
Texila International Journal of Academic Research

ISSN: 2520-3088

DOI: 10.21522/TIJAR.2014.11.01.Art015

Received : 08.12.2023 Accepted : 27.01.2024 Published on : 31.01.2024

Corresponding Author : nathanmanzambi@yahoo.fr

Topological Relation Aware Transformer

Nathan Manzambi Ndongala

Department of Computer Science, Texila American University, Guyana

Abstract

We present a Topological Relation Aware Transformer (T-RAT), a specialized head transformer to

open sets, an element of the topology τ generated by the set S, the set of all pre-existing relations between

input tokens of the model. From this topological space (S, τ), we present the way to spread each open

set to one head of our Transformer. T-RAT improves exact match accuracy in Text-To-SQL challenge

(62.09%) without any enhancement of large language models compared to the baseline models RAT-

SQL (57.2%) and Light RAT-SQL (60.25%).

Keywords: Deep learning, Natural Language Processing, Neural Semantic Parsing, Relation Aware

Transformer, RAT-SQL, Text-To-SQL Transformer.

Introduction

In Text-To-SQL [1-9], The Light RAT-SQL

[8] shows the way to reduce the number of

preexisting relations in the RAT-SQL framework

[7] by preserving the exact match accuracy

without any enhancement of pre-trained (LLMs)

large language models [10-15]. The limitation of

this method is that it can not be suitable for the

scenario where we have a lot of pre-existing

relations. Since each head in multi-head self-

attention must be specialized to at least one

relation, we will have a model with high

dimensions.

Another con is that Light-RAT-SQL suffers

from over-alignment as we can see in Figure 1,

there is more unnecessary attention on column

“*”, the same with RAT-SQL the column

horsepower getting so much attention.

To fix this, we present a new model, the

Topological Relation Aware Transformer(T-

RAT) inspired by the Topology theory and

Relation Aware Transformer [1, 7] where we

improve the “spreading algorithm” presented in

Light RAT-SQL.

The Topological Relation-Aware

Transformer (T-RAT) is a specialized head

transformer designed to address the problem of

semantic parsing of natural language to SQL

queries, particularly in the context of database

query tasks. In this paper, we present a novel

approach to leveraging the inherent relations

between tokens, such as those between natural

language questions and database schema

elements, to improve the accuracy of text-to-

SQL query generation models. T-RAT is built on

the foundation of topology theory and Relation

Aware Transformer (RAT), which improves the

capacity of multi-head self-attention models to

capture diverse and contextually relevant

relationship patterns within complex data. Our

proposed method spreads each open set to one

head of the Transformer, enabling the model to

capture nuanced relationships between input

tokens and improve the accuracy of text-to-SQL

query generation.

We believe that RAT-SQL overfits because of

many preexisting relations, and Light RAT-SQL

misaligned some tokens due to few relations and

mixing forward and backward edges.

1

mailto:nathanmanzambi@yahoo.fr

Figure 1. Alignment between the Question “For the Cars with 4 Cylinders, which Model has the Largest

Horsepower” and the Database Car_1 Schema (Columns and Tables)

Up-Left: The RAT-SQL – Up-Right: Light RAT-SQL and bottom-left: T-RAT

So, this question remains open: How can the

inherent relations between tokens, such as those

between natural language questions and

database schema elements, be effectively

leveraged to improve the accuracy of text-to-

SQL query generation models?

The inherent relations between tokens, such

as those between natural language questions and

database schema elements, can be effectively

leveraged to address the problem of semantic

parsing of natural language to SQL queries. We

hypothesize that by spreading each open set to

one head of the Transformer, the T-RAT model

can capture nuanced relationships between input

tokens, leading to improved accuracy in text-to-

SQL query generation models. Additionally, we

believe that the topology structure of the pre-

existing relations enhances the capacity of

multi-head self-attention models to capture

diverse and contextually relevant relationship

patterns within complex data. This will help to

have feature diversification and learning

complementary information, ultimately

improving the overall accuracy of text-to-SQL

query generation models. This hypothesis forms

the basis for our exploration of the T-RAT model

and its potential to effectively address the

challenges of semantic parsing in the context of

natural language to SQL queries.

Our contribution and key findings:

1. We present a way to leverage preexisting

relations between input tokens in Text-To-

SQL to improve the exact match accuracy of

RAT-SQL, Light RAT-SQL (without any

enhancement of the pre-trained large

language models).

2. The topology structure of the pre-existing

relations enhances the capacity of multi-

head self-attention models to capture

diverse and contextually relevant

relationship patterns within complex data.

This will help to have feature diversification

and learning complementary information.

So, improving the overall accuracy.

3. By tailoring each head to different elements

of the topology, it facilitates a more detailed

and nuanced understanding of relationships

in the input data, making it a valuable tool

in NLP tasks.

2

A detailed description of the T-RAT model

has been presented so far, including the

algorithms used to encode and process input data

and demonstrate its effectiveness in addressing

the problem of semantic parsing of natural

language to SQL queries. Our experimental

results show that T-RAT achieves higher exact

match accuracy compared to baseline models

RAT-SQL and Light RAT-SQL.

Overall, T-RAT presents a promising

approach to addressing the problem of semantic

parsing of natural language to SQL queries in

low-resource settings, and our proposed method

of spreading open sets through heads provides a

valuable tool for capturing nuanced

relationships between input tokens.

Related Work

Text-To-SQL

The exploration of Text-to-SQL conversion

employing deep learning techniques has

witnessed considerable advancements, driven

by the expressive power and adaptability of

neural network architectures. This section

provides an overview of the related work in the

domain, highlighting key developments and

methodologies.

