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Abstract 

We present a Topological Relation Aware Transformer (T-RAT), a specialized head transformer to 

open sets, an element of the topology τ generated by the set S, the set of all pre-existing relations between 

input tokens of the model. From this topological space (S, τ), we present the way to spread each open 

set to one head of our Transformer. T-RAT improves exact match accuracy in Text-To-SQL challenge 

(62.09%) without any enhancement of large language models compared to the baseline models RAT-

SQL (57.2%) and Light RAT-SQL (60.25%). 

Keywords: Deep learning, Natural Language Processing, Neural Semantic Parsing, Relation Aware 

Transformer, RAT-SQL, Text-To-SQL Transformer. 

Introduction 

In Text-To-SQL [1-9], The Light RAT-SQL 

[8] shows the way to reduce the number of 

preexisting relations in the RAT-SQL framework 

[7] by preserving the exact match accuracy 

without any enhancement of pre-trained (LLMs) 

large language models [10-15]. The limitation of 

this method is that it can not be suitable for the 

scenario where we have a lot of pre-existing 

relations. Since each head in multi-head self-

attention must be specialized to at least one 

relation, we will have a model with high 

dimensions. 

Another con is that Light-RAT-SQL suffers 

from over-alignment as we can see in Figure 1, 

there is more unnecessary attention on column 

“*”, the same with RAT-SQL the column 

horsepower getting so much attention. 

To fix this, we present a new model, the 

Topological Relation Aware Transformer(T-

RAT) inspired by the Topology theory and 

Relation Aware Transformer [1, 7] where we 

improve the “spreading algorithm” presented in 

Light RAT-SQL. 

The Topological Relation-Aware 

Transformer (T-RAT) is a specialized head 

transformer designed to address the problem of 

semantic parsing of natural language to SQL 

queries, particularly in the context of database 

query tasks. In this paper, we present a novel 

approach to leveraging the inherent relations 

between tokens, such as those between natural 

language questions and database schema 

elements, to improve the accuracy of text-to-

SQL query generation models. T-RAT is built on 

the foundation of topology theory and Relation 

Aware Transformer (RAT), which improves the 

capacity of multi-head self-attention models to 

capture diverse and contextually relevant 

relationship patterns within complex data. Our 

proposed method spreads each open set to one 

head of the Transformer, enabling the model to 

capture nuanced relationships between input 

tokens and improve the accuracy of text-to-SQL 

query generation. 

We believe that RAT-SQL overfits because of 

many preexisting relations, and Light RAT-SQL 

misaligned some tokens due to few relations and 

mixing forward and backward edges. 
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Figure 1. Alignment between the Question “For the Cars with 4 Cylinders, which Model has the Largest 

Horsepower” and the Database Car_1 Schema (Columns and Tables) 

Up-Left: The RAT-SQL – Up-Right: Light RAT-SQL and bottom-left: T-RAT 

So, this question remains open: How can the 

inherent relations between tokens, such as those 

between natural language questions and 

database schema elements, be effectively 

leveraged to improve the accuracy of text-to-

SQL query generation models? 

The inherent relations between tokens, such 

as those between natural language questions and 

database schema elements, can be effectively 

leveraged to address the problem of semantic 

parsing of natural language to SQL queries. We 

hypothesize that by spreading each open set to 

one head of the Transformer, the T-RAT model 

can capture nuanced relationships between input 

tokens, leading to improved accuracy in text-to-

SQL query generation models. Additionally, we 

believe that the topology structure of the pre-

existing relations enhances the capacity of 

multi-head self-attention models to capture 

diverse and contextually relevant relationship 

patterns within complex data. This will help to 

have feature diversification and learning 

complementary information, ultimately 

improving the overall accuracy of text-to-SQL 

query generation models. This hypothesis forms 

the basis for our exploration of the T-RAT model 

and its potential to effectively address the 

challenges of semantic parsing in the context of 

natural language to SQL queries. 

Our contribution and key findings: 

1. We present a way to leverage preexisting 

relations between input tokens in Text-To-

SQL to improve the exact match accuracy of 

RAT-SQL, Light RAT-SQL (without any 

enhancement of the pre-trained large 

language models). 

