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Abstract

Malaria remains a pressing public health issue in Guinea, with approximately 13 million individuals
at risk of contracting the disease. Despite efforts to reduce malaria incidence, it remains the leading
cause of consultations, hospitalizations, and deaths in the country. To address this challenge, machine
learning (ML) techniques have gained traction in epidemiology for predicting disease outbreaks and
identifying high-risk areas. During this internship, we aim to use ensemble learning algorithms to
develop a predictive model for malaria incidence in Guinea. Our methodology involved data
integration, feature engineering, and model training using various ML algorithms, such as logistic
regression, random forest, decision tree, support vector machine, gradient boosting machine, artificial
neural network and ensemble stacking leveraging diverse datasets, including clinical records,
demographic health surveys, and climatic data spanning six years from 2018 to 2023. We evaluated
model performance using the F1-score metric. We found that the ensemble stacking method,
particularly balanced stacking, demonstrated superior predictive accuracy (F1-score = 0.74). This
highlights the importance of interdisciplinary collaboration and data integration in epidemiological
research, as well as the potential of ML in informing targeted interventions and resource allocation
strategies for malaria control. Challenges such as multicollinearity and imbalanced datasets were
addressed through robust statistical techniques and model tuning. This research underscores the
significance of translating research findings into actionable insights for malaria control efforts in
Guinea. By harnessing the power of ML and deploying user-friendly tools, public health authorities can
make informed decisions to mitigate the burden of malaria and improve health outcomes for affected
populations.
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Introduction inhabitants at risk nationwide, although the
number of deaths rose by 1.6%, from 0.77 to
0.78 per 1,000 inhabitants at risk. The primary
vector of transmission is the female Anopheles
gambiae mosquito, which has a significant
economic burden on the country, leading to
decreased productivity and a loss of gross
domestic product (GDP). The World Health
Organization (WHO) estimates that between
2008 and 2015, malaria control interventions in

In Guinea, approximately 13 million people
are at risk of contracting malaria, with 75% of
the population estimated to be at risk according
to the Ministry of Health. Malaria is the leading
cause of consultations, hospitalizations, and
deaths in the general population, with more
than 1.5 million cases reported in 2018 [1].
Between 2017 and 2020, the number of malaria
cases fell by 9.7%, from 354 to 320 per 1,000
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Guinea prevented 1.3 million deaths and 4.6
million clinical cases [2].

Machine learning (ML) is becoming
increasingly popular in  the field of
epidemiology for identifying factors that are
associated with the incidence of infectious
diseases and predicting their outbreaks.
Ensemble learning is an ML algorithm that has
been used to pinpoint areas with a high risk of
malaria incidence and to determine the
contextual factors associated with this risk.
However, this research has not fully explored
all possible prediction models, making it
difficult to establish the most reliable stacking
algorithm [3, 4]. Studies have further revealed
that these methods can be used to detect spatial
clusters of high malaria incidence and to
recognize environmental and socioeconomic
components that are associated with these
clusters. Additionally, they are capable of
revealing temporal patterns of malaria
incidence and forecasting future incidence
trends [4-6]. Although malaria-specific data-
driven models are limited due to a lack of
structured datasets [7-9], some predictive
models for malaria incidence have been created
in several West African countries, mostly using
climatic features such as relative humidity,
rainfall and temperature [10-13]. However,
other powerful and versatile ML algorithms,
such as the CART, random forest, GBM, SVM
and ANN algorithms, could be used to develop
a strong and accurate predictive model for the
incidence of malaria, taking advantage of each
algorithm's unique strengths and ability to
capture complex nonlinear patterns in the data.

To reduce the burden of the disease, it is
essential to understand the contextual factors
that influence its incidence. In addition to
climatic factors affecting the intensity,
seasonality and geographical distribution of
malaria transmission, vector,
sociodemographic and economic parameters
need to be taken into account to prevent malaria
epidemics [14-18]. In addition, the ownership
and use of insecticide-treated mosquito nets,

combined with access to health care and clean
water, are essential for reducing malaria
cases [19-22]. In addition, the ownership and
use of insecticide-treated mosquito nets,
combined with access to health care and clean
water, are essential for reducing malaria
cases [23-27]. The aim of this work was to
predict the incidence of malaria in Guinea at the
national level by considering climatic, clinical
and demographic factors. More specifically, we
aimed to identify factors that are correlated with
the incidence of malaria in Guinea, to build a
machine learning model that predicts malaria
incidence at the national level and to create a
web application for malaria incidence
prediction.

