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Abstract 

RAT-SQL is among the popular framework used in the Text-To-SQL challenges for jointly encoding 

the database relations and questions in a way to improve the semantic parser. In this work, we propose 

a light version of the RAT-SQL where we dramatically reduced the number of the preexisting relations 

from 55 to 7 (Light RAT-SQL-7) while preserving the same parsing accuracy. To ensure the 

effectiveness of our approach, we trained a Light RAT-SQL-2, (with 2 embeddings) to show that there 

is a statistically significant difference between RAT-SQL and Light RAT-SQL-2 while Light RAT-SQL-

7 can compete with RAT-SQL. 

Keywords: Deep learning, Natural Language Processing, Neural Semantic Parsing, Relation Aware 

Transformer, RAT-SQL, Text-To-SQL, Transformer. 

Introduction 

The RAT-SQL [1] has been used in Text-to-

SQL [2-4] as an encoder transformer. The RAT-

SQL framework jointly encodes the question and 

the schema database to improve the 

generalization even in unseen databases by the 

model during the training process. RAT-SQL is 

based on the relation-aware self-attention 

mechanism, and address schema encoding and 

schema linking within a text-to-SQL encoder. 

The core of RAT-SQL is the abstract pre-

existing relation between input tokens. The 

RAT-SQL model implementation has been 

trained with more than 50 embedding relation 

types. 

The management of relations in the Relation 

Attention Transformer is challenging: Having 

more relations can lead the model to capture 

noise and having fewer relations, the model can 

miss another important relation trend in data. 

Previous methods, [2] empirically noticed 

when injecting syntactic dependency in the 

graph of RAT-SQL, that having many relations 

can lead to overfitting. Another insight about 

pre-existing relations is when a pre-trained 

language model as BERT [5, 6] is used to 

enhance RAT-SQL the name-based schema 

linking (NBSL) become marginal [3] but neither 

method explicitly assess the acceptable 

threshold of the number of relations to take into 

account in a Transformer with pre-existing 

relations. 

In this work, we attempt to respond to the 

following questions: 

1. How can we reduce the number of “pre-

existing relations” while preserving high-

quality parsing? 

2. To what extent does exact match accuracy 

depend on pre-existing abstract relations in 

Relation-Aware Transformer / RAT-SQL? 

First, we constrain the number of relations to 

be equal to the number of heads of the model. 

Each head tends to specialize [7], and we 

hypothesize then each relation will be learned by 

one head of the model. 

Secondly, we present a new structure of a 

relation graph inspired by RAT-SQL [1], 

SS2SQL [2], and database theory [8]. 
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Our findings are as follows, without any 

enhancement of the pre-trained Language 

model: 

1. Pre-existing relations in RAT-SQL are 

important and can lift the model accuracy 

and improve alignment between the 

Question and the Schema. 

2. Constrain the number of relation types to be 

equal to the number of heads allows having 

more abstraction in relation types. 

3. It is better to have more abstraction in 

relation types but too abstract relation types 

can lead to an underfit model. 

Related Work 

Text-To-SQL 

Most Text-to-SQL [9-11] models are built 

around an encoder-decoder pattern. The 

challenge is to design a system that can predict 

the SQL query from a question and the details of 

the schema. The relational database schema is 

made up of tables linked together by columns. 

This semantic parsing prediction task is difficult 

due to the tree structure of the SQL 

programming language. 

Early work on semantic parsing with an 

encoder-decoder model focused on designing a 

decoder capable of constraining the output space 

to the outputs that matter [12]. The goal is to 

avoid invalid parsers because most Seq2seq 

models performed poorly in semantic parsing 

tasks. Two families have emerged to build such 

decoders, namely token-based decoding [13-15], 

and grammar-based decoding [16-19]. Token-

based decoding is the Seq2Seq model where the 

output space is made up of tokens, but they are 

constrained to be relevant at every time step. 

And grammar-based decoding, the output space 

is the production rules, and the grammar defines 

the constraints. 

Apart from these two families, [20, 21] use 

Transformers [22, 23] with tree positional 

encodings to enable tree-based decoders and get 

a good result. [24] use an intermediate 

representation SemQL query which bridges 

Natural Language and SQL. 

The works on the Encoder side [1, 2, 24-29] 

focus on jointly encoding the Question and the 

Database Schema. With the emergence of the 

language model [5, 6, 30-40], the trend is to 

improve encoding with a language model. 

PICARD [41] effectively constrained decoding 

with large pre-trained language models, T5 [42]. 