2. The topology structure of the pre-existing 

relations enhances the capacity of multi-

head self-attention models to capture 

diverse and contextually relevant 

relationship patterns within complex data. 

This will help to have feature diversification 

and learning complementary information. 

So, improving the overall accuracy. 

3. By tailoring each head to different elements 

of the topology, it facilitates a more detailed 

and nuanced understanding of relationships 

in the input data, making it a valuable tool 

in NLP tasks. 
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A detailed description of the T-RAT model 

has been presented so far, including the 

algorithms used to encode and process input data 

and demonstrate its effectiveness in addressing 

the problem of semantic parsing of natural 

language to SQL queries. Our experimental 

results show that T-RAT achieves higher exact 

match accuracy compared to baseline models 

RAT-SQL and Light RAT-SQL. 

Overall, T-RAT presents a promising 

approach to addressing the problem of semantic 

parsing of natural language to SQL queries in 

low-resource settings, and our proposed method 

of spreading open sets through heads provides a 

valuable tool for capturing nuanced 

relationships between input tokens. 

Related Work 

Text-To-SQL 

The exploration of Text-to-SQL conversion 

employing deep learning techniques has 

witnessed considerable advancements, driven 

by the expressive power and adaptability of 

neural network architectures. This section 

provides an overview of the related work in the 

domain, highlighting key developments and 

methodologies. 

Sequence-to-Sequence Models 

Early forays into leveraging deep learning for 

Text-to-SQL predominantly featured sequence-

to-sequence models [2, 16]. These models, 

inspired by their success in machine translation, 

were adapted to map natural language utterances 

to SQL queries. The encoder-decoder 

architecture facilitated the capturing of complex 

linguistic structures, yet challenges persisted in 

handling the semantic intricacies inherent in 

SQL generation. 

Attention Mechanisms 

The integration of attention mechanisms [17-

21] marked a significant enhancement in 

capturing dependencies within the input 

sequence. Attention mechanisms allowed 

models to focus on specific parts of the input 

when generating corresponding SQL tokens, 

improving the overall contextual understanding. 

Noteworthy works, such as SQLNet [4, 6, 16], 

introduced attention mechanisms tailored for the 

Text-to-SQL task. 

Pre-trained Language Models 

The rise of pre-trained language models [10-

12], [22-24], such as BERT [14, 25-28] and GPT 

(Generative Pre-trained Transformer) [13, 15], 

has had a transformative impact on various 

natural language processing tasks, including 

Text-to-SQL. Fine-tuning these models for SQL 

generation tasks demonstrated substantial gains 

in capturing nuanced linguistic patterns and 

semantic relationships. GP [29], GAP [30], 

GRAPPA [31], STRUG [32] are among 

Pretraining Text-To-SQL. 

Semantic Parsing Techniques 

Advancements in semantic parsing [33-36] 

have played a crucial role in refining Text-to-

SQL models. Techniques incorporating 

semantic role labeling and syntax-aware parsing 

have been explored to imbue models with a 

deeper understanding of the underlying 

semantics, enabling more accurate SQL query 

generation. 

Graph-Based Semantic Parsing 

Graph-based methods [1, 37-43] have gained 

prominence for their ability to represent 

complex relationships and dependencies within 

a sentence. Dependency graphs or semantic 

graphs are constructed to capture the syntactic 

and semantic connections between words. 

Nodes in the graph correspond to words, and 

edges encode grammatical or semantic 

relationships. Graph-based methods facilitate a 

holistic understanding of sentence structure, 

enabling effective extraction of formal semantic 

representations for subsequent processing. 

Cross-Domain Adaptability and 

Multilingual Text-to-SQL 

Recent efforts have been directed towards 

enhancing the adaptability of Text-to-SQL 
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models across diverse domains and linguistic 

variations. Enhanced by GPT-4 [44], these 

models [45, 46] perform high accuracy and are 

now SOTA in most benchmark. 

The availability of high-quality datasets is 

crucial for training, evaluating, and 

benchmarking models. 

Various datasets have been created to address 

the complexity of mapping natural language 

queries to SQL queries accurately: ATIS, Spider, 

WikiSQL, CoSQL, etc. [47-61]. 