Materials and Methods

Our data processing journey commenced
with the collection and extraction of six years
of diverse data from clinical and demographic
health surveys and climatic records, focusing
on variables such as malaria cases, mosquito
net availability, population demographics,
well-being indices, and climatic factors.
Following this, the data underwent
transformation and integration, ensuring
standardized  formats,  coherence, and
consistency across all datasets. Thorough
quality assurance checks were conducted to
validate the accuracy, completeness, and
consistency, and the integrated dataset was
explored to discern variable relationships and
distribution characteristics. Relevant features
were selected for machine learning analysis,
including independent variables such as
population, temperature, humidity,
precipitation and rainfall, with subsequent
splitting of the dataset for training and testing,
coupled with preprocessing for model
readiness. Machine learning models were
developed using the prepared dataset to predict
malaria incidence, their performance was
evaluated, and iterations were made as needed
to optimize predictive accuracy. Figures 1 and



2 summarize the data processing and machine
learning flow, respectively.
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Figure 1. Data processing flow

Data Collection

Our dataset comprises six years of
continuous recording and originates from three
distinct databases:

1. Clinical data: Malaria cases were sourced
from the routine DHIS2, the national
repository for data on malaria cases and
other priority diseases in Guinea. These
data were collected at the health facility
level and recorded monthly in the DHIS2
across all 38 health districts in the country.

2. Demographic health survey data:
Information regarding the availability of
mosquito bed nets, total population, and
socioeconomic  well-being index was
collected every three years at the national
level.

3. Climatic  data:  Monthly  average
temperature, pressure, precipitation, and
humidity values were collected in each of
Guinea's eight administrative regions and
stored in the national DHIS2 data
warehouse.

We have integrated these three data sources
into a unified dataset comprising seven
variables and 2,736 observations spanning from
2018 to 2023:

1. Features:
i. Total population
ii. Temperature
iii. Rainfall
iv. Humidity
v. Number of mosquito nets
vi. Well-being index
vii. Number of malaria cases
2. Target variable: Malaria
(quantitative variable).

incidence

Data Integration and Processing

In the data processing pipeline, the initial
phase involves data discovery, where the
structure, format, and variables of each dataset
are identified and understood. Following this,
data extraction was carried out using
appropriate methods to ensure
representativeness and relevance.
Subsequently, the data underwent
transformation, including standardization,
merging, cleaning, and enrichment, to prepare



them for analysis. Once transformed, the
dataset was loaded into a CSV format, which
was ready for exploratory data analysis and our
machine learning application steps. Quality
assurance measures were then implemented to
validate  accuracy, completeness, and
consistency, addressing any identified issues.
Data governance policies were applied to
maintain security, privacy, and compliance,
with access controls defined to safeguard
sensitive information. Finally, procedures for
ongoing maintenance and monitoring were
established to ensure that the dataset remains
accurate, up-to-date, and free from errors or
anomalies, with regular updates from source
systems and proactive monitoring of data
pipelines.

Exploratory Data Analysis (EDA)

We conducted a thorough exploratory data
analysis (EDA) to understand the relationships
between our features and the target variable,
starting with scatter plots and line plots to
provide insights into which features might be
most relevant. We used a test for collinearity
(variance inflation factor (VIF)) to identify
predictors that had high collinearity. VIF values
close to 1 indicate low multicollinearity,
suggesting that the variance of the regression
coefficient for that feature is not significantly
inflated due to correlations with other features.
We removed all variables with a VIF above 5
or 10 since they were considered high and
indicated that multicollinearity may be a
problem. We used Pearson’s correlation test to
assess the relationships between our feature
variables and target variables. Pearson’s
correlation coefficient lies between -1 and +1,
where -1 indicates a negative correlation, 0
indicates no correlation, and 1 signifies a strong
positive correlation.

The monthly malaria incidence rate, defined
as the number of confirmed malaria cases per
1000 inhabitants in the general population
reported in a month, was determined and
adjusted by considering the rates of

confirmation of biological test diagnosis and
attendance at health facilities for each health
district. We used the crude incidence that was
determined by reporting the cases of malaria
confirmed by biological tests per 1000
inhabitants in the general population following
this calculation algorithm:

The malaria incidence rate was calculated as
the number of new cases/total population x
1000 person-months.

where:

Number of New Cases = Number of
individuals who developed malaria in a given
month registered at the health center.

Total Population = Total number of
individuals living in the given area in the same
month.

We will classify malaria incidence using the
four WHO standard malaria incidence classes
[14] as follows:

1. Very low malaria transmission zone:
incidence less than 100 cases per 1000
people;

2. Low malaria transmission zone: incidence
between 100 and 250 cases per 1000
people;

3. Moderate malaria transmission zone:
incidence between 250 and 450 cases per
1000 people;

4. High malaria transmission zone: incidence
greater than 450 cases per 1000 people.

Feature Engineering

This step is critical for enhancing model
performance and involves creating new features
from existing features to better capture the
underlying patterns in our data. The following
steps were performed:

1. Encode the Target Variable: Since our
newly created variable 'Class' was
categorical, to ensure that it was in a format
suitable for machine learning algorithms,
we converted these categories into
numerical codes: Very low = 0, Medium =
1, Medium = 2, and High = 3.