Another way to approach Text-To-SQL is to 

design a pre-trained language model from 

tabular data [4, 43-46]. 

RAT-SQL 

Text-to-SQL encoder should be able to 

encode the database relations in a way for 

optimizing the semantic parser and model 

alignment between the database schema and the 

given query. For unseen database schemas, the 

way the inputs (schema: tables & columns, and 

question) are jointly encoded is crucial for 

generalization purposes. The RAT-SQL 

framework [1] designed from the relation-aware 

self-attention mechanism [47], used as pointer 

networks [48], fixes this generalization issue on 

the Text-to-SQL challenge. 

The relation-aware self-attention [47] uses the 

relative position distance in input tokens as 

edges of the graph while RAT-SQL uses an 

embedding of abstract type of existing relations 

between tokens. But both biases the self-

attention equation in the same way to inject the 

edges of the graph in their model. 

Here below equations of relation-aware self-

attention: 

𝒆𝒊,𝒋
𝒉 = (

(𝑾𝒒𝑿(𝑾𝒌𝑿 + 𝑹)
𝑻

)

√𝒅𝒌

) (𝟏) 

𝛂𝒊,𝒋
𝒉 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙(𝒆𝒊,𝒋

𝒉 ) (𝟐) 

𝒛𝒊
𝒉 = ∑ 𝛂𝒊,𝒋

𝒉  (𝑾𝒗𝑿 + 𝑹)(𝟑)

𝒗

 

where matrices Wq
, W

k
, and W

v are trainable 

parameters in self-attention. 

Relations Structure 

The self-attention as presented in 

Transformer [23] is a directed graph, it is not 
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symmetric. During the learning process, the self-

attention blocks learn the optimal attention 

weight that represents the relation existing 

between tokens. This is more efficient than 

recurrent models [49-51] since each part of the 

inputs has a direct relation with other parts while 

the recurrent models encode left to right and 

right to left dependency and struggle with long 

sequences. 

Relations between tokens can be diverse 

depending on semantic meaning. In the 

relational graph attention transformers, the pre-

existing relations have to enhance self-attention. 

That is why the structure of pre-existing 

relations becomes crucial to avoid the bad effect 

on self-attention. [28] tackled the schema 

representation challenge by encoding the 

directed graph of foreign key relations in the 

schema with a graph neural network (GNN). In 

RAT-SQL instead, the authors use the relation-

aware self-attention as a model, and define the 3 

main structures: Schema Structure, Schema 

Linking and Question Structure. 

S2SQL [2] injects the syntactic dependency 

information of questions into RAT-SQL, but it 

does not use relative distance in question tokens, 

instead, it uses the first-order distance in 

dependency syntactic between tokens. And adds 

orthogonality constraints on relations to avoid 

coupling between edges. 

Method: Light RAT-SQL 

We present now Light RAT-SQL, our model 

to reduce the pre-exissting embedding in 

transformer. 

Text-to-SQL Problem Definition 

Given a natural language question 

Q=q1…q|Q| , a schema S = <C, T> with columns 

C={c1,…, c|C| } and tables T{ t1,…, t|T| }. 

The goal of text-to-SQL is to create the SQL 

query y for the question sentence. The pattern 

used in such a challenge is an encoder and 

decoder architecture with attention mechanisms. 

The encoder encodes input as graph G=<V, 

R> where V=Q U T U C are nodes of types { Q, 

T, C } The initial embedding matrix X RVxd, [V 

= Q+T+C, and d is the dimension model] is 

flattened and the edge R is the know relation 

between two input tokens. 

In this paper, our proposed model improves 

the encoder side, especially, the existing RAT-

SQL model [1] and self-attention with a relative 

position representation framework [47]. 

Please see [16] work for a thorough 

description of the decoder side. 

The Number of Abstract Type Relation 

A great number of pre-existing relational 

features between the inputs can lead to 

overfitting the model. [2] experienced the same 

when injecting the syntax dependency in RAT-

SQL. To fix this problem, in their model S2SQL, 

they used the first-order distance in dependency 

syntactic between tokens and then reduce the 

number of relation types [for the relation 

Question graph] to 3: Forward, Backward, and 

None. 

[7] shows that each head in multi-head 

attention tends to specialize. They found 3 

categories: Positional heads, Syntactic heads, 

and heads that point to rare words. 

1. Positional heads that attend largely to their 

neighbor. 

2. Syntactic heads are tokens that have a 

specific syntactic relation. 

3. Headings that point to uncommon words in 

the sentence. 

Pruning the others is the finest technique to 

demonstrate the relevance of their head 

category. They retained 17 out of 48 heads with 

nearly the same BLEU score by largely keeping 

the heads that are classified in the differentiated 

categories, as illustrated. And this corresponds to 

around 2/3 of the encoder’s heads. Even though 

they only identified 3 types of essential heads by 

looking at their attention matrices and pruning 

the others, we hypothesize that in the self-

attention mechanism with pre-existing relation 

embedding, each head will be specialized in each 

abstract type during the learning process. We 

already know one of these embeddings is the 
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abstract type “None” that express that there is no 

link between two tokens. 

In other words, the number of heads (#head) 

in the model gives us the degree of freedom 

(DOF) to define the number of pre-existing 

relations (or abstract type relations) that we can 

use in the model. We define it as follows: 

𝑫𝑶𝑭 = #𝒉𝒆𝒂𝒅 − 𝟏 (𝟒). 

How to Constrain each Head to Learn at Most 

one Embedding Relation? 

Algorithm 1 Spreading relations through 

heads: 

1. Input: relation, head, embedding. 

2. # relation shape: (query, key, features). 

3. # head : number of head in the model. 

4. #embedding: lookup table that stores 

embeddings of a fixed dictionary and size. 

5. #The first indice in our fixed dictionary is 0 

and it is linked to “None” relation. 

6. Output: r_out # relation output. 

7. #r_out shape: (head, query, key, features.) 

8. Init of r_out #zeros like (head, query, key, 

features). 

9. r_out[0]= relation. 

10. For i=1 to head-1. 

11. mask  (relation==embedding(i)). 

12.  r_out[i]  mask relation. 

13. return r_out. 

Where  is Hadamard product and # a 

comment line. 

Algorithm 1 helps propagate the embedding 

of pre-existing relations through the heads. This 

makes each “head” specialized, thus pointing to 

tokens with a specific relationship type. 

Graph Structure 

Since we will have 8 heads as in RAT-SQL, 

so we will describe DOF=7 abstract relation 

types to handle the text-to-SQL challenge. 

Question Structure R
question: Relations 

between two question tokens that show their 

grammatical dependency or their distance (or 

relative positions). 

As [2] we model the syntactic relation 

between two tokens (𝑣𝑖, 𝑣𝑗) by abstract types. 

𝑹𝒊𝒋𝒒𝒖𝒆𝒔𝒕𝒊𝒐𝒏 =  {
𝐹𝑜𝑟𝑤𝑎𝑟𝑑, 𝑖𝑓 𝐷(𝑣𝑖, 𝑣𝑗) = 1 

𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑, 𝑖𝑓 𝐷(𝑣𝑗, 𝑣𝑖) = 1
𝑁𝑜𝑛𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} (5). 

More details about first-order distance in 

dependency syntactic can be found here [2]. 

Schema Structure Rschema: Relations within a 

database schema. Most relational databases in 

production are normalized in Boyce–Codd’s 

normal form [8]. Because of this normalization, 

we know that for any X, Y, and Z, sets of 

attributes in a relation from a database: 

1. All attributes in each relation of the database 

are atomic (First Normal Form or 1NF). 

2. If X → Y i.e., Y has a functional 

dependency on X means that X is a primary 

key and X and Y are in the same relation (or 

table) and Y depends only on X (2NF). 

3. The transitivity functional dependency (X 

→ Z and Z → Y then X → Y) is only 

allowed between 2 relations (or tables) and 

not in the same relation (or table) (3NF). 

4. If all dependencies of the relationships 

depend on X and X is a key or a super key 

then R is in Boyce–Codd normal form 

(BCNF). 

We can define all structures of the database 

using functional dependency. The graph of 

functional dependency is the best tool to 

describe and understand all database structures. 

In our model, if there is a functional 

dependency or backward functional dependency 

between 2 columns, so edge will be defined by 

the abstract type “FD”. The abstract type 

describing the relationship between the column 

and the table will be “TC”. And relations 

between 2 tables will be described by “TT”. 

Linking Structure R
linking: For the linking 

between the database schema and the question, 

we follow RAT-SQL [1]. The difference 

between Light RAT-SQL and RAT-SQL in 

schema linking structure comes in the level of 

abstraction. In RAT-SQL the schema linking is 

more detailed: exact name matching, partial 

matching, and value base linking. The 

implementation of RAT-SQL has more than 10 

relations for Schema Linking. 
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1. CEM=Column Exact Matching (Backward 

and Forward). 

2. TEM=Table Exact Matching (Backward 

and Forward). 

3. CPM= Column Partial Matching (Backward 

and Forward). 

4. TPM= Table Partial Matching (Backward 

and Forward). 

5. Value-Based Number (Backward and 

Forward). 

6. Value-Based Time (Backward and Forward) 

7. Value-Based Cell Match (Backward and 

Forward). 

We propose schema linking more abstract 

than RAT-SQL and consists of 2 abstract types: 

1. NBL (Name Base Linking): Linking 

between a Question and a Table or Column 

(forward and backward with the same 

nomenclature) 

2. VBL (Value Base Linking): Linking 

between a Question and a Column(forward 

and backward with the same nomenclature) 

references any values found in the Question 

and SQL query. 

Here below the “None” and all 7 relation 

types: 

Table 1. The List of All Relations Structures used in Light RAT-SQL 

Abstract Type Description X Y 

None X and Y have no relation Q/T/C Q/T/C 

TT Table X and Table Y are linked by a foreign key 

[Forward and Backward] 

T T 

TC Column Y belongs to table X or Column X belongs 

to table Y 

T/C C/T 

FD There is a functional dependency between Column X 

and Column Y or between Y and X. 

C C 

Forward Y is the target word of X under syntax dependency Q Q 

Backward Y is the source word of X under syntax dependency. Q Q 

NBL Name-based linking refers to exact or partial 

occurrences of either the table name or Column name 

Y in the question X\ [Forward and Backward] 

Q/T or C T or C/Q 

VBL Value-based-Linking: question X references any 

values found in the database and so participates in 

the SQL query [Forward and Backward] 

Q/C C/Q 

Legend: X= Source token | Y=Target token | T = TABLE | C=Column | Q=Question 

Experiments 

Dataset 

We use the Spider dataset [52]. Spider is a 

text-to-SQL benchmark that is vast, 

sophisticated, and cross-domain. We followed 

the formal evaluation process to report exact 

match accuracy. 

Implementation 

We use the same architecture as in the RAT-

SQL with the Spider dataset, which means that 

the input of questions, column names, and Table 

names is tokenized and lemmatized using the 

StanfordNLP toolkit [53]. We use GloVe [54] 

word embeddings within the encoder, which are 

fixed in training except for the 50 most common 

terms in the training set. The bidirectional 

LSTMs [49] have a hidden size of 128 per 

direction and employ a recurrent dropout [55] 

approach with a rate of 0:2. On top of the 

bidirectional LSTMs, we build 8 relation-aware 

self-attention layers. To have the same 

configuration as RAT-SQL, we set dx = dz = 

256, H = 8, and employ. 

5



 

 

Left: The RAT-SQL - Right: Light RAT-SQL and bottom: Light RAT-SQL-2 

Figure 1. Alignment between the Question “For the Cars with 4 Cylinders, which Model has the Largest 

Horsepower” and the Database Car_1 Schema (Columns and Tables) 

Dropout with a rate of 0:1. The inner layer 

dimension of the position-wise feed-forward 

network is 1024. We use rule embeddings of size 

128, node type embeddings of size 64, and a 

hidden size of 512 inside the LSTM [51] with a 

dropout of 0:21 inside the decoder. 

Hyperparameter 

Light-RAT-SQL reuses the same 

hyperparameters of RAT-SQL. 

The code was implemented in Pytorch [56] 

and Adam [57] as an optimizer with default 

hyperparameters. We use a batch size of 20 and 

train for up to 40,000 steps. 

As a syntactic parser, we use the SpaCy 

(https://spacy.io/) tool to create syntactic 

information as previously done by [2]. 

Results 

For experimentation purposes, we design 

another model with 2 relation types and we call 

it Light RAT-SQL-2. When 2 tokens have a pre-

existing relation (Syntactic dependency, Name 

base Linking, Value-Based Linking, Schema 

Linking), the relation name is “Linked” and 

“None” else. We call then our model either Light 

RAT-SQL or Light RAT-SQL-7. 

Table 2. Accuracy of the Spider Dataset [52] 

Model (Without any enhancement of one Pretrained 

Language Model: BERT, ELECTRA, etc.) Dev Test 

IRNet [24] 53.2 46.7 

Global-GNN [28] 52.7 47.4 

IRNet V2 [24] 55.4 48.5 

RAT-SQL [1] 62.7 57.2 

Our model (Light RAT-SQL) - 60.25 
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We run 5 random experimentations of RAT-

SQL, Light RAT-SQL-7, and Light RAT-SQL-

2 without any pre-trained Language to measure 

the change done in each model relation structure. 