Sequence-to-Sequence Models

Early forays into leveraging deep learning for

Text-to-SQL predominantly featured sequence-

to-sequence models [2, 16]. These models,

inspired by their success in machine translation,

were adapted to map natural language utterances

to SQL queries. The encoder-decoder

architecture facilitated the capturing of complex

linguistic structures, yet challenges persisted in

handling the semantic intricacies inherent in

SQL generation.

Attention Mechanisms

The integration of attention mechanisms [17-

21] marked a significant enhancement in

capturing dependencies within the input

sequence. Attention mechanisms allowed

models to focus on specific parts of the input

when generating corresponding SQL tokens,

improving the overall contextual understanding.

Noteworthy works, such as SQLNet [4, 6, 16],

introduced attention mechanisms tailored for the

Text-to-SQL task.

Pre-trained Language Models

The rise of pre-trained language models [10-

12], [22-24], such as BERT [14, 25-28] and GPT

(Generative Pre-trained Transformer) [13, 15],

has had a transformative impact on various

natural language processing tasks, including

Text-to-SQL. Fine-tuning these models for SQL

generation tasks demonstrated substantial gains

in capturing nuanced linguistic patterns and

semantic relationships. GP [29], GAP [30],

GRAPPA [31], STRUG [32] are among

Pretraining Text-To-SQL.

Semantic Parsing Techniques

Advancements in semantic parsing [33-36]

have played a crucial role in refining Text-to-

SQL models. Techniques incorporating

semantic role labeling and syntax-aware parsing

have been explored to imbue models with a

deeper understanding of the underlying

semantics, enabling more accurate SQL query

generation.

Graph-Based Semantic Parsing

Graph-based methods [1, 37-43] have gained

prominence for their ability to represent

complex relationships and dependencies within

a sentence. Dependency graphs or semantic

graphs are constructed to capture the syntactic

and semantic connections between words.

Nodes in the graph correspond to words, and

edges encode grammatical or semantic

relationships. Graph-based methods facilitate a

holistic understanding of sentence structure,

enabling effective extraction of formal semantic

representations for subsequent processing.

Cross-Domain Adaptability and

Multilingual Text-to-SQL

Recent efforts have been directed towards

enhancing the adaptability of Text-to-SQL

3

models across diverse domains and linguistic

variations. Enhanced by GPT-4 [44], these

models [45, 46] perform high accuracy and are

now SOTA in most benchmark.

The availability of high-quality datasets is

crucial for training, evaluating, and

benchmarking models.

Various datasets have been created to address

the complexity of mapping natural language

queries to SQL queries accurately: ATIS, Spider,

WikiSQL, CoSQL, etc. [47-61].

In summary, the evolution of Text-to-SQL

with deep learning has witnessed a shift from

traditional sequence-to-sequence models to

sophisticated architectures incorporating

attention mechanisms, pre-trained language

models, and hybrid learning strategies. Ongoing

research continues to explore innovative

approaches to improve model accuracy,

generalization, and adaptability across diverse

linguistic and database contexts.

Topology on a Set

Formally, let S be a set and let τ be a family

of subsets of S. Then τ is called a topology on S

if:

1. Both the empty set and S are elements of τ.

2. Any union of elements of τ is an element of

τ.

3. Any intersection of finitely many elements

of τ is an element of τ.

If τ is a topology on S, then the pair (S, τ) is

called a topological space.

The members of τ are called open sets in S.

If the complement of a subset of S is in τ, then

the subset is considered closed; that is, its

complement is open. A subset of S can be

neither, both (a clopen set), open, or closed.

There is always a closed and an open set, the

empty set and S itself. A neighborhood of S is an

open subset of S that includes the point s [62].

RAT-SQL

The text-to-SQL encoder should be able to

encode database relations in such a way that the

semantic parser and model alignment between

the database schema and the given query are

optimized.

How the inputs (schema: tables & columns,

and question) are simultaneously encoded is

critical for generalization purposes for unknown

database structures.

The RAT-SQL framework [7], built on the

relation-aware self-attention mechanism [20]

and pointer networks [18], solves the Text-to-

SQL challenge's generalization problem.

The relative position distance in input tokens

is used as the graph's edge in relation-aware self-

attention [18], whereas RAT-SQL uses an

embedding of abstract type of existing relations

between tokens.

However, both bias the self-attention

equation in the same way to inject the graph's

edges into their model.

Equations of relation-aware self-attention:

𝒆𝒊,𝒋
𝒉 = (

(𝑿𝑾𝒒(𝑿𝑾𝒌+𝑹𝒌)𝑻)

√𝒅𝒌
)

(1)

𝛂𝒊,𝒋
𝒉 = softmax(𝒆𝒊,𝒋

𝒉) (2)

𝒛𝒊
𝒉 =∑ 𝛂𝒊,𝒋

𝒉 (𝑿𝑾𝒗 + 𝑹𝒗)𝒗 (3)

where matrices Wq, Wk, and Wv are trainable

parameters in self-attention.

Rk and Rv are embedding learned from the

abstract relations of the input graph in the key

space and value space of the transformer [17].

Methods

The Topological Relation Aware Transformer

(T-RAT) is a specialized head transformer

designed to address the problem of semantic

parsing of natural language to SQL queries,

particularly in the context of database query

tasks. T-RAT achieves this by leveraging the

topology structure of pre-existing relations

between input tokens and spreading each open

set to one head of the Transformer.

T-RAT uses a direct graph to represent the

pre-existing relations between input tokens,

such as syntax dependency in question tokens,

schema linking between the question tokens and

column/table tokens, and schema encoding in

column and table tokens.

4

https://en.wikipedia.org/wiki/Family_of_sets

The direct graph consists of different edges

that describe the relationships between the

tokens, such as forward and backward syntax

dependency, value-based linking, name-based

linking, foreign key linking, and primary key

linking.

T-RAT then uses multi-head self-attention as

in the baseline model (Light RAT-SQL) to tailor

each head to different elements of the topology,

facilitating a more detailed and nuanced

understanding of relationships in the input data.

This allows T-RAT to capture diverse and

contextually relevant relationship patterns

within complex data, leading to improved

accuracy.

Problem Definition (Text-To-SQL)

Given a natural language question

Q=q1…q|Q| , a database schema S = <C, T> with

columns C={c1,…, c|C| } and tables T={ t1,…,

t|T| }

The objective of text-to-SQL is to predict the

SQL query y from the input <Q, S>

The most used model in such a challenge is

an encoder and decoder architecture pattern with

attention mechanisms between the encoder and

decoder.

The encoder encodes input as graph G=<V,

R> where V=Q U T U C are nodes of types { Q,

T, C } The initial embedding matrix X R
Vxd

, [V

= Q+T+C, and d is the dimension model] is

flattened and the edge R is the known relation

between two input tokens.

In this work, our proposed method improves

the encoder side, especially, the existing RAT-

SQL model [8, 7]. Please refer to [33, 34, 62]

works for a thorough description of the decoder

side.

Relations in T-Rat: Open Heads

Given a set S = {Question, Linking, Schema}

Where each element of S is a set of indexes and

each index represents an edge type in the direct

graph G.

1. Question= {1, 2}

2. Linking = {3, 4, 5, 6}

3. Schema= {7, 8, 9,., 16}

Table 1. gives more details about each index,

the name of the abstract edges, the set where the

index belongs, and the description of the edge.

The topology generated by a set S of sets can

be thought of as the set of all possible unions of

elements from the sets in S, including the empty

set.

The topology generated by S would consist of

all possible unions of elements from Question,

Linking, Schema, as well as the empty set.

So, the topology generated by S would

include:

1. The empty set: ∅

2. The sets Question, Linking, and Schema

individually.

3. The unions of pairs of sets, such as Question

∪ Schema, Question ∪ Linking, and

Schema ∪ Linking.

4. The union of all three sets: Question ∪

Linking ∪ Schema.

This topology represents all the possible

combinations and subsets that can be formed by

taking elements from the sets Question,

Linking, and Schema, including the individual

sets and the empty set.

This generated topology has 8 elements, and

each head of T-RAT will be specialized to one

open set. For example: suppose that the second

head will be specialized to the open set

“Question” That means this head will learn

only: SD-forward and SD-backward because

these are 2 edges in this open set as described in

Table 1.

Algorithms

Figure 2. Shows different modules and

components involved in T-RAT.

Algorithm 1: Building Open Sets

This algorithm initializes a list to represent

different sets such as “Question,” “Schema,”

and “Linking.” It then creates a list of indices to

map the indices of edges corresponding to each

set, effectively building open sets for the input

data.

5

Algorithm

1. Initialize a list S to represent different sets

such as “Question,” “Schema,” and

“Linking.”

2. Create a list of R_indices to map the indices

of edges corresponding to each set:

a. For “Question,” the indices are [1, 2].

b. For “Schema,” the indices are [7, 8, 9, 10,

11, 12, 13, 14, 15, 16].

c. For “Linking,” the indices are [3, 4, 5, 6].

3. Define a list set_combinations to store all

possible combinations of these set indices,

creating a topology (excluding the empty set):

a. Generate combinations from R_indices of

size 1, 2, and 3 to encompass all possible

combinations.

The time complexity of Algorithm 1 is O(n),

where n is the number of elements in the sets

“Question,” “Schema,” and “Linking.” The

algorithm iterates through the elements of the

sets to initialize the list R and create a list of

R_indices, which involves simple iteration and

mapping operations.

Figure 2. Different Modules of Spreading Open Sets through Heads

The space complexity of Algorithm 1 is O(n),

as it requires space to store the sets “Question,”

“Schema,” and “Linking,” as well as the lists R

and R_indices.

Algorithm 2: Masking Function

The masking function takes three parameters:

relation, space_embedding, and set_indices. It

initializes a mask tensor with the same shape as

the relation and sets it to all zeros. It then iterates

through each index in set_indices, checks if the

relation is equal to space_embedding[i], and

accumulates these matches into the mask.

Algorithm

1. Define a masking function that takes three

parameters: relation, space_embedding, and

set_indices.

2. Initialize a mask tensor with the same shape

as the relation and set it to all zeros.

3. Iterate through each index i in set_indices:

6

a. Check if the relation is equal to

space_embedding[i] and accumulate these

matches into the mask.

4. Return the resulting mask.

The time complexity of Algorithm 2 is O(n),

where n is the number of elements in the

set_indices list. The algorithm iterates through

the set_indices list to check if the relation is

equal to space_embedding[i] and accumulates

these matches into the mask. This involves

simple iteration and comparison operations.

The space complexity of Algorithm 2 is

O(m), where m is the size of the relation tensor.

The algorithm requires space to store the mask

tensor, which has the same shape as the relation

tensor.