In summary, the evolution of Text-to-SQL 

with deep learning has witnessed a shift from 

traditional sequence-to-sequence models to 

sophisticated architectures incorporating 

attention mechanisms, pre-trained language 

models, and hybrid learning strategies. Ongoing 

research continues to explore innovative 

approaches to improve model accuracy, 

generalization, and adaptability across diverse 

linguistic and database contexts. 

Topology on a Set 

Formally, let S be a set and let τ be a family 

of subsets of S. Then τ is called a topology on S 

if: 

1. Both the empty set and S are elements of τ. 

2. Any union of elements of τ is an element of 

τ. 

3. Any intersection of finitely many elements 

of τ is an element of τ. 

If τ is a topology on S, then the pair (S, τ) is 

called a topological space. 

The members of τ are called open sets in S. 

If the complement of a subset of S is in τ, then 

the subset is considered closed; that is, its 

complement is open. A subset of S can be 

neither, both (a clopen set), open, or closed. 

There is always a closed and an open set, the 

empty set and S itself. A neighborhood of S is an 

open subset of S that includes the point s [62]. 

RAT-SQL 

The text-to-SQL encoder should be able to 

encode database relations in such a way that the 

semantic parser and model alignment between 

the database schema and the given query are 

optimized. 

How the inputs (schema: tables & columns, 

and question) are simultaneously encoded is 

critical for generalization purposes for unknown 

database structures. 

The RAT-SQL framework [7], built on the 

relation-aware self-attention mechanism [20] 

and pointer networks [18], solves the Text-to-

SQL challenge's generalization problem. 

The relative position distance in input tokens 

is used as the graph's edge in relation-aware self-

attention [18], whereas RAT-SQL uses an 

embedding of abstract type of existing relations 

between tokens. 

However, both bias the self-attention 

equation in the same way to inject the graph's 

edges into their model. 

Equations of relation-aware self-attention: 

𝒆𝒊,𝒋
𝒉 = (

(𝑿𝑾𝒒(𝑿𝑾𝒌+𝑹𝒌)𝑻)

√𝒅𝒌
) 

(1) 

𝛂𝒊,𝒋
𝒉  = softmax(𝒆𝒊,𝒋

𝒉 ) (2) 

𝒛𝒊
𝒉 =∑ 𝛂𝒊,𝒋

𝒉  (𝑿𝑾𝒗 + 𝑹𝒗)𝒗  (3) 

where matrices Wq, Wk, and Wv are trainable 

parameters in self-attention. 

Rk and Rv are embedding learned from the 

abstract relations of the input graph in the key 

space and value space of the transformer [17]. 

Methods 

The Topological Relation Aware Transformer 

(T-RAT) is a specialized head transformer 

designed to address the problem of semantic 

parsing of natural language to SQL queries, 

particularly in the context of database query 

tasks. T-RAT achieves this by leveraging the 

topology structure of pre-existing relations 

between input tokens and spreading each open 

set to one head of the Transformer. 

T-RAT uses a direct graph to represent the 

pre-existing relations between input tokens, 

such as syntax dependency in question tokens, 

schema linking between the question tokens and 

column/table tokens, and schema encoding in 

column and table tokens. 
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The direct graph consists of different edges 

that describe the relationships between the 

tokens, such as forward and backward syntax 

dependency, value-based linking, name-based 

linking, foreign key linking, and primary key 

linking. 

T-RAT then uses multi-head self-attention as 

in the baseline model (Light RAT-SQL) to tailor 

each head to different elements of the topology, 

facilitating a more detailed and nuanced 

understanding of relationships in the input data. 

This allows T-RAT to capture diverse and 

contextually relevant relationship patterns 

within complex data, leading to improved 

accuracy. 

Problem Definition (Text-To-SQL) 

Given a natural language question 

Q=q1…q|Q| , a database schema S = <C, T> with 

columns C={c1,…, c|C| } and tables T={ t1,…, 

t|T| } 

The objective of text-to-SQL is to predict the 

SQL query y from the input <Q, S> 

The most used model in such a challenge is 

an encoder and decoder architecture pattern with 

attention mechanisms between the encoder and 

decoder. 