2. Standardization/Normalization of

Numerical Features: Since our features
were likely on different scales (temperature
vs. pressure), we found it beneficial to
normalize (scale them to a range between 0
and 1). This is particularly important for
models such as support vector machines
(SVMs) and can also help with gradient
descent convergence in neural networks.

. Creating interaction terms: Sometimes,
the interaction between two or more
features can have a significant impact on
the target variable. For example, high
temperature combined with high humidity
might have a different effect on the 'Class'
than each feature individually.

. Polynomial Features: Generating
polynomial and interaction features can
uncover relationships between features that
can help improve model performance.

. Missing Values: If any of the features have
missing values, we will need to decide
whether to fill them (imputation), remove
the rows with missing values, or even use
the presence of missing values as a feature

itself. Our pipeline performs simple
imputation by imputing any missing
values.

. Feature  Selection:  After  adding

polynomial features, the dimensionality of

our data increases, and not all features
might be useful for predicting our target
variable. We wused recursive feature
elimination (RFE) to select the most
important features.

Model Training and Tuning

After preprocessing, we split our data into
training and testing sets. The training set of
80% of our process dataset and testing set
(20%) will contain the scaled original features,
their polynomial transformations, and the
interaction terms, which are ready to be used for
training machine learning models.

To find the optimal hyperparameters for a
given model to maximize its performance, we
used “grid search and cross validation”, a
popular method for hyperparameter tuning in
Python's scikit-learn library, which performs an
exhaustive search over a specified parameter
grid and returns the best parameters.

Since our “Class” variable was imbalanced,
we trained our models with both imbalanced
and balanced approaches. Then, we compared
all two approaches together to select the best
model to be used in our application as a
predictive model. The modeling, evaluation and
selection stages are described in detail in the
following figure below (Figure 2).
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Figure 2. Machine Learning Building, Evaluation and Selection Process Flow



Multiclass logistic regression: Through our
regression pipeline, we perform
hyperparameter tuning for a logistic regression
classifier using grid search cross-validation,
where parameter “C” is equal to a list of options
for the regularization strength, with the values
(0.1, 1, 10, 100) representing how strongly our
model tries to avoid fitting to noise by
penalizing large coefficients. Smaller values
specify stronger regularization and parameter
“solver”, a list of algorithms that the logistic
regression model uses for optimization with a
list of wvalues equal to newton-cg, Ibfgs,
liblinear, sag, and saga. We first define a
parameter grid containing values for
regularization strength and solver algorithms.

Then, we initialize a logistic regression
classifier with specified parameters. Next, grid
search cross validation was initialized with the
classifier, parameter grid, and cross-validation
settings. It uses cross-validation (cv=5) to
assess the performance of each parameter
combination, ensuring that the chosen
parameters generalize well to unseen data,
Verbose = 1 means that the search process will
print out progress messages, and n_jobs = -1
allows the process to use all available CPU
cores for faster completion. A grid search was
then conducted on the training data to find the
best combination of hyperparameters (Figure
3).

iy GridSearchCV

iGridSearchCV(cv=5,

3 estimator=LogisticRegression(max_iter=1000,
multi_class="'multinomial’,
random_state=42),

n_jobs=-1,
param_grid={'C': [0.1, 1, 10, 1e0],

‘solver': ['newton-cg', 'lbfgs', 'liblinear', 'sag',
‘saga'l},
verbose=1)
3' estimator: LogisticRegression

}LogisticRegression(max_iter:looa, multi_class='multinomial', random_state=42)

iy LogisticRegression

iiLogisticRegression(max_iter=1000, multi_class='multinomial', random_state=42)

Figure 3. Regression Pipeline Flow

Random Forest: Through this pipeline, we
conducted hyperparameter tuning for a random
forest classifier via grid search cross-validation.
Initially, a random forest classifier was
instantiated with a specified random state.
Then, a parameter grid was defined,
encompassing values for key hyperparameters
such as the number of trees in the forest
(n_estimators), maximum depth of trees
(max_depth), minimum samples required to

split an internal node (min_samples_split),
minimum samples required to be at a leaf node
(min_samples_leaf), and whether bootstrap
samples are used during tree construction
(bootstrap). Subsequently, grid search CV was
utilized to explore various combinations of
these hyperparameters, utilizing a 3-fold cross-
validation scheme and assessing performance
based on the F1 macro-score (Figure 4).

v GridSearchCV )
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1, 2, 41,

(2, 5, 10],
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v estimator: RandomForestClassifier

RandomForestClassifier(random_state=42)

g- RandomForestClassifieré

Figure 4. RF Pipeline Flow



Decision Tree: For this pipeline, we (min_samples_leaf), and the criterion for

conducted hyperparameter tuning for a decision quality measurement of a split (criterion).
tree classifier through grid search cross- Subsequently, Grid Search CV was employed
validation. Initially, a decision tree classifier to explore various combinations of these
was instantiated with a specified random state. hyperparameters, