
Texila International Journal of Academic Research

ISSN: 2520-3088

DOI: 10.21522/TIJAR.2014.10.02.Art001

Received: 07-02-2023 Accepted: 20-02-2023 Published on: 28.04.2023

Corresponding Author: nathanmanzambi@yahoo.fr

Light RAT-SQL: A RAT-SQL with More Abstraction and Less
Embedding of Pre-existing Relations

Nathan Manzambi Ndongala

Ph.D, Department of Computer Science, Texila American University, Guyana

Abstract

RAT-SQL is among the popular framework used in the Text-To-SQL challenges for jointly encoding

the database relations and questions in a way to improve the semantic parser. In this work, we propose

a light version of the RAT-SQL where we dramatically reduced the number of the preexisting relations

from 55 to 7 (Light RAT-SQL-7) while preserving the same parsing accuracy. To ensure the

effectiveness of our approach, we trained a Light RAT-SQL-2, (with 2 embeddings) to show that there

is a statistically significant difference between RAT-SQL and Light RAT-SQL-2 while Light RAT-SQL-

7 can compete with RAT-SQL.

Keywords: Deep learning, Natural Language Processing, Neural Semantic Parsing, Relation Aware

Transformer, RAT-SQL, Text-To-SQL, Transformer.

Introduction

The RAT-SQL [1] has been used in Text-to-

SQL [2-4] as an encoder transformer. The RAT-

SQL framework jointly encodes the question and

the schema database to improve the

generalization even in unseen databases by the

model during the training process. RAT-SQL is

based on the relation-aware self-attention

mechanism, and address schema encoding and

schema linking within a text-to-SQL encoder.

The core of RAT-SQL is the abstract pre-

existing relation between input tokens. The

RAT-SQL model implementation has been

trained with more than 50 embedding relation

types.

The management of relations in the Relation

Attention Transformer is challenging: Having

more relations can lead the model to capture

noise and having fewer relations, the model can

miss another important relation trend in data.

Previous methods, [2] empirically noticed

when injecting syntactic dependency in the

graph of RAT-SQL, that having many relations

can lead to overfitting. Another insight about

pre-existing relations is when a pre-trained

language model as BERT [5, 6] is used to

enhance RAT-SQL the name-based schema

linking (NBSL) become marginal [3] but neither

method explicitly assess the acceptable

threshold of the number of relations to take into

account in a Transformer with pre-existing

relations.

In this work, we attempt to respond to the

following questions:

1. How can we reduce the number of “pre-

existing relations” while preserving high-

quality parsing?

2. To what extent does exact match accuracy

depend on pre-existing abstract relations in

Relation-Aware Transformer / RAT-SQL?

First, we constrain the number of relations to

be equal to the number of heads of the model.

Each head tends to specialize [7], and we

hypothesize then each relation will be learned by

one head of the model.

Secondly, we present a new structure of a

relation graph inspired by RAT-SQL [1],

SS2SQL [2], and database theory [8].

1

mailto:nathanmanzambi@yahoo.fr

Our findings are as follows, without any

enhancement of the pre-trained Language

model:

1. Pre-existing relations in RAT-SQL are

important and can lift the model accuracy

and improve alignment between the

Question and the Schema.

2. Constrain the number of relation types to be

equal to the number of heads allows having

more abstraction in relation types.

3. It is better to have more abstraction in

relation types but too abstract relation types

can lead to an underfit model.

Related Work

Text-To-SQL

Most Text-to-SQL [9-11] models are built

around an encoder-decoder pattern. The

challenge is to design a system that can predict

the SQL query from a question and the details of

the schema. The relational database schema is

made up of tables linked together by columns.

This semantic parsing prediction task is difficult

due to the tree structure of the SQL

programming language.

Early work on semantic parsing with an

encoder-decoder model focused on designing a

decoder capable of constraining the output space

to the outputs that matter [12]. The goal is to

avoid invalid parsers because most Seq2seq

models performed poorly in semantic parsing

tasks. Two families have emerged to build such

decoders, namely token-based decoding [13-15],

and grammar-based decoding [16-19]. Token-

based decoding is the Seq2Seq model where the

output space is made up of tokens, but they are

constrained to be relevant at every time step.

And grammar-based decoding, the output space

is the production rules, and the grammar defines

the constraints.