The encoder encodes input as graph G=<V, 

R> where V=Q U T U C are nodes of types { Q, 

T, C } The initial embedding matrix X R
Vxd

, [V 

= Q+T+C, and d is the dimension model] is 

flattened and the edge R is the known relation 

between two input tokens. 

In this work, our proposed method improves 

the encoder side, especially, the existing RAT-

SQL model [8, 7]. Please refer to [33, 34, 62] 

works for a thorough description of the decoder 

side. 

Relations in T-Rat: Open Heads 

Given a set S = {Question, Linking, Schema} 

Where each element of S is a set of indexes and 

each index represents an edge type in the direct 

graph G. 

1. Question= {1, 2} 

2. Linking = {3, 4, 5, 6} 

3. Schema= {7, 8, 9,., 16} 

Table 1. gives more details about each index, 

the name of the abstract edges, the set where the 

index belongs, and the description of the edge. 

The topology generated by a set S of sets can 

be thought of as the set of all possible unions of 

elements from the sets in S, including the empty 

set. 

The topology generated by S would consist of 

all possible unions of elements from Question, 

Linking, Schema, as well as the empty set. 

So, the topology generated by S would 

include: 

1. The empty set: ∅ 

2. The sets Question, Linking, and Schema 

individually. 

3. The unions of pairs of sets, such as Question 

∪ Schema, Question ∪ Linking, and 

Schema ∪ Linking. 

4. The union of all three sets: Question ∪ 

Linking ∪ Schema. 

This topology represents all the possible 

combinations and subsets that can be formed by 

taking elements from the sets Question, 

Linking, and Schema, including the individual 

sets and the empty set. 

This generated topology has 8 elements, and 

each head of T-RAT will be specialized to one 

open set. For example: suppose that the second 

head will be specialized to the open set 

“Question” That means this head will learn 

only: SD-forward and SD-backward because 

these are 2 edges in this open set as described in 

Table 1. 

Algorithms 

Figure 2. Shows different modules and 

components involved in T-RAT. 

Algorithm 1: Building Open Sets 

This algorithm initializes a list to represent 

different sets such as “Question,” “Schema,” 

and “Linking.” It then creates a list of indices to 

map the indices of edges corresponding to each 

set, effectively building open sets for the input 

data. 
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Algorithm 

1. Initialize a list S to represent different sets 

such as “Question,” “Schema,” and 

“Linking.” 

2. Create a list of R_indices to map the indices 

of edges corresponding to each set: 

a. For “Question,” the indices are [1, 2]. 

b. For “Schema,” the indices are [7, 8, 9, 10, 

11, 12, 13, 14, 15, 16]. 

c. For “Linking,” the indices are [3, 4, 5, 6]. 

3. Define a list set_combinations to store all 

possible combinations of these set indices, 

creating a topology (excluding the empty set): 

a. Generate combinations from R_indices of 

size 1, 2, and 3 to encompass all possible 

combinations. 

The time complexity of Algorithm 1 is O(n), 

where n is the number of elements in the sets 

“Question,” “Schema,” and “Linking.” The 

algorithm iterates through the elements of the 

sets to initialize the list R and create a list of 

R_indices, which involves simple iteration and 

mapping operations. 

 

 

Figure 2. Different Modules of Spreading Open Sets through Heads 

The space complexity of Algorithm 1 is O(n), 

as it requires space to store the sets “Question,” 

“Schema,” and “Linking,” as well as the lists R 

and R_indices. 

Algorithm 2: Masking Function 

The masking function takes three parameters: 

relation, space_embedding, and set_indices. It 

initializes a mask tensor with the same shape as 

the relation and sets it to all zeros. It then iterates 

through each index in set_indices, checks if the 

relation is equal to space_embedding[i], and 

accumulates these matches into the mask. 

Algorithm 

1. Define a masking function that takes three 

parameters: relation, space_embedding, and 

set_indices. 

2. Initialize a mask tensor with the same shape 

as the relation and set it to all zeros. 

3. Iterate through each index i in set_indices: 
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a. Check if the relation is equal to 

space_embedding[i] and accumulate these 

matches into the mask. 

4. Return the resulting mask. 

The time complexity of Algorithm 2 is O(n), 

where n is the number of elements in the 

set_indices list. The algorithm iterates through 

the set_indices list to check if the relation is 

equal to space_embedding[i] and accumulates 

these matches into the mask. This involves 

simple iteration and comparison operations. 

The space complexity of Algorithm 2 is 

O(m), where m is the size of the relation tensor. 

The algorithm requires space to store the mask 

tensor, which has the same shape as the relation 

tensor. 

Table 1. Description of Different Edges in Direct Graph used in T-RAT 

Index Edge label SET Description X Y 

1 SD-forward Question Y is the source word of X under syntax 

dependency 

Q Q 

2 SD-backward Y is the target word of X under syntax 

dependency 

Q Q 

3 VBL forward Linking Value-based-Linking forward: question X 

references any values found in the database 

and so participates in the SQL query  

Q C 

4 VBL backward Value-based-Linking backward: question Y 

references any values found in the database 

and so participates in the SQL query 

C Q 

5 NBL forward Name-based linking forward refers to exact 

or partial occurrences of either the table 

name or Column name Y in question X 

Q T or C 

6 NBL backward Name-based linking backward refers to exact 

or partial occurrences of either the table 

name or Column name X in question Y 

T or C Q 

7 FK-Forward Schema The table X has a column Y as a foreign key T C 

8 FK-Backward The column X is a foreign key to the table Y C T 

9 DF-Forward  There is a functional dependency between 

Column X and Column Y 

C C 

10 DF-Backward  There is a functional dependency between 

Column Y and Column X 

C C 

11 Belong-To-Forward  Column Y belongs to Table X T C 

 

12 Belong-To-Backward Column X belongs to Table Y C T 

13 PK-Forward Column X is the primary key of Table Y C T 

14 PK backward Column Y is the primary key of Table X T C 

15 TT-forward Table X and Table Y are linked by a foreign 

key  

T T 

16 TT-backward Table Y and Table X are linked by a foreign 

key 

T T 

The index 0 is linked to “None”, the edge label describing that there is no linking between two tokens. Q: Question 

| T: Table | C: Column 
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Algorithm 3: Spreading Open Sets 

Through Heads 

This algorithm operates by initializing 

dimensions based on the shape of relations and 

the number of heads in the model. It then creates 

an empty tensor and, for each head, creates a 

mask using the masking function with specific 

set indices. It multiplies the relation tensor by 

the mask and stores the result, effectively 

spreading open sets through heads to specialize 

the relations in the model. 

Algorithm 

Given: 

1. A tensor of relations: relations. 

2. Embeddings Space: space_embedding. 

3. Algorithm1. Combinations representing the 

topology: set_combinations. 

4. Algorithm 2. Masking module. 

The algorithm operates as follows: 

1. Initialize dimensions: q, k, f based on the 

shape of relations. 

2. Initialize “head” based on the number of 

heads in the model. 

3. Create an empty tensor rr with dimensions 

(head, q, k, f). 

4. For each head i: 

a. If i=0: 

i. Create a mask using the masking 

function with only the index 0. 

ii. Multiply the relation tensor relations by 

the mask and store it in rr [i]. 

b. Else: 

i. Retrieve the set of indices set_indice 

from set combinations[i−1]. 

ii. Create a mask using the masking 

function with set_indices. 

iii. Multiply the relation tensor relations by 

the mask and store it in rr[i]. 

5. Return the tensor rr representing the 

relations with specialized heads. 

In Algorithm 3, the Embeddings Space 

denoted as “space_embedding,” refers to the 

embeddings of the abstract type of existing 

relations between tokens. These embeddings are 

learned during the training process and are used 

to represent the abstract relationships between 

the input tokens in the direct graph used by T-

RAT. The space_embedding is used in the 

masking function to check if the relation 

between two tokens matches a specific type of 

relationship represented by an index in the 

set_indices list. If the relation matches the type 

of relationship represented by an index, the 

corresponding element in the mask tensor is set 

to 1, indicating that the relation should be 

included in the output tensor rr. 

The time complexity of Algorithm 3 is O(h * 

n^2), where h is the number of heads in the 

model and n is the number of elements in the 

set_combinations list. The algorithm iterates 

through each head and “sets combination” to 

create a mask using the masking function and 

multiplying the relation tensor by the mask. This 

involves nested iteration and multiplication 

operations. 