Table 3 shows the confidence interval of each 

model, and we fail to reject H0 for RAT-SQL and 

Light RAT-SQL-7 but there is strong evidence 

against H0 (p<0.001) for RAT-SQL and Light 

RAT-SQL-2. 

In addition, apply the algorithm 1 spreading 

relations through heads improve the model’s 

accuracy. 

Table 3. Test Set Accuracy (and 95% Confidence Interval) of RAT-SQL, Light RAT-SQL, Light RAT-SQL 

without Applying “Spreading Algorithm” and Light RAT-SQL-2 

Model Accuracy 

Light RAT-SQL 58.99 ± 1.04 

RAT-SQL 58.90 ± 0.50 

LRS w/o Spreading Algo 58.32 ± 0.80 

Light RAT-SQL-2 53.37 ± 1.30 

 

Figure 2. Exact Match Accuracy of RAT-SQL, Light RAT-SQL and Light RAT-SQL Without Speading 

Relations through Heads 

We can see in Figure 2. that Light RAT-SQL-

7 and RAT-SQL converge to almost the same 

accuracy. 

Discussion 

Alignment 

The alignment produced by RAT-SQL, Light 

RAT-SQL-7, and Light RAT-SQL-2 is 

displayed in Figure 1. The three words that refer 

to columns (cylinders, model, and horsepower) 

are misaligned by Light RAT-SQL-2, but Light 

RAT-SQL-7 correctly identifies the appropriate 

columns. These three keywords have a 

significant impact on the alignments of 

subsequent words, leading in a sparse span-to-

column alignment, for example, “biggest 

horsepower” to horsepower. The word “cars” 

contains an implicit reference to the table’s car 

data and cars’ names. Using the fact that these 

two tables have the three mentioned fields in 

Light RAT-SQL-7 and not in Light RAT-SQL-

2, the alignment matrix successfully infers that 

they should be used instead of car makers. 

Need to Spread Relations through Heads 

Making each head of the model specialize in 

at least one embedding allows the relations data 

to contain distinct information per head, which 

is complementary to each other. Because 
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duplicate information may make the model 

difficult to train. 

Figure 2 shows our ablation study where we 

trained the same model without spreading 

relations through heads. The result shows how 

Light RAT-SQL performs better with 

specialized heads. 

Conclusion 

This paper presents a Light version of RAT-

SQL, a Light RAT-SQL. This latter is designed 

with only 7 relation types (since we consider 

“None” as trivial relation type) and has almost 

the same performance as the original RAT-SQL, 

which has 55 embedding relation types. 

Apart from the ablation study performed by 

RAT-SQL, this study confirms the importance 

of the pre-existing relations in RAT-SQL. Light 

RAT-SQL-2 has a poor performance compared 

to RAT-SQL and Light RAT-SQL. The pre-

existing relation can lift the model accuracy and 

improve alignment between the Question and the 

Schema. We show empirically the good way to 

reduce the number of relation types is to 

constrain this compared with the number of 

heads in the model. This makes the pre-existing 

relations more abstract during the design of the 

model. However, the relations of the Light RAT-

SQL-2 (Linked and None) are more and more 

abstract and perform poorly. It is better to have 

more abstraction in relation types and have the 

number of relations close to the number of heads 

of the model. In future work, we will use the 

same relation structure and improve the relation-

aware self-attention to optimally fit the pre-

existing relations. 

Limitations 

Light RAT-SQL was not enhanced with a pre-

trained language model such as BERT or 

ELECTRA since this requires large GPU 

resources. Investigation into enhancing our 

proposed model with Electra can be crucial to 

determine its effectiveness with other 

competitive models such as S2SQL. 

Acknowledgments 

We would like to thank Jean-Marie 

TSHIMULA and Christian BOPE for the talks 

that shaped this work. We also thank anonymous 

reviewers for their crucial input. 

Conflict of Interest Statement 

All authors declare that they have no conflicts 

of interest. 

References 

[1] B. Wang, R. Shin, X. Liu, O. Polozov, and M. 

Richardson (2020): “RAT-SQL: Relation-Aware 

Schema Encoding and Linking for Text-to-SQL 

Parsers, . [Online]. Available: 

https://github.com/Microsoft/rat-sql. 

[2] B. Hui et al (Mar. 2022): “S$^2$SQL: Injecting 

Syntax to Question-Schema Interaction Graph 

Encoder for Text-to-SQL Parsers, [Online]. 

Available: http://arxiv.org/abs/2203.06958. 