Apart from these two families, [20, 21] use

Transformers [22, 23] with tree positional

encodings to enable tree-based decoders and get

a good result. [24] use an intermediate

representation SemQL query which bridges

Natural Language and SQL.

The works on the Encoder side [1, 2, 24-29]

focus on jointly encoding the Question and the

Database Schema. With the emergence of the

language model [5, 6, 30-40], the trend is to

improve encoding with a language model.

PICARD [41] effectively constrained decoding

with large pre-trained language models, T5 [42].

Another way to approach Text-To-SQL is to

design a pre-trained language model from

tabular data [4, 43-46].

RAT-SQL

Text-to-SQL encoder should be able to

encode the database relations in a way for

optimizing the semantic parser and model

alignment between the database schema and the

given query. For unseen database schemas, the

way the inputs (schema: tables & columns, and

question) are jointly encoded is crucial for

generalization purposes. The RAT-SQL

framework [1] designed from the relation-aware

self-attention mechanism [47], used as pointer

networks [48], fixes this generalization issue on

the Text-to-SQL challenge.

The relation-aware self-attention [47] uses the

relative position distance in input tokens as

edges of the graph while RAT-SQL uses an

embedding of abstract type of existing relations

between tokens. But both biases the self-

attention equation in the same way to inject the

edges of the graph in their model.

Here below equations of relation-aware self-

attention:

𝒆𝒊,𝒋
𝒉 = (

(𝑾𝒒𝑿(𝑾𝒌𝑿 + 𝑹)
𝑻

)

√𝒅𝒌

) (𝟏)

𝛂𝒊,𝒋
𝒉 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙(𝒆𝒊,𝒋

𝒉) (𝟐)

𝒛𝒊
𝒉 = ∑ 𝛂𝒊,𝒋

𝒉 (𝑾𝒗𝑿 + 𝑹)(𝟑)

𝒗

where matrices Wq
, W

k
, and W

v are trainable

parameters in self-attention.

Relations Structure

The self-attention as presented in

Transformer [23] is a directed graph, it is not

2

symmetric. During the learning process, the self-

attention blocks learn the optimal attention

weight that represents the relation existing

between tokens. This is more efficient than

recurrent models [49-51] since each part of the

inputs has a direct relation with other parts while

the recurrent models encode left to right and

right to left dependency and struggle with long

sequences.

Relations between tokens can be diverse

depending on semantic meaning. In the

relational graph attention transformers, the pre-

existing relations have to enhance self-attention.

That is why the structure of pre-existing

relations becomes crucial to avoid the bad effect

on self-attention. [28] tackled the schema

representation challenge by encoding the

directed graph of foreign key relations in the

schema with a graph neural network (GNN). In

RAT-SQL instead, the authors use the relation-

aware self-attention as a model, and define the 3

main structures: Schema Structure, Schema

Linking and Question Structure.

S2SQL [2] injects the syntactic dependency

information of questions into RAT-SQL, but it

does not use relative distance in question tokens,

instead, it uses the first-order distance in

dependency syntactic between tokens. And adds

orthogonality constraints on relations to avoid

coupling between edges.

Method: Light RAT-SQL

We present now Light RAT-SQL, our model

to reduce the pre-exissting embedding in

transformer.

Text-to-SQL Problem Definition

Given a natural language question

Q=q1…q|Q| , a schema S = <C, T> with columns

C={c1,…, c|C| } and tables T{ t1,…, t|T| }.

The goal of text-to-SQL is to create the SQL

query y for the question sentence. The pattern

used in such a challenge is an encoder and

decoder architecture with attention mechanisms.

The encoder encodes input as graph G=<V,

R> where V=Q U T U C are nodes of types { Q,

T, C } The initial embedding matrix X RVxd, [V

= Q+T+C, and d is the dimension model] is

flattened and the edge R is the know relation

between two input tokens.

In this paper, our proposed model improves

the encoder side, especially, the existing RAT-

SQL model [1] and self-attention with a relative

position representation framework [47].

Please see [16] work for a thorough

description of the decoder side.

The Number of Abstract Type Relation

A great number of pre-existing relational

features between the inputs can lead to

overfitting the model. [2] experienced the same

when injecting the syntax dependency in RAT-

SQL. To fix this problem, in their model S2SQL,

they used the first-order distance in dependency

syntactic between tokens and then reduce the

number of relation types [for the relation

Question graph] to 3: Forward, Backward, and

None.