The space complexity of Algorithm 3 is O(h 

* m^2), where m is the size of the relation tensor. 

The algorithm requires space to store the rr 

tensor, which has dimensions (head, q, k, f), and 

the mask tensor, which has the same shape as the 

relation tensor. 

These algorithms are integral parts of the 

proposed Topological Relation-Aware 

Transformer (T-RAT) model and are designed to 

handle the encoding and processing of input 

data, particularly in the context of text-to-SQL 

tasks and relation-aware self-attention 

mechanisms. 

Experiments 

Dataset 

The dataset used is Spider [50]. Spider is a 

comprehensive text-to-SQL dataset annotated 

by 11 Yale students, aiming to facilitate the 

development of natural language interfaces for 

cross-domain databases. The dataset comprises 

10,181 questions and 5,693 unique complex 

SQL queries, spanning 200 databases with 

multiple tables across 138 domains. Spider 

presents a challenge by featuring diverse SQL 
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queries and databases in both training and 

testing sets, requiring systems to excel in 

generalization to new queries and database 

schemas. More details about Spider dataset: 

https://yale-lily.github.io/spider. 

Implementation 

The same architecture as in the RAT-SQL and 

Light RAT-SQL with the Spider dataset where 

we applied Algorithm 3 before computing the 

relation aware self-attention to make pre-

existing relations specialized through heads. 

The tokens (questions, column names, and 

table names) are tokenized and lemmatized 

using the Stanford NLP toolkit [63]. 

We use pre-trained word embeddings Glove 

[64] and then each part (question, columns, 

tables) is processed with bidirectional LSTMs 

[65] with 128 hidden sizes with a dropout with a 

rate of 0:2. On the top of this layer, we have 8 T-

RAT layers. 

The same configuration as RAT-SQL is used 

for T-RAT, we set dx = dz = 256, H = 8, and 

employ dropout with a rate of 0:1. 

The inner layer dimension of the position-

wise feed-forward network is 1024. We use rule 

embeddings of size 128, node type embeddings 

of size 64, and a hidden size of 512 inside the 

LSTM with a dropout of 0:21 inside the decoder. 

Hyperparameter 

The code was implemented in Pytorch[66] 

The training is done with Adam [67] as an 

optimizer with default hyperparameters. We use 

a batch size of 20 and train for up to 40,000 

steps. 

Results 

The experimental results from Table 2 

demonstrate compelling evidence of the 

enhanced performance of T-RAT models in 

comparison to the baseline Light RAT-SQL and 

RAT-SQL model, particularly on the test set of 

the Spider dataset. 

Specifically (in a setting without any 

enhancement of Pre-trained LLMs), T-RAT 

achieves an accuracy of 62.09%, while Light 

RAT-SQL achieves an accuracy of 60.25%, 

surpassing the accuracy of RAT-SQL, which 

stands at 57.2%. 

These findings underscore the efficacy of the 

proposed enhancements in T-RAT for improving 

the accuracy of text-to-SQL query generation 

models. 

By outperforming the baseline RAT-SQL 

model on the challenging test set of the Spider 

dataset, T-RAT exhibits promising potential in 

addressing the complexities of semantic parsing 

in natural language processing tasks. 

We ran 5 random experimentations of T-RAT-

SQL, Light RAT-SQL, and RAT-SQL without 

any pre-trained Large Language Models for 

comparison purposes (cf. Figure 3). 

Table 3 shows the confidence interval of each 

model, and we fail to reject H0 for RAT-SQL and 

Light RAT-SQL but there is strong evidence 

against H0 (p<0.001) for RAT-SQL and T-RAT. 

Table 2. Accuracy of the Spider Dataset 

Model Dev Test 

(Without any enhancement of a Pretrained Large Language Model: BERT, ELECTRA, etc.) 