Table 1. Description of Different Edges in Direct Graph used in T-RAT

Index Edge label SET Description X Y

1 SD-forward Question Y is the source word of X under syntax

dependency

Q Q

2 SD-backward Y is the target word of X under syntax

dependency

Q Q

3 VBL forward Linking Value-based-Linking forward: question X

references any values found in the database

and so participates in the SQL query

Q C

4 VBL backward Value-based-Linking backward: question Y

references any values found in the database

and so participates in the SQL query

C Q

5 NBL forward Name-based linking forward refers to exact

or partial occurrences of either the table

name or Column name Y in question X

Q T or C

6 NBL backward Name-based linking backward refers to exact

or partial occurrences of either the table

name or Column name X in question Y

T or C Q

7 FK-Forward Schema The table X has a column Y as a foreign key T C

8 FK-Backward The column X is a foreign key to the table Y C T

9 DF-Forward There is a functional dependency between

Column X and Column Y

C C

10 DF-Backward There is a functional dependency between

Column Y and Column X

C C

11 Belong-To-Forward Column Y belongs to Table X T C

12 Belong-To-Backward Column X belongs to Table Y C T

13 PK-Forward Column X is the primary key of Table Y C T

14 PK backward Column Y is the primary key of Table X T C

15 TT-forward Table X and Table Y are linked by a foreign

key

T T

16 TT-backward Table Y and Table X are linked by a foreign

key

T T

The index 0 is linked to “None”, the edge label describing that there is no linking between two tokens. Q: Question

| T: Table | C: Column

7

Algorithm 3: Spreading Open Sets

Through Heads

This algorithm operates by initializing

dimensions based on the shape of relations and

the number of heads in the model. It then creates

an empty tensor and, for each head, creates a

mask using the masking function with specific

set indices. It multiplies the relation tensor by

the mask and stores the result, effectively

spreading open sets through heads to specialize

the relations in the model.

Algorithm

Given:

1. A tensor of relations: relations.

2. Embeddings Space: space_embedding.

3. Algorithm1. Combinations representing the

topology: set_combinations.

4. Algorithm 2. Masking module.

The algorithm operates as follows:

1. Initialize dimensions: q, k, f based on the

shape of relations.

2. Initialize “head” based on the number of

heads in the model.

3. Create an empty tensor rr with dimensions

(head, q, k, f).

4. For each head i:

a. If i=0:

i. Create a mask using the masking

function with only the index 0.

ii. Multiply the relation tensor relations by

the mask and store it in rr [i].

b. Else:

i. Retrieve the set of indices set_indice

from set combinations[i−1].

ii. Create a mask using the masking

function with set_indices.

iii. Multiply the relation tensor relations by

the mask and store it in rr[i].

5. Return the tensor rr representing the

relations with specialized heads.

In Algorithm 3, the Embeddings Space

denoted as “space_embedding,” refers to the

embeddings of the abstract type of existing

relations between tokens. These embeddings are

learned during the training process and are used

to represent the abstract relationships between

the input tokens in the direct graph used by T-

RAT. The space_embedding is used in the

masking function to check if the relation

between two tokens matches a specific type of

relationship represented by an index in the

set_indices list. If the relation matches the type

of relationship represented by an index, the

corresponding element in the mask tensor is set

to 1, indicating that the relation should be

included in the output tensor rr.

The time complexity of Algorithm 3 is O(h *

n^2), where h is the number of heads in the

model and n is the number of elements in the

set_combinations list. The algorithm iterates

through each head and “sets combination” to

create a mask using the masking function and

multiplying the relation tensor by the mask. This

involves nested iteration and multiplication

operations.

The space complexity of Algorithm 3 is O(h

* m^2), where m is the size of the relation tensor.

The algorithm requires space to store the rr

tensor, which has dimensions (head, q, k, f), and

the mask tensor, which has the same shape as the

relation tensor.

These algorithms are integral parts of the

proposed Topological Relation-Aware

Transformer (T-RAT) model and are designed to

handle the encoding and processing of input

data, particularly in the context of text-to-SQL

tasks and relation-aware self-attention

mechanisms.

Experiments

Dataset

The dataset used is Spider [50]. Spider is a

comprehensive text-to-SQL dataset annotated

by 11 Yale students, aiming to facilitate the

development of natural language interfaces for

cross-domain databases. The dataset comprises

10,181 questions and 5,693 unique complex

SQL queries, spanning 200 databases with

multiple tables across 138 domains. Spider

presents a challenge by featuring diverse SQL

8

queries and databases in both training and

testing sets, requiring systems to excel in

generalization to new queries and database

schemas. More details about Spider dataset:

https://yale-lily.github.io/spider.

Implementation

The same architecture as in the RAT-SQL and

Light RAT-SQL with the Spider dataset where

we applied Algorithm 3 before computing the

relation aware self-attention to make pre-

existing relations specialized through heads.

The tokens (questions, column names, and

table names) are tokenized and lemmatized

using the Stanford NLP toolkit [63].

We use pre-trained word embeddings Glove

[64] and then each part (question, columns,

tables) is processed with bidirectional LSTMs

[65] with 128 hidden sizes with a dropout with a

rate of 0:2. On the top of this layer, we have 8 T-

RAT layers.

The same configuration as RAT-SQL is used

for T-RAT, we set dx = dz = 256, H = 8, and

employ dropout with a rate of 0:1.

The inner layer dimension of the position-

wise feed-forward network is 1024. We use rule

embeddings of size 128, node type embeddings

of size 64, and a hidden size of 512 inside the

LSTM with a dropout of 0:21 inside the decoder.

Hyperparameter

The code was implemented in Pytorch[66]

The training is done with Adam [67] as an

optimizer with default hyperparameters. We use

a batch size of 20 and train for up to 40,000

steps.

Results

The experimental results from Table 2

demonstrate compelling evidence of the

enhanced performance of T-RAT models in

comparison to the baseline Light RAT-SQL and

RAT-SQL model, particularly on the test set of

the Spider dataset.

Specifically (in a setting without any

enhancement of Pre-trained LLMs), T-RAT

achieves an accuracy of 62.09%, while Light

RAT-SQL achieves an accuracy of 60.25%,

surpassing the accuracy of RAT-SQL, which

stands at 57.2%.

These findings underscore the efficacy of the

proposed enhancements in T-RAT for improving

the accuracy of text-to-SQL query generation

models.