[7] shows that each head in multi-head

attention tends to specialize. They found 3

categories: Positional heads, Syntactic heads,

and heads that point to rare words.

1. Positional heads that attend largely to their

neighbor.

2. Syntactic heads are tokens that have a

specific syntactic relation.

3. Headings that point to uncommon words in

the sentence.

Pruning the others is the finest technique to

demonstrate the relevance of their head

category. They retained 17 out of 48 heads with

nearly the same BLEU score by largely keeping

the heads that are classified in the differentiated

categories, as illustrated. And this corresponds to

around 2/3 of the encoder’s heads. Even though

they only identified 3 types of essential heads by

looking at their attention matrices and pruning

the others, we hypothesize that in the self-

attention mechanism with pre-existing relation

embedding, each head will be specialized in each

abstract type during the learning process. We

already know one of these embeddings is the

3

abstract type “None” that express that there is no

link between two tokens.

In other words, the number of heads (#head)

in the model gives us the degree of freedom

(DOF) to define the number of pre-existing

relations (or abstract type relations) that we can

use in the model. We define it as follows:

𝑫𝑶𝑭 = #𝒉𝒆𝒂𝒅 − 𝟏 (𝟒).

How to Constrain each Head to Learn at Most

one Embedding Relation?

Algorithm 1 Spreading relations through

heads:

1. Input: relation, head, embedding.

2. # relation shape: (query, key, features).

3. # head : number of head in the model.

4. #embedding: lookup table that stores

embeddings of a fixed dictionary and size.

5. #The first indice in our fixed dictionary is 0

and it is linked to “None” relation.

6. Output: r_out # relation output.

7. #r_out shape: (head, query, key, features.)

8. Init of r_out #zeros like (head, query, key,

features).

9. r_out[0]= relation.

10. For i=1 to head-1.

11. mask  (relation==embedding(i)).

12. r_out[i]  mask relation.

13. return r_out.

Where is Hadamard product and # a

comment line.

Algorithm 1 helps propagate the embedding

of pre-existing relations through the heads. This

makes each “head” specialized, thus pointing to

tokens with a specific relationship type.

Graph Structure

Since we will have 8 heads as in RAT-SQL,

so we will describe DOF=7 abstract relation

types to handle the text-to-SQL challenge.

Question Structure R
question: Relations

between two question tokens that show their

grammatical dependency or their distance (or

relative positions).

As [2] we model the syntactic relation

between two tokens (𝑣𝑖, 𝑣𝑗) by abstract types.

𝑹𝒊𝒋𝒒𝒖𝒆𝒔𝒕𝒊𝒐𝒏 = {
𝐹𝑜𝑟𝑤𝑎𝑟𝑑, 𝑖𝑓 𝐷(𝑣𝑖, 𝑣𝑗) = 1

𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑, 𝑖𝑓 𝐷(𝑣𝑗, 𝑣𝑖) = 1
𝑁𝑜𝑛𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} (5).

More details about first-order distance in

dependency syntactic can be found here [2].

Schema Structure Rschema: Relations within a

database schema. Most relational databases in

production are normalized in Boyce–Codd’s

normal form [8]. Because of this normalization,

we know that for any X, Y, and Z, sets of

attributes in a relation from a database:

1. All attributes in each relation of the database

are atomic (First Normal Form or 1NF).

2. If X → Y i.e., Y has a functional

dependency on X means that X is a primary

key and X and Y are in the same relation (or

table) and Y depends only on X (2NF).

3. The transitivity functional dependency (X

→ Z and Z → Y then X → Y) is only

allowed between 2 relations (or tables) and

not in the same relation (or table) (3NF).

4. If all dependencies of the relationships

depend on X and X is a key or a super key

then R is in Boyce–Codd normal form

(BCNF).

We can define all structures of the database

using functional dependency. The graph of

functional dependency is the best tool to

describe and understand all database structures.

In our model, if there is a functional

dependency or backward functional dependency

between 2 columns, so edge will be defined by

the abstract type “FD”. The abstract type

describing the relationship between the column

and the table will be “TC”. And relations

between 2 tables will be described by “TT”.

Linking Structure R
linking: For the linking

between the database schema and the question,

we follow RAT-SQL [1]. The difference

between Light RAT-SQL and RAT-SQL in

schema linking structure comes in the level of

abstraction. In RAT-SQL the schema linking is

more detailed: exact name matching, partial

matching, and value base linking. The

implementation of RAT-SQL has more than 10

relations for Schema Linking.

4

https://en.wikipedia.org/wiki/Relation_(database)

1. CEM=Column Exact Matching (Backward

and Forward).

2. TEM=Table Exact Matching (Backward

and Forward).

3. CPM= Column Partial Matching (Backward

and Forward).

4. TPM= Table Partial Matching (Backward

and Forward).

5. Value-Based Number (Backward and

Forward).

6. Value-Based Time (Backward and Forward)

7. Value-Based Cell Match (Backward and

Forward).

We propose schema linking more abstract

than RAT-SQL and consists of 2 abstract types:

1. NBL (Name Base Linking): Linking

between a Question and a Table or Column

(forward and backward with the same

nomenclature)

2. VBL (Value Base Linking): Linking

between a Question and a Column(forward

and backward with the same nomenclature)

references any values found in the Question

and SQL query.

Here below the “None” and all 7 relation

types:

Table 1. The List of All Relations Structures used in Light RAT-SQL

Abstract Type Description X Y

None X and Y have no relation Q/T/C Q/T/C

TT Table X and Table Y are linked by a foreign key

[Forward and Backward]

T T

TC Column Y belongs to table X or Column X belongs

to table Y

T/C C/T

FD There is a functional dependency between Column X

and Column Y or between Y and X.

C C

Forward Y is the target word of X under syntax dependency Q Q

Backward Y is the source word of X under syntax dependency. Q Q

NBL Name-based linking refers to exact or partial

occurrences of either the table name or Column name

Y in the question X\ [Forward and Backward]

Q/T or C T or C/Q

VBL Value-based-Linking: question X references any

values found in the database and so participates in

the SQL query [Forward and Backward]

Q/C C/Q

Legend: X= Source token | Y=Target token | T = TABLE | C=Column | Q=Question

Experiments

Dataset

We use the Spider dataset [52]. Spider is a

text-to-SQL benchmark that is vast,

sophisticated, and cross-domain. We followed

the formal evaluation process to report exact

match accuracy.

Implementation

We use the same architecture as in the RAT-

SQL with the Spider dataset, which means that

the input of questions, column names, and Table

names is tokenized and lemmatized using the

StanfordNLP toolkit [53]. We use GloVe [54]

word embeddings within the encoder, which are

fixed in training except for the 50 most common

terms in the training set. The bidirectional

LSTMs [49] have a hidden size of 128 per

direction and employ a recurrent dropout [55]

approach with a rate of 0:2. On top of the

bidirectional LSTMs, we build 8 relation-aware

self-attention layers. To have the same

configuration as RAT-SQL, we set dx = dz =

256, H = 8, and employ.

5

Left: The RAT-SQL - Right: Light RAT-SQL and bottom: Light RAT-SQL-2

Figure 1. Alignment between the Question “For the Cars with 4 Cylinders, which Model has the Largest

Horsepower” and the Database Car_1 Schema (Columns and Tables)

Dropout with a rate of 0:1. The inner layer

dimension of the position-wise feed-forward

network is 1024. We use rule embeddings of size

128, node type embeddings of size 64, and a

hidden size of 512 inside the LSTM [51] with a

dropout of 0:21 inside the decoder.

Hyperparameter

Light-RAT-SQL reuses the same

hyperparameters of RAT-SQL.

The code was implemented in Pytorch [56]

and Adam [57] as an optimizer with default

hyperparameters. We use a batch size of 20 and

train for up to 40,000 steps.

As a syntactic parser, we use the SpaCy

(https://spacy.io/) tool to create syntactic

information as previously done by [2].

Results

For experimentation purposes, we design

another model with 2 relation types and we call

it Light RAT-SQL-2. When 2 tokens have a pre-

existing relation (Syntactic dependency, Name

base Linking, Value-Based Linking, Schema

Linking), the relation name is “Linked” and

“None” else. We call then our model either Light

RAT-SQL or Light RAT-SQL-7.

Table 2. Accuracy of the Spider Dataset [52]

Model (Without any enhancement of one Pretrained

Language Model: BERT, ELECTRA, etc.) Dev Test

IRNet [24] 53.2 46.7

Global-GNN [28] 52.7 47.4

IRNet V2 [24] 55.4 48.5

RAT-SQL [1] 62.7 57.2

Our model (Light RAT-SQL) - 60.25

6

https://spacy.io/

We run 5 random experimentations of RAT-

SQL, Light RAT-SQL-7, and Light RAT-SQL-

2 without any pre-trained Language to measure

the change done in each model relation structure.

Table 3 shows the confidence interval of each

model, and we fail to reject H0 for RAT-SQL and

Light RAT-SQL-7 but there is strong evidence

against H0 (p<0.001) for RAT-SQL and Light

RAT-SQL-2.

In addition, apply the algorithm 1 spreading

relations through heads improve the model’s

accuracy.

Table 3. Test Set Accuracy (and 95% Confidence Interval) of RAT-SQL, Light RAT-SQL, Light RAT-SQL

without Applying “Spreading Algorithm” and Light RAT-SQL-2

Model Accuracy

Light RAT-SQL 58.99 ± 1.04

RAT-SQL 58.90 ± 0.50

LRS w/o Spreading Algo 58.32 ± 0.80

Light RAT-SQL-2 53.37 ± 1.30

Figure 2. Exact Match Accuracy of RAT-SQL, Light RAT-SQL and Light RAT-SQL Without Speading

Relations through Heads

We can see in Figure 2. that Light RAT-SQL-

7 and RAT-SQL converge to almost the same

accuracy.

Discussion

Alignment

The alignment produced by RAT-SQL, Light

RAT-SQL-7, and Light RAT-SQL-2 is

displayed in Figure 1. The three words that refer

to columns (cylinders, model, and horsepower)

are misaligned by Light RAT-SQL-2, but Light

RAT-SQL-7 correctly identifies the appropriate

columns. These three keywords have a

significant impact on the alignments of

subsequent words, leading in a sparse span-to-

column alignment, for example, “biggest

horsepower” to horsepower. The word “cars”

contains an implicit reference to the table’s car

data and cars’ names. Using the fact that these

two tables have the three mentioned fields in

Light RAT-SQL-7 and not in Light RAT-SQL-

2, the alignment matrix successfully infers that

they should be used instead of car makers.

Need to Spread Relations through Heads

Making each head of the model specialize in

at least one embedding allows the relations data

to contain distinct information per head, which

is complementary to each other. Because

7

duplicate information may make the model

difficult to train.

Figure 2 shows our ablation study where we

trained the same model without spreading

relations through heads. The result shows how

Light RAT-SQL performs better with

specialized heads.

Conclusion

This paper presents a Light version of RAT-

SQL, a Light RAT-SQL. This latter is designed

with only 7 relation types (since we consider

“None” as trivial relation type) and has almost

the same performance as the original RAT-SQL,

which has 55 embedding relation types.

Apart from the ablation study performed by

RAT-SQL, this study confirms the importance

of the pre-existing relations in RAT-SQL. Light

RAT-SQL-2 has a poor performance compared

to RAT-SQL and Light RAT-SQL. The pre-

existing relation can lift the model accuracy and

improve alignment between the Question and the

Schema. We show empirically the good way to

reduce the number of relation types is to

constrain this compared with the number of

heads in the model. This makes the pre-existing

relations more abstract during the design of the

model. However, the relations of the Light RAT-

SQL-2 (Linked and None) are more and more

abstract and perform poorly. It is better to have

more abstraction in relation types and have the

number of relations close to the number of heads

of the model. In future work, we will use the

same relation structure and improve the relation-

aware self-attention to optimally fit the pre-

existing relations.

Limitations

Light RAT-SQL was not enhanced with a pre-

trained language model such as BERT or

ELECTRA since this requires large GPU

resources. Investigation into enhancing our

proposed model with Electra can be crucial to

determine its effectiveness with other

competitive models such as S2SQL.

Acknowledgments

We would like to thank Jean-Marie

TSHIMULA and Christian BOPE for the talks

that shaped this work. We also thank anonymous

reviewers for their crucial input.

Conflict of Interest Statement

All authors declare that they have no conflicts

of interest.

References

[1] B. Wang, R. Shin, X. Liu, O. Polozov, and M.

Richardson (2020): “RAT-SQL: Relation-Aware

Schema Encoding and Linking for Text-to-SQL

Parsers, . [Online]. Available:

https://github.com/Microsoft/rat-sql.

[2] B. Hui et al (Mar. 2022): “S2SQL: Injecting

Syntax to Question-Schema Interaction Graph

Encoder for Text-to-SQL Parsers, [Online].