[3] T. Scholak, R. Li, D. Bahdanau, H. de Vries, and 

C. Pal (Oct. 2020): “DuoRAT: Towards Simpler 

Text-to-SQL Models, doi: 10.18653/v1/2021.naacl-

main.103. 

[4] T. Yu et al (Sep. 2020), “GraPPa: Grammar-

Augmented Pre-Training for Table Semantic Parsing, 

[Online]. Available: http://arxiv.org/abs/2009.13845. 

[5] Z. Lan et al (2020): “Albert: A Lite Bert For Self-

Supervised Learning Of Language Representations. 

[Online]. Available: https://github.com/google-

research/ALBERT. 

[6] J. Devlin, Ming-Wei Chang, Kenton Lee, and 

Kristina Toutanova Bert-Ppt (2018): “BERT: Pre-

training of Deep Bidirectional Transformers for 

Language Understanding (Bidirectional Encoder 

Representations from Transformers). 

[7] E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and 

I. Titov (2019), “Analyzing Multi-Head Self-

Attention: Specialized Heads Do the Heavy Lifting, 

8

https://github.com/Microsoft/rat-sql
http://arxiv.org/abs/2203.06958
http://arxiv.org/abs/2009.13845
https://github.com/google-research/ALBERT
https://github.com/google-research/ALBERT


 

the Rest Can Be Pruned,” [Online]. Available: 

https://github.com/. 

[8] E. F. Codd (1974), “Recent Investigations in 

Relational Data Base Systems,” in IFIP Congress. 

[9] A. Suhr, S. Iyer, Y. Artzi, and P. G. Allen (2018), 

“Learning to Map Context-Dependent Sentences to 

Executable Formal Queries. [Online]. Available: 

https://github.com/clic-lab/atis. 

[10] S. Iyer, I. Konstas, A. Cheung, J. Krishnamurthy, 

and L. Zettlemoyer (Apr. 2017): “Learning a Neural 

Semantic Parser from User Feedback, [Online]. 

Available: http://arxiv.org/abs/1704.08760. 

[11] J. Herzig and J. Berant (Apr. 2018): “Decoupling 

Structure and Lexicon for Zero-Shot Semantic 

Parsing, [Online]. Available: 

http://arxiv.org/abs/1804.07918. 

[12] A. Kamath and R. Das (Dec. 2018), “A Survey 

on Semantic Parsing”, [Online]. Available: 

http://arxiv.org/abs/1812.00978. 

[13] L. Dong and M. Lapata (May 2018): “Coarse-to-

Fine Decoding for Neural Semantic Parsing”, 

[Online]. Available: http://arxiv.org/abs/1805.04793. 

[14] L. Dong and M. Lapata (Jan. 2016): “Language 

to Logical Form with Neural Attention”, [Online]. 

Available: http://arxiv.org/abs/1601.01280. 

[15] O. Goldman, V. Latcinnik, U. Naveh, A. 

Globerson, and J. Berant (Nov. 2017): “Weakly-

supervised Semantic Parsing with Abstract 

Examples,”, [Online]. Available: 

http://arxiv.org/abs/1711.05240. 

[16] P. Yin and G. Neubig (Oct. 2018): “TRANX: A 

Transition-based Neural Abstract Syntax Parser for 

Semantic Parsing and Code Generation”, [Online]. 

Available: http://arxiv.org/abs/1810.02720. 

[17] P. Yin and G. Neubig (Apr. 2017), “A Syntactic 

Neural Model for General-Purpose Code 

Generation”, [Online]. Available: 

http://arxiv.org/abs/1704.01696. 

[18] C. Xiao, M. Dymetman, and C. Gardent (2016): 

“Sequence-based Structured Prediction for Semantic 

Parsing,” [Online]. Available: 

https://github.com/percyliang/sempre. 

[19] J. Krishnamurthy, P. Dasigi, and M. Gardner 

(2017): “Neural Semantic Parsing with Type 

Constraints for Semi-Structured Tables. 

[20] V. L. Shiv and C. Quirk (2019): “Novel 

positional encodings to enable tree-based 

transformers,” in Advances in Neural Information 

Processing Systems, vol. 32. 

[21] Q. He, J. Sedoc, and J. Rodu (Dec. 2021): “Trees 

in transformers: a theoretical analysis of the 

Transformer’s ability to represent trees, [Online]. 

Available: http://arxiv.org/abs/2112.11913. 

[22] N. Kitaev, Ł. Kaiser, and A. Levskaya (Jan. 

2020): “Reformer: The Efficient Transformer”, 

[Online]. Available: http://arxiv.org/abs/2001.04451. 

[23] A. Vaswani et al (Jun. 2017): “Attention Is All 

You Need”, [Online]. Available: 

http://arxiv.org/abs/1706.03762. 

[24] J. Guo et al (2019): “Towards Complex Text-to-

SQL in Cross-Domain Database with Intermediate 

Representation. 

[25] R. Cao, L. Chen, Z. Chen, Y. Zhao, S. Zhu, and 

K. Yu (Jun. 2021): “LGESQL: Line Graph Enhanced 

Text-to-SQL Model with Mixed Local and Non-

Local Relations, [Online]. Available: 

http://arxiv.org/abs/2106.01093. 

[26] X. V. Lin, R. Socher, and C. Xiong (Dec. 2020): 

“Bridging Textual and Tabular Data for Cross-

Domain Text-to-SQL Semantic Parsing”, [Online]. 

Available: http://arxiv.org/abs/2012.12627. 

[27] A. Gur, S. Yavuz, Y. Su, and X. Yan, “DialSQL: 

Dialogue Based Structured Query Generation. 

[28] B. Bogin, M. Gardner, and J. Berant (2019): 

“Global Reasoning over Database Structures for 

Text-to-SQL Parsing. 

[29] B. Bogin, M. Gardner, and J. Berant (Apr. 08, 

2022): “Representing Schema Structure with Graph 

Neural Networks for Text-to-SQL Parsing,” pp. 

4560–4565, 2019, Accessed [Online]. Available: 

https://github.com/benbogin/. 

[30] C. Xu, W. Zhou, T. Ge, F. Wei, and M. Zhou 

(2020), “BERT-of-Theseus: Compressing BERT by 

Progressive Module Replacing . [Online]. Available: 

https://en.wikipedia.org/wiki/Ship_. 

[31] M. Shoeybi, M. Patwary, R. Puri, P. Legresley, 

J. Casper, and B. Catanzaro, “Megatron-LM (2020): 

Training Multi-Billion Parameter Language Models 

Using Model Parallelism,” [Online]. Available: 

https://github.com/. 

9

https://github.com/
https://github.com/clic-lab/atis
http://arxiv.org/abs/1704.08760
http://arxiv.org/abs/1804.07918
http://arxiv.org/abs/1812.00978
http://arxiv.org/abs/1805.04793
http://arxiv.org/abs/1601.01280
http://arxiv.org/abs/1711.05240
http://arxiv.org/abs/1810.02720
http://arxiv.org/abs/1704.01696
https://github.com/percyliang/sempre
http://arxiv.org/abs/2112.11913
http://arxiv.org/abs/2001.04451
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2106.01093
http://arxiv.org/abs/2012.12627
https://github.com/benbogin/
https://en.wikipedia.org/wiki/Ship_
https://github.com/


 

[32] V. Sanh, L. Debut, J. Chaumond, and T. Wolf 

(Oct. 2019): “Distilbert, a distilled version of BERT: 

smaller, faster, cheaper and lighter, [Online]. 

Available: http://arxiv.org/abs/1910.01108. 

[33] M. Lewis et al (Oct. 2019): “BART: Denoising 

Sequence-to-Sequence Pre-training for Natural 

Language Generation, Translation, and 

Comprehension, [Online]. Available: 

http://arxiv.org/abs/1910.13461. 

[34] Alec Radford, Karthik Narasimhan, Tim 

Salimans, and Ilya Sutskever (2018): “Improving 

Language Understanding by Generative Pre-

Training, [Online]. Available: 

https://gluebenchmark.com/leaderboard. 

[35] A. Radford, J. Wu, R. Child, D. Luan, D. 

Amodei, and I. Sutskever (2019): “Language Models 

are Unsupervised Multitask Learners, [Online]. 

Available: https://github.com/codelucas/newspaper. 

[36] Y. Liu et al (Jul. 2019): “RoBERTa: A Robustly 

Optimized BERT Pretraining Approach,” [Online]. 

Available: http://arxiv.org/abs/1907.11692. 

[37] T. Wolf et al (Oct. 2019): “HuggingFace’s 

Transformers: State-of-the-art Natural Language 

Processing” [Online]. Available: 

http://arxiv.org/abs/1910.03771. 

[38] T. B. Brown et al (2020): “Language Models are 

Few-Shot Learners. [Online]. Available: 

https://commoncrawl.org/the-data/. 

[39] W. Fedus, B. Zoph, and N. Shazeer (2022): 

“Switch Transformers: Scaling to Trillion Parameter 

Models with Simple and Efficient Sparsity. 

[40] K. Clark, M.-T. Luong, Q. v. Le, and C. D. 

Manning (Mar. 2020): “Electra: Pre-training Text 

Encoders as Discriminators Rather Than Generators, 

[Online]. Available: http://arxiv.org/abs/2003.10555. 

[41] T. Scholak, N. Schucher, and D. Bahdanau (Sep. 

2021): “PICARD: Parsing Incrementally for 

Constrained Auto-Regressive Decoding from 

Language Models [Online]. Available: 

http://arxiv.org/abs/2109.05093. 

[42] C. Raffel et al (Oct. 2019): “Exploring the Limits 

of Transfer Learning with a Unified Text-to-Text 

Transformer, [Online]. Available: 

http://arxiv.org/abs/1910.10683. 

[43] J. Herzig, P. K. Nowak, T. Müller, F. Piccinno, 

and J. Eisenschlos (2020): “TaPas: Weakly 

Supervised Table Parsing via Pre-training, . doi: 

10.18653/v1/2020.acl-main.398. 

[44] L. Zhao, H. Cao, and Y. Zhao (Jan. 2021) “GP: 

Context-free Grammar Pre-training for Text-to-SQL 

Parsers,” [Online]. Available: 

http://arxiv.org/abs/2101.09901. 

[45] X. Deng, A. H. Awadallah, C. Meek, O. Polozov, 

H. Sun, and M. Richardson (Oct. 2020), “Structure-

Grounded Pretraining for Text-to-SQL,” doi: 

10.18653/v1/2021.naacl-main.105. 

[46] P. Yin, G. Neubig, W. Yih, and S. Riedel (May 

2020): “TaBERT: Pretraining for Joint 

Understanding of Textual and Tabular Data,” pp. 

8413–8426, doi: 10.48550/arxiv.2005.08314. 

[47] P. Shaw, J. Uszkoreit, G. Brain, and A. Vaswani 

(2018): “Self-Attention with Relative Position 

Representations. 

[48] O. Vinyals, M. Fortunato, and N. Jaitly (Jun. 

2015): “Pointer Networks,” [Online]. Available: 

http://arxiv.org/abs/1506.03134. 

[49] M. Schuster and K. K. Paliwal (1997): 

“Bidirectional recurrent neural networks,” IEEE 

Transactions on Signal Processing, vol. 45, no. 11, 

doi: 10.1109/78.650093. 

[50] K. Cho, B. van Merriënboer, D. Bahdanau, and 

Y. Bengio (2014): “On the properties of neural 

machine translation: Encoder–decoder approaches,” 

in Proceedings of SSST 2014 - 8th Workshop on 

Syntax, Semantics and Structure in Statistical 

Translation. doi: 10.3115/v1/w14-4012. 

[51] S. Hochreiter and J. Schmidhuber (1997): “Long 

Short-Term Memory,” Neural Comput, vol. 9, no. 8, 

doi: 10.1162/neco.1997.9.8.1735. 

[52] T. Yu et al (Sep. 2018): “Spider: A Large-Scale 

Human-Labeled Dataset for Complex and Cross-

Domain Semantic Parsing and Text-to-SQL Task,” 

[Online]. Available: http://arxiv.org/abs/1809.08887. 

[53] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, 

S. J. Bethard, and D. Mcclosky (2014), “The Stanford 

CoreNLP Natural Language Processing Toolkit. 

[54] J. Pennington, R. Socher, and C. D. Manning 

(2014): “GloVe: Global Vectors for Word 

Representation, [Online]. Available: http://nlp. 

[55] Y. Gal and Z. Ghahramani (2016): “A 

Theoretically Grounded Application of Dropout in 

Recurrent Neural Networks. 

10

http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.13461
https://gluebenchmark.com/leaderboard
https://github.com/codelucas/newspaper
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1910.03771
https://commoncrawl.org/the-data/
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/2109.05093
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/2101.09901
http://arxiv.org/abs/1506.03134
http://arxiv.org/abs/1809.08887
http://nlp/


 

[56] A. Paszke et al (2019): “PyTorch: An Imperative 

Style, High-Performance Deep Learning Library. 

[57] D. P. Kingma and J. Ba (Dec. 2014): “Adam: A 

Method for Stochastic Optimization, [Online]. 

Available: http://arxiv.org/abs/1412.6980. 

11

http://arxiv.org/abs/1412.6980