By outperforming the baseline RAT-SQL

model on the challenging test set of the Spider

dataset, T-RAT exhibits promising potential in

addressing the complexities of semantic parsing

in natural language processing tasks.

We ran 5 random experimentations of T-RAT-

SQL, Light RAT-SQL, and RAT-SQL without

any pre-trained Large Language Models for

comparison purposes (cf. Figure 3).

Table 3 shows the confidence interval of each

model, and we fail to reject H0 for RAT-SQL and

Light RAT-SQL but there is strong evidence

against H0 (p<0.001) for RAT-SQL and T-RAT.

Table 2. Accuracy of the Spider Dataset

Model Dev Test

(Without any enhancement of a Pretrained Large Language Model: BERT, ELECTRA, etc.)

IRNet [68] 53.2 46.7

Global-GNN [39] 52.7 47.4

IRNet V2 [68] 55.4 48.5

RAT-SQL [7] 62.7 57.2

Light RAT-SQL[8] - 60.25

Our model (T-RAT) - 62.09

the same (p=0.0047) for Light RAT-SQL and T-RAT.

9

https://yale-lily.github.io/spider

Table 3. Test Set Accuracy (and 95% confidence interval) of T-RAT, RAT-SQL, Light RAT-SQL

Model Accuracy

T-RAT 61.58 ± 0.66

Light RAT-SQL 58.99 ± 1.04

RAT-SQL 58.90 ± 0.50

Figure 3. Exact Match Accuracy of RAT-SQL, Light RAT-SQL, and T-RAT

Figure 4. Loss Comparison between RAT-SQL and T-RAT

10

Discussion

Regularization

Topology-induced feature mixing, serving as

a regularization mechanism, plays a pivotal role

in mitigating overfitting within the model. By

subjecting the model to an extensive array of

patterns and relationships, this form of

regularization diminishes the likelihood of the

model memorizing the training data

excessively. Instead, it fosters a propensity for

the model to generalize adeptly when

confronted with previously unseen data.

In Figure 4, the cross-validation loss of RAT-

SQL and T-RAT is depicted (on the left y-axis).

The discernible divergence in the cross-

validation loss between the two models

suggests that the incorporation of topology-

induced adjustments in T-RAT has effectively

curtailed overfitting tendencies, thereby

promoting superior generalization compared to

RAT-SQL. The nuanced alterations guided by

the topology-induced regularization contribute

to the model's enhanced capacity to extend its

predictive capabilities beyond the confines of

the training dataset.

Stability

Learning stability refers to the robustness

and consistency of a machine learning model's

performance across different training runs or

datasets. A stable learning process implies that

the model's behavior remains relatively

consistent and reliable, even when subjected to

variations in training data, initial conditions, or

hyperparameter settings.

In scrutinizing the learning curves of the

model over epochs or iterations, as presented in

Figure 4 (corresponding to the right y-axis), it

becomes evident that the T-RAT learning curve

exhibits greater stability compared to RAT-

SQL. The T-RAT model consistently converges

across multiple instances of training runs,

reflecting a heightened degree of reliability in

its learning dynamics.

Alignment And Sensitivity

The graphical representation of the

alignment generated by RAT-SQL, Light RAT-

SQL, and T-RAT is illustrated in Figure 1. A

nuanced examination of T-RAT reveals an

enhanced sensitivity to Schema Linking,

exemplified by the discernible manifestation of

unwarranted attention between the

“model_list” table and the token “model.” This

observation underscores the model's

pronounced responsiveness to the intricacies of

schema-linking relationships within the input

structure. It is imperative to underscore that the

manifestation of superfluous attention

underscores the need to temper the schema-

linking inductive bias[69]. As this bias is

mitigated, an anticipatory improvement in the

model's overall behavior is anticipated.

Reducing the schema-linking inductive bias is

thus posited as an essential strategy for

enhancing the model's discernment and

performance.

Conclusion

The Topological Relation Aware

Transformer (T-RAT) is a specialized head

transformer designed to address the problem of

Text-To-SQL. T-RAT achieves this by

leveraging the topology structure of pre-

existing relations between input tokens and

spreading each open set to one head of the

Transformer. This specialization enables the

model to capture diverse and contextually

relevant relationship patterns within complex

data, leading to improved accuracy. T-RAT also

utilizes topology-induced feature mixing and an

improved spreading algorithm to address the

limitations of misalignment of tokens.

Experimental results demonstrate that T-

RAT achieves higher exact match accuracy

compared to baseline models RAT-SQL and

Light RAT-SQL. The improved accuracy is

attributed to the specialized head transformer

and the effective utilization of pre-existing

relations within the topology. It presents a

promising approach to improving the accuracy

11

of text-to-SQL query generation models in low-

resource settings.

Limitations

T-RAT-SQL was not enhanced with large

language models such as GPT, BERT, or

ELECTRA since this requires large GPU

resources that we do have not. Enhancing our

proposed model with other LLMs can be crucial

to determining its effectiveness with

competitive SOTA models.

Acknowledgments

We would like to thank Christian BOPE for

his leadership talks and guidance that shaped this

work. We also thank anonymous reviewers for

their crucial input.

Conflict Of Interest Statement

All authors declare that they have no conflicts

of interest.

References

[1] T. Scholak, R. Li, D. Bahdanau, H. de Vries, and

C. Pal, “DuoRAT: Towards Simpler Text-to-SQL

Models,” Oct. 2020, doi: 10.18653/v1/2021.naacl-

main.103.

[2] W. Hou and Y. Nie, “Seq2seq-Attention Question

Answering Model.

[3] O. Goldman, V. Latcinnik, U. Naveh, A.

Globerson, and J. Berant, “Weakly-supervised

Semantic Parsing with Abstract Examples,” Nov.

2017, [Online]. Available:

http://arxiv.org/abs/1711.05240.

[4] X. V. Lin, R. Socher, and C. Xiong, “Bridging

Textual and Tabular Data for Cross-Domain Text-to-

SQL Semantic Parsing,” Dec. 2020, [Online].

Available: http://arxiv.org/abs/2012.12627

[5] I Gur, S. Yavuz, Y. Su, and X. Yan, “DialSQL:

Dialogue Based Structured Query Generation.”

[6] X. Xu, C. Liu, and D. Song, “SQLNet:

Generating Structured Queries from Natural

Language Without Reinforcement Learning,” Nov.

2017, [Online]. Available:

http://arxiv.org/abs/1711.04436.

[7] B. Wang, R. Shin, X. Liu, O. Polozov, and M.

Richardson, “RAT-SQL: Relation-Aware Schema

Encoding and Linking for Text-to-SQL Parsers,”

2020. [Online]. Available:

https://github.com/Microsoft/rat-sql.

[8] N. M. Ndongala, “Light RAT-SQL: A RAT-SQL

with More Abstraction and Less Embedding of Pre-

existing Relations,” Texila Int. J. Acad. Res., vol. 10,

no. 2, pp. 1–11, 2023, doi:

10.21522/tijar.2014.10.02.art001.

[9] G. Huilin, G. Tong, W. Fan, and M. Chao,

“Bidirectional attention for SQL generation,” in

2019 IEEE 4th International Conference on Cloud

Computing and Big Data Analytics, ICCCBDA

2019, Institute of Electrical and Electronics

Engineers Inc., Apr. 2019, pp. 676–682. doi:

10.1109/ICCCBDA.2019.8725626.

[10] K. Clark, M.-T. Luong, Q. V. Le, and C. D.

Manning, “ELECTRA: Pre-training Text Encoders

as Discriminators Rather Than Generators,” Mar.

2020, [Online]. Available:

http://arxiv.org/abs/2003.10555.

[11] M. Lewis et al., “BART: Denoising Sequence-

to-Sequence Pre-training for Natural Language

Generation, Translation, and Comprehension,” Oct.

2019, [Online]. Available:

http://arxiv.org/abs/1910.13461.

[12] M. Shoeybi, M. Patwary, R. Puri, P. Legresley,

J. Casper, and B. Catanzaro, “Megatron-LM:

Training Multi-Billion Parameter Language Models

Using Model Parallelism,” 2020. [Online].

Available: https://github.com/.

[13] T. B. Brown et al., “Language Models are Few-

Shot Learners,” 2020. [Online]. Available:

https://commoncrawl.org/the-data/.

[14] Z. Lan et al., “ALBERT: A Lite Bert for Self-

Supervised Learning Of Language

Representations,” 2020. [Online]. Available:

https://github.com/google-research/ALBERT.

[15] A. Radford, J. Wu, R. Child, D. Luan, D.

Amodei, and I. Sutskever, “Language Models are

Unsupervised Multitask Learners,” 2019. [Online].

Available: https://github.com/codelucas/newspaper.

12

http://arxiv.org/abs/1711.05240
http://arxiv.org/abs/2012.12627
http://arxiv.org/abs/1711.04436
https://github.com/Microsoft/rat-sql
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/1910.13461
https://github.com/
https://commoncrawl.org/the-data/
https://github.com/google-research/ALBERT
https://github.com/codelucas/newspaper

[16] V. Zhong, C. Xiong, and R. Socher, “Seq2SQL:

Generating Structured Queries from Natural

Language using Reinforcement Learning,” Aug.

2017, [Online]. Available:

http://arxiv.org/abs/1709.00103.

[17] A. Vaswani et al., “Attention Is All You Need,”

Jun. 2017, [Online]. Available:

http://arxiv.org/abs/1706.03762.

[18] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer

Networks,” Jun. 2015, [Online]. Available:

http://arxiv.org/abs/1506.03134.

[19] Z. Tu, Z. Lu, L. Yang, X. Liu, and H. Li,

“Modeling coverage for neural machine

translation,” in 54th Annual Meeting of the

Association for Computational Linguistics, ACL

2016 - Long Papers, Jan. 2016, pp. 76–85. doi:

10.18653/v1/p16-1008.

[20] P. Shaw, J. Uszkoreit, G. Brain, and A. Vaswani,

“Self-Attention with Relative Position

Representations,” 2018.

[21] L. Zehui, P. Liu, L. Huang, J. Chen, X. Qiu, and

X. Huang, “DropAttention: A Regularization

Method for Fully Connected Self-Attention

Networks,” Jul. 2019, Accessed: Apr. 04, 2022.

[Online]. Available:

http://arxiv.org/abs/1907.11065.

[22] E. M. Bender, T. Gebru, A. McMillan-Major,

and S. Shmitchell, “On the dangers of stochastic

parrots: Can language models be too big?” in FAccT

2021 - Proceedings of the 2021 ACM Conference on

Fairness, Accountability, and Transparency,

Association for Computing Machinery, Inc, Mar.

2021, pp. 610–623. doi: 10.1145/3442188.3445922.

[23] D. E. B. A. D. Ecoding and E. Bert, “Entangled

A Ttention with D Is -,” 2021.

[24] W. Fedus, B. Zoph, and N. Shazeer, “Switch

Transformers: Scaling to Trillion Parameter Models

with Simple and Efficient Sparsity,” 2022.

[25] J. Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova, “BERT: Pre-training of Deep

Bidirectional Transformers for Language

Understanding (Bidirectional Encoder

Representations from Transformers),” Bert-Ppt,

2018.

