 

MAPK3, NOTCH2, RHOA, and TIMP2 and 

hence likely to affect NOTCH2/VEGF pathway 

for angiogenesis. miR-4743-5p targets 

DENND1A, ECE1, NOTCH3, E2F4, NTN1, 

and PGF. 

Discussion 

This study reported an association of BMI, 

SBP, DBP, HR, SGOT, SGPT, urine protein, 

and urine protein/creatinine ratio with PE. 

Among these variables, BMI, DBP, and HR are 

distinct between EOPE and LOPE. A CART 

model was developed for the differential 

diagnosis of PE, which identified SBP, MAP, 

BMI, urine protein, DBP, and SGOT as the key 

variables with decreased order of significance. 

This model is clinically actionable with high 

accuracy. RT-PCR-based DEM profile 

identified an association of miR-149-5p with 

EOPE; miR-331-5p and miR-483-5p with 

LOPE; and miR-4743-5p with both EOPE and 

LOPE. miRDip analysis revealed that genes 

targeted by these miRs influence TGF beta 

signaling in EOPE; cholesterol and lipid 



homeostasis and NOTCH2/VEGF pathway for 

angiogenesis in LOPE. PAPPA and PLGF, the 

most important biochemical markers used for 

preeclampsia screening are targeted by miR-

331-5p and miR-4743-5p, respectively. 

A machine learning model by Maric et al for 

early prediction of preeclampsia also 

demonstrated preexisting hypertension, history 

of preeclampsia, MAP, and obesity as the key 

contributors of preeclampsia similar to our 

model [13]. Another machine learning model 

by Melinte-Popescu et al showed higher BMI, 

personal history of PE/hypertension, higher 

MAP, higher UTPi, lower levels of PAPP-A and 

PP-13, and higher levels of PLGF as the key 

determinants of PE [14]. PLGF and PP-13 

levels were reported to be higher in EOPE 

compared to LOPE [14]. 

There are limited studies on the association 

of miR-149-5p with preeclampsia. Zhao et al 

demonstrated lower levels of miR-149-5p in 

LOPE [15]. Wang et al have shown that miR-

149-5p mitigates the endothelial cell injury 

caused by oxidized low-density lipoprotein by 

inhibiting PAPP-A [16]. Our results corroborate 

with Mayor-Lynn et al in demonstrating the 

upregulation of miR-483-5p with LOPE [17]. 

To the best of our knowledge, there are no direct 

studies on the association of miR-331-5p with 

preeclampsia. However, it is reported to 

influence pathological remodeling of arteries 

through PPAR-mediated inhibition of TGFB1-

induced mitochondrial activation and vascular 

smooth muscle proliferation [18]. 

The genes targeted by miR-149-5p are 

related to TGF-- signaling that was reported to 

play a pivotal role in human placental 

development by governing the differentiation 

of extravillous trophoblasts [19]. The 

association of two miRs in LOPE with 

cholesterol and lipid homeostasis by Antonic et 

al study showed an altered lipid profile in LOPE 

[20]. NOTCH2 and NOTCH3 mediate invasion 

and migration of trophoblasts thus playing an 

important role in the pathogenesis of PE [21]. 

The major strengths of our study were: i) 

evaluation of demographic, clinical, and 

biochemical characteristics of EOPE and LOPE 

and establishing differential diagnostic 

thresholds using machine learning tools; ii) 

exploring the distinct DEM profiles in EOPE 

and LOPE and correlating with aberrant 

pathways. Future studies are warranted by 

including first-trimester maternal screening 

markers specifically PAPP-A, PLGF, and UTPi 

along with a detailed follow-up throughout 

pregnancy to establish the interrelationships of 

these markers with clinicopathological 

variables and miRs. 

To conclude, our study demonstrated the risk 

factors associated with EOPE and LOPE using 

well-documented cases and established 

differential diagnostic thresholds for these 

factors using a machine learning approach. 

miR-149-5p upregulated in EOPE whereas 

miR-483-5p and miR-331-5p were upregulated 

in LOPE. miR-4743-5p was upregulated both in 

EOPE and LOPE. 
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