Available: http://arxiv.org/abs/2203.06958.

[3] T. Scholak, R. Li, D. Bahdanau, H. de Vries, and

C. Pal (Oct. 2020): “DuoRAT: Towards Simpler

Text-to-SQL Models, doi: 10.18653/v1/2021.naacl-

main.103.

[4] T. Yu et al (Sep. 2020), “GraPPa: Grammar-

Augmented Pre-Training for Table Semantic Parsing,

[Online]. Available: http://arxiv.org/abs/2009.13845.

[5] Z. Lan et al (2020): “Albert: A Lite Bert For Self-

Supervised Learning Of Language Representations.

[Online]. Available: https://github.com/google-

research/ALBERT.

[6] J. Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova Bert-Ppt (2018): “BERT: Pre-

training of Deep Bidirectional Transformers for

Language Understanding (Bidirectional Encoder

Representations from Transformers).

[7] E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and

I. Titov (2019), “Analyzing Multi-Head Self-

Attention: Specialized Heads Do the Heavy Lifting,

8

https://github.com/Microsoft/rat-sql
http://arxiv.org/abs/2203.06958
http://arxiv.org/abs/2009.13845
https://github.com/google-research/ALBERT
https://github.com/google-research/ALBERT

the Rest Can Be Pruned,” [Online]. Available:

https://github.com/.

[8] E. F. Codd (1974), “Recent Investigations in

Relational Data Base Systems,” in IFIP Congress.

[9] A. Suhr, S. Iyer, Y. Artzi, and P. G. Allen (2018),

“Learning to Map Context-Dependent Sentences to

Executable Formal Queries. [Online]. Available:

https://github.com/clic-lab/atis.

[10] S. Iyer, I. Konstas, A. Cheung, J. Krishnamurthy,

and L. Zettlemoyer (Apr. 2017): “Learning a Neural

Semantic Parser from User Feedback, [Online].

Available: http://arxiv.org/abs/1704.08760.

[11] J. Herzig and J. Berant (Apr. 2018): “Decoupling

Structure and Lexicon for Zero-Shot Semantic

Parsing, [Online]. Available:

http://arxiv.org/abs/1804.07918.

[12] A. Kamath and R. Das (Dec. 2018), “A Survey

on Semantic Parsing”, [Online]. Available:

http://arxiv.org/abs/1812.00978.

[13] L. Dong and M. Lapata (May 2018): “Coarse-to-

Fine Decoding for Neural Semantic Parsing”,

[Online]. Available: http://arxiv.org/abs/1805.04793.

[14] L. Dong and M. Lapata (Jan. 2016): “Language

to Logical Form with Neural Attention”, [Online].

Available: http://arxiv.org/abs/1601.01280.

[15] O. Goldman, V. Latcinnik, U. Naveh, A.

Globerson, and J. Berant (Nov. 2017): “Weakly-

supervised Semantic Parsing with Abstract

Examples,”, [Online]. Available:

http://arxiv.org/abs/1711.05240.

[16] P. Yin and G. Neubig (Oct. 2018): “TRANX: A

Transition-based Neural Abstract Syntax Parser for

Semantic Parsing and Code Generation”, [Online].

Available: http://arxiv.org/abs/1810.02720.

[17] P. Yin and G. Neubig (Apr. 2017), “A Syntactic

Neural Model for General-Purpose Code

Generation”, [Online]. Available:

http://arxiv.org/abs/1704.01696.

[18] C. Xiao, M. Dymetman, and C. Gardent (2016):

“Sequence-based Structured Prediction for Semantic

Parsing,” [Online]. Available:

https://github.com/percyliang/sempre.

[19] J. Krishnamurthy, P. Dasigi, and M. Gardner

(2017): “Neural Semantic Parsing with Type

Constraints for Semi-Structured Tables.

[20] V. L. Shiv and C. Quirk (2019): “Novel

positional encodings to enable tree-based

transformers,” in Advances in Neural Information

Processing Systems, vol. 32.

[21] Q. He, J. Sedoc, and J. Rodu (Dec. 2021): “Trees

in transformers: a theoretical analysis of the

Transformer’s ability to represent trees, [Online].

Available: http://arxiv.org/abs/2112.11913.

[22] N. Kitaev, Ł. Kaiser, and A. Levskaya (Jan.