[26] V. Sanh, L. Debut, J. Chaumond, and T. Wolf,

“DistilBERT, a distilled version of BERT: smaller,

faster, cheaper and lighter,” Oct. 2019, [Online].

Available: http://arxiv.org/abs/1910.01108.

[27] Y. Liu et al., “RoBERTa: A Robustly Optimized

BERT Pretraining Approach,” Jul. 2019, [Online].

Available: http://arxiv.org/abs/1907.11692.

[28] H. Li, J. Zhang, C. Li, and H. Chen,

“RESDSQL: Decoupling Schema Linking and

Skeleton Parsing for Text-to-SQL,” Feb. 2023,

[Online]. Available: http://arxiv.org/abs/2302.05965

[29] L. Zhao, H. Cao, and Y. Zhao, “GP: Context-

free Grammar Pre-training for Text-to-SQL

Parsers,” Jan. 2021, [Online]. Available:

http://arxiv.org/abs/2101.09901.

[30] P. Shi et al., “Learning Contextual

Representations for Semantic Parsing with

Generation-Augmented Pre-Training,” Dec. 2020,

[Online]. Available: http://arxiv.org/abs/2012.10309

[31] T. Yu et al., “GraPPa: Grammar-Augmented

Pre-Training for Table Semantic Parsing,” Sep.

2020, [Online]. Available:

http://arxiv.org/abs/2009.13845.

[32] X. Deng, A. H. Awadallah, C. Meek, O.

Polozov, H. Sun, and M. Richardson, “Structure-

Grounded Pretraining for Text-to-SQL,” Oct. 2020,

doi: 10.18653/v1/2021.naacl-main.105.

[33] P. Yin and G. Neubig, “TRANX: A Transition-

based Neural Abstract Syntax Parser for Semantic

Parsing and Code Generation,” Oct. 2018, [Online].

Available: http://arxiv.org/abs/1810.02720.

[34] P. Yin, C. Zhou, J. He, and G. Neubig,

“STRUCTVAE: Tree-structured Latent Variable

Models for Semi-supervised Semantic Parsing.”

[Online]. Available: http://pcyin.me/struct.

[35] L. Dong and M. Lapata, “Language to Logical

Form with Neural Attention,” Jan. 2016, [Online].

Available: http://arxiv.org/abs/1601.01280.

[36] L. Dong and M. Lapata, “Coarse-to-Fine

Decoding for Neural Semantic Parsing,” May 2018,

[Online]. Available:

http://arxiv.org/abs/1805.04793.

[37] A. Gopalan et al., “Neural Structured Learning:

Training Neural Networks with Structured Signals,”

in WSDM 2021 - Proceedings of the 14th ACM

International Conference on Web Search and Data

Mining, 2021. doi: 10.1145/3437963.3441666.

13

http://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1506.03134
http://arxiv.org/abs/1907.11065
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2101.09901
http://arxiv.org/abs/2009.13845
http://arxiv.org/abs/1810.02720
http://pcyin.me/struct
http://arxiv.org/abs/1601.01280
http://arxiv.org/abs/1805.04793

[38] I. Gopalan et al., “Neural Structured Learning,”

2020. doi: 10.1145/3394486.3406701.

[39] II. Bogin, M. Gardner, and J. Berant, “Global

Reasoning over Database Structures for Text-to-

SQL Parsing,” 2019.

[40] Y. Ma and J. Tang, “Graph Neural Networks in

Natural Language Processing,” in Deep Learning on

Graphs, 2021. doi: 10.1017/9781108924184.015.

[41] I. Hui et al., “S2SQL: Injecting Syntax to

Question-Schema Interaction Graph Encoder for

Text-to-SQL Parsers,” Mar. 2022, [Online].

Available: http://arxiv.org/abs/2203.06958.

[42] R. Cai, J. Yuan, B. Xu, and Z. Hao, “SADGA:

Structure-Aware Dual Graph Aggregation Network

for Text-to-SQL,” Oct. 2021, [Online]. Available:

http://arxiv.org/abs/2111.00653.

[43] R. Cao, L. Chen, Z. Chen, Y. Zhao, S. Zhu, and

K. Yu, “LGESQL: Line Graph Enhanced Text-to-

SQL Model with Mixed Local and Non-Local

Relations,” Jun. 2021, [Online]. Available:

http://arxiv.org/abs/2106.01093.

[44] OpenAI et al., “GPT-4 Technical Report,” vol.

4, pp. 1–100, 2023, [Online]. Available:

http://arxiv.org/abs/2303.08774.

[45] M. Pourreza and D. Rafiei, “DIN-SQL:

Decomposed In-Context Learning of Text-to-SQL

with Self-Correction,” no. NeurIPS, pp. 1–34, 2023,

[Online]. Available:

http://arxiv.org/abs/2304.11015.

[46] I. Gao et al., “Text-to-SQL Empowered by

Large Language Models: A Benchmark Evaluation,”

2023, [Online]. Available:

http://arxiv.org/abs/2308.15363.

[47] I. A. Dahl et al., “EXPANDING THE SCOPE

OF THE ATIS TASK: THE ATIS-3 CORPUS.”

[48] Y. Gan et al., “Towards robustness of text-to-

SQL models against synonym substitution,” ACL-

IJCNLP 2021 - 59th Annu. Meet. Assoc. Comput.

Linguist. 11th Int. Jt. Conf. Nat. Lang. Process. Proc.

Conf., pp. 2505–2515, 2021, doi:

10.18653/v1/2021.acl-long.195.

[49] P. Utama et al., “An End-to-end Neural Natural

Language Interface for Databases,” 2018, [Online].

Available: http://arxiv.org/abs/1804.00401.