IRNet [68] 53.2 46.7 

Global-GNN [39] 52.7 47.4 

IRNet V2 [68] 55.4 48.5 

RAT-SQL [7] 62.7 57.2 

Light RAT-SQL[8] - 60.25 

Our model (T-RAT) - 62.09 

the same (p=0.0047) for Light RAT-SQL and T-RAT. 
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Table 3. Test Set Accuracy (and 95% confidence interval) of T-RAT, RAT-SQL, Light RAT-SQL 

Model Accuracy 

T-RAT 61.58 ± 0.66 

Light RAT-SQL 58.99 ± 1.04 

RAT-SQL 58.90 ± 0.50 

 

Figure 3. Exact Match Accuracy of RAT-SQL, Light RAT-SQL, and T-RAT 

 

Figure 4. Loss Comparison between RAT-SQL and T-RAT 
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Discussion 

Regularization 

Topology-induced feature mixing, serving as 

a regularization mechanism, plays a pivotal role 

in mitigating overfitting within the model. By 

subjecting the model to an extensive array of 

patterns and relationships, this form of 

regularization diminishes the likelihood of the 

model memorizing the training data 

excessively. Instead, it fosters a propensity for 

the model to generalize adeptly when 

confronted with previously unseen data. 

In Figure 4, the cross-validation loss of RAT-

SQL and T-RAT is depicted (on the left y-axis). 

The discernible divergence in the cross-

validation loss between the two models 

suggests that the incorporation of topology-

induced adjustments in T-RAT has effectively 

curtailed overfitting tendencies, thereby 

promoting superior generalization compared to 

RAT-SQL. The nuanced alterations guided by 

the topology-induced regularization contribute 

to the model's enhanced capacity to extend its 

predictive capabilities beyond the confines of 

the training dataset. 

Stability 

Learning stability refers to the robustness 

and consistency of a machine learning model's 

performance across different training runs or 

datasets. A stable learning process implies that 

the model's behavior remains relatively 

consistent and reliable, even when subjected to 

variations in training data, initial conditions, or 

hyperparameter settings. 

In scrutinizing the learning curves of the 

model over epochs or iterations, as presented in 

Figure 4 (corresponding to the right y-axis), it 

becomes evident that the T-RAT learning curve 

exhibits greater stability compared to RAT-

SQL. The T-RAT model consistently converges 

across multiple instances of training runs, 

reflecting a heightened degree of reliability in 

its learning dynamics. 

Alignment And Sensitivity 

The graphical representation of the 

alignment generated by RAT-SQL, Light RAT-

SQL, and T-RAT is illustrated in Figure 1. A 

nuanced examination of T-RAT reveals an 

enhanced sensitivity to Schema Linking, 

exemplified by the discernible manifestation of 

unwarranted attention between the 

“model_list” table and the token “model.” This 

observation underscores the model's 

pronounced responsiveness to the intricacies of 

schema-linking relationships within the input 

structure. It is imperative to underscore that the 

manifestation of superfluous attention 

underscores the need to temper the schema-

linking inductive bias[69]. As this bias is 

mitigated, an anticipatory improvement in the 

model's overall behavior is anticipated. 

Reducing the schema-linking inductive bias is 

thus posited as an essential strategy for 

enhancing the model's discernment and 

performance. 

Conclusion 

The Topological Relation Aware 

Transformer (T-RAT) is a specialized head 

transformer designed to address the problem of 

Text-To-SQL. T-RAT achieves this by 

leveraging the topology structure of pre-

existing relations between input tokens and 

spreading each open set to one head of the 

Transformer. This specialization enables the 

model to capture diverse and contextually 

relevant relationship patterns within complex 

data, leading to improved accuracy. T-RAT also 

utilizes topology-induced feature mixing and an 

improved spreading algorithm to address the 

limitations of misalignment of tokens. 

Experimental results demonstrate that T-

RAT achieves higher exact match accuracy 

compared to baseline models RAT-SQL and 

Light RAT-SQL. The improved accuracy is 

attributed to the specialized head transformer 

and the effective utilization of pre-existing 

relations within the topology. It presents a 

promising approach to improving the accuracy 
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of text-to-SQL query generation models in low-

resource settings. 

Limitations 

T-RAT-SQL was not enhanced with large 

language models such as GPT, BERT, or 

ELECTRA since this requires large GPU 

resources that we do have not. Enhancing our 

proposed model with other LLMs can be crucial 

to determining its effectiveness with 

competitive SOTA models. 
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