2020): “Reformer: The Efficient Transformer”,

[Online]. Available: http://arxiv.org/abs/2001.04451.

[23] A. Vaswani et al (Jun. 2017): “Attention Is All

You Need”, [Online]. Available:

http://arxiv.org/abs/1706.03762.

[24] J. Guo et al (2019): “Towards Complex Text-to-

SQL in Cross-Domain Database with Intermediate

Representation.

[25] R. Cao, L. Chen, Z. Chen, Y. Zhao, S. Zhu, and

K. Yu (Jun. 2021): “LGESQL: Line Graph Enhanced

Text-to-SQL Model with Mixed Local and Non-

Local Relations, [Online]. Available:

http://arxiv.org/abs/2106.01093.

[26] X. V. Lin, R. Socher, and C. Xiong (Dec. 2020):

“Bridging Textual and Tabular Data for Cross-

Domain Text-to-SQL Semantic Parsing”, [Online].

Available: http://arxiv.org/abs/2012.12627.

[27] A. Gur, S. Yavuz, Y. Su, and X. Yan, “DialSQL:

Dialogue Based Structured Query Generation.

[28] B. Bogin, M. Gardner, and J. Berant (2019):

“Global Reasoning over Database Structures for

Text-to-SQL Parsing.

[29] B. Bogin, M. Gardner, and J. Berant (Apr. 08,

2022): “Representing Schema Structure with Graph

Neural Networks for Text-to-SQL Parsing,” pp.

4560–4565, 2019, Accessed [Online]. Available:

https://github.com/benbogin/.

[30] C. Xu, W. Zhou, T. Ge, F. Wei, and M. Zhou

(2020), “BERT-of-Theseus: Compressing BERT by

Progressive Module Replacing . [Online]. Available:

https://en.wikipedia.org/wiki/Ship_.

[31] M. Shoeybi, M. Patwary, R. Puri, P. Legresley,

J. Casper, and B. Catanzaro, “Megatron-LM (2020):

Training Multi-Billion Parameter Language Models

Using Model Parallelism,” [Online]. Available:

https://github.com/.

9

https://github.com/
https://github.com/clic-lab/atis
http://arxiv.org/abs/1704.08760
http://arxiv.org/abs/1804.07918
http://arxiv.org/abs/1812.00978
http://arxiv.org/abs/1805.04793
http://arxiv.org/abs/1601.01280
http://arxiv.org/abs/1711.05240
http://arxiv.org/abs/1810.02720
http://arxiv.org/abs/1704.01696
https://github.com/percyliang/sempre
http://arxiv.org/abs/2112.11913
http://arxiv.org/abs/2001.04451
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2106.01093
http://arxiv.org/abs/2012.12627
https://github.com/benbogin/
https://en.wikipedia.org/wiki/Ship_
https://github.com/

[32] V. Sanh, L. Debut, J. Chaumond, and T. Wolf

(Oct. 2019): “Distilbert, a distilled version of BERT:

smaller, faster, cheaper and lighter, [Online].

Available: http://arxiv.org/abs/1910.01108.

[33] M. Lewis et al (Oct. 2019): “BART: Denoising

Sequence-to-Sequence Pre-training for Natural

Language Generation, Translation, and

Comprehension, [Online]. Available:

http://arxiv.org/abs/1910.13461.

[34] Alec Radford, Karthik Narasimhan, Tim

Salimans, and Ilya Sutskever (2018): “Improving

Language Understanding by Generative Pre-

Training, [Online]. Available:

https://gluebenchmark.com/leaderboard.

[35] A. Radford, J. Wu, R. Child, D. Luan, D.

Amodei, and I. Sutskever (2019): “Language Models

are Unsupervised Multitask Learners, [Online].

Available: https://github.com/codelucas/newspaper.

[36] Y. Liu et al (Jul. 2019): “RoBERTa: A Robustly

Optimized BERT Pretraining Approach,” [Online].

Available: http://arxiv.org/abs/1907.11692.

[37] T. Wolf et al (Oct. 2019): “HuggingFace’s

Transformers: State-of-the-art Natural Language

Processing” [Online]. Available:

http://arxiv.org/abs/1910.03771.

[38] T. B. Brown et al (2020): “Language Models are

Few-Shot Learners. [Online]. Available:

https://commoncrawl.org/the-data/.