[50] T. Yu et al., “Spider: A Large-Scale Human-

Labeled Dataset for Complex and Cross-Domain

Semantic Parsing and Text-to-SQL Task,” Sep.

2018, [Online]. Available:

http://arxiv.org/abs/1809.08887.

[51] T. Yu et al., “SPARC: Cross-domain semantic

parsing in context,” ACL 2019 - 57th Annu. Meet.

Assoc. Comput. Linguist. Proc. Conf., pp. 4511–

4523, 2020, doi: 10.18653/v1/p19-1443.

[52] X. Yu et al., “Dataset and enhanced model for

eligibility criteria-to-SQL semantic parsing,” Lr.

2020 - 12th Int. Conf. Lang. Resour. Eval. Conf.

Proc., no. May, pp. 5829–5837, 2020.

[53] H. Zhang et al., “CSS: A Large-scale Cross-

schema Chinese Text-to-SQL Medical Dataset,”

Proc. Annu. Meet. Assoc. Comput. Linguist., pp.

6970–6983, 2023, doi: 10.18653/v1/2023.findings-

acl.435.

[54] Y. Gan, X. Chen, and M. Purver, “Exploring

Underexplored Limitations of Cross-Domain Text-

to-SQL Generalization,” EMNLP 2021 - 2021 Conf.

Empir. Methods Nat. Lang. Process. Proc., pp.

8926–8931, 2021, doi: 10.18653/v1/2021.emnlp-

main.702.

[55] C. T. Hemphill, J. J. Godfrey, and G. R.

Doddington, “The ATIS Spoken Language Systems

Pilot Corpus.”

[56] Q. Min, Y. Shi, and Y. Zhang, “A pilot study for

Chinese SQL semantic parsing,” EMNLP-IJCNLP

2019 - 2019 Conf. Empir. Methods Nat. Lang.

Process. 9th Int. Jt. Conf. Nat. Lang. Process. Proc.

Conf., pp. 3652–3658, 2019, doi: 10.18653/v1/d19-

1377.

[57] D. Sean and P. S. Meltzer, “GEOquery: A bridge

between the Gene Expression Omnibus (GEO) and

BioConductor,” Bioinformatics, vol. 23, no. 14, pp.

1846–1847, Jul. 2007, doi:

10.1093/bioinformatics/btm254.

[58] T. Shi, C. Zhao, J. Boyd-Graber, H. Daumé, and

L. Lee, “On the potential of lexico-logical

alignments for semantic parsing to SQL queries,”

Find. Assoc. Comput. Linguist. Find. ACL EMNLP

2020, pp. 1849–1864, 2020, doi:

10.18653/v1/2020.findings-emnlp.167.

[59] M. Singh et al., “CL Scholar: The ACL

Anthology Knowledge Graph Miner,” NAACL HLT

2018 - 2018 Conf. North Am. Chapter Assoc.

Comput. Linguist. Hum. Lang. Technol. Proc.

14

http://arxiv.org/abs/2203.06958
http://arxiv.org/abs/2111.00653
http://arxiv.org/abs/2106.01093
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2304.11015
http://arxiv.org/abs/2308.15363
http://arxiv.org/abs/1804.00401
http://arxiv.org/abs/1809.08887

Demonstr. Sess., pp. 16–20, 2018, doi:

10.18653/v1/n18-5004.

[60] A. Suhr, M. W. Chang, P. Shaw, and K. Lee,

“Exploring unexplored generalization challenges for

cross-database semantic parsing,” Proc. Annu. Meet.

Assoc. Comput. Linguist., pp. 8372–8388, 2020,

doi: 10.18653/v1/2020.acl-main.742.

[61] L. R. Tang and R. J. Mooney, “A u t o m a t e d

Construction of Database Interfaces: Integrating

Statistical and Relational Learning for Semantic

Parsing,” 1996.

[62] J. MUNKRES, Topology. Pearson College Div,

2000. [Online]. Available:

https://www.amazon.com/Topology-2nd-James-

Munkres/dp/0131816292.

[63] .P Yin and G. Neubig, “A Syntactic Neural

Model for General-Purpose Code Generation,” Apr.

2017, [Online]. Available:

http://arxiv.org/abs/1704.01696.

[64] C. D. Manning, M. Surdeanu, J. Bauer, J.

Finkel, S. J. Bethard, and D. Mcclosky, “The

Stanford CoreNLP Natural Language Processing

Toolkit,” 2014.

[65] J. Pennington, R. Socher, and C. D. Manning,

“GloVe: Global Vectors for Word Representation,”

2014. [Online]. Available: http://nlp.

[66] S. Hochreiter and J. Schmidhuber, “Long Short-

Term Memory,” Neural Comput., vol. 9, no. 8, 1997,

doi: 10.1162/neco.1997.9.8.1735.

[67] A. Paszke et al., “PyTorch: An Imperative Style,

High-Performance Deep Learning Library,” 2019.

[68] D. P. Kingma and J. Ba, “Adam: A Method for

Stochastic Optimization,” Dec. 2014, [Online].

Available: http://arxiv.org/abs/1412.6980.

[69] J. Guo et al., “Towards Complex Text-to-SQL

in Cross-Domain Database with Intermediate

Representation,” 2019.

[70] B. L. Edelman, S. Goel, S. Kakade, and C.

Zhang, “Inductive Biases and Variable Creation in

Self-Attention Mechanisms,” Proc. Mach. Learn.

Res., vol. 162, pp. 5793–5831, 2022.

15

https://www.amazon.com/Topology-2nd-James-Munkres/dp/0131816292
https://www.amazon.com/Topology-2nd-James-Munkres/dp/0131816292
http://arxiv.org/abs/1704.01696
http://arxiv.org/abs/1412.6980