[39] W. Fedus, B. Zoph, and N. Shazeer (2022):

“Switch Transformers: Scaling to Trillion Parameter

Models with Simple and Efficient Sparsity.

[40] K. Clark, M.-T. Luong, Q. v. Le, and C. D.

Manning (Mar. 2020): “Electra: Pre-training Text

Encoders as Discriminators Rather Than Generators,

[Online]. Available: http://arxiv.org/abs/2003.10555.

[41] T. Scholak, N. Schucher, and D. Bahdanau (Sep.

2021): “PICARD: Parsing Incrementally for

Constrained Auto-Regressive Decoding from

Language Models [Online]. Available:

http://arxiv.org/abs/2109.05093.

[42] C. Raffel et al (Oct. 2019): “Exploring the Limits

of Transfer Learning with a Unified Text-to-Text

Transformer, [Online]. Available:

http://arxiv.org/abs/1910.10683.

[43] J. Herzig, P. K. Nowak, T. Müller, F. Piccinno,

and J. Eisenschlos (2020): “TaPas: Weakly

Supervised Table Parsing via Pre-training, . doi:

10.18653/v1/2020.acl-main.398.

[44] L. Zhao, H. Cao, and Y. Zhao (Jan. 2021) “GP:

Context-free Grammar Pre-training for Text-to-SQL

Parsers,” [Online]. Available:

http://arxiv.org/abs/2101.09901.

[45] X. Deng, A. H. Awadallah, C. Meek, O. Polozov,

H. Sun, and M. Richardson (Oct. 2020), “Structure-

Grounded Pretraining for Text-to-SQL,” doi:

10.18653/v1/2021.naacl-main.105.

[46] P. Yin, G. Neubig, W. Yih, and S. Riedel (May

2020): “TaBERT: Pretraining for Joint

Understanding of Textual and Tabular Data,” pp.

8413–8426, doi: 10.48550/arxiv.2005.08314.

[47] P. Shaw, J. Uszkoreit, G. Brain, and A. Vaswani

(2018): “Self-Attention with Relative Position

Representations.

[48] O. Vinyals, M. Fortunato, and N. Jaitly (Jun.

2015): “Pointer Networks,” [Online]. Available:

http://arxiv.org/abs/1506.03134.

[49] M. Schuster and K. K. Paliwal (1997):

“Bidirectional recurrent neural networks,” IEEE

Transactions on Signal Processing, vol. 45, no. 11,

doi: 10.1109/78.650093.

[50] K. Cho, B. van Merriënboer, D. Bahdanau, and

Y. Bengio (2014): “On the properties of neural

machine translation: Encoder–decoder approaches,”

in Proceedings of SSST 2014 - 8th Workshop on

Syntax, Semantics and Structure in Statistical

Translation. doi: 10.3115/v1/w14-4012.

[51] S. Hochreiter and J. Schmidhuber (1997): “Long

Short-Term Memory,” Neural Comput, vol. 9, no. 8,

doi: 10.1162/neco.1997.9.8.1735.

[52] T. Yu et al (Sep. 2018): “Spider: A Large-Scale

Human-Labeled Dataset for Complex and Cross-

Domain Semantic Parsing and Text-to-SQL Task,”

[Online]. Available: http://arxiv.org/abs/1809.08887.

[53] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel,

S. J. Bethard, and D. Mcclosky (2014), “The Stanford

CoreNLP Natural Language Processing Toolkit.

[54] J. Pennington, R. Socher, and C. D. Manning

(2014): “GloVe: Global Vectors for Word

Representation, [Online]. Available: http://nlp.

[55] Y. Gal and Z. Ghahramani (2016): “A

Theoretically Grounded Application of Dropout in

Recurrent Neural Networks.

10

http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.13461
https://gluebenchmark.com/leaderboard
https://github.com/codelucas/newspaper
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1910.03771
https://commoncrawl.org/the-data/
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/2109.05093
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/2101.09901
http://arxiv.org/abs/1506.03134
http://arxiv.org/abs/1809.08887
http://nlp/

[56] A. Paszke et al (2019): “PyTorch: An Imperative

Style, High-Performance Deep Learning Library.

[57] D. P. Kingma and J. Ba (Dec. 2014): “Adam: A

Method for Stochastic Optimization, [Online].

Available: http://arxiv.org/abs/1412.6980.

11

http://arxiv.org/abs/1412.6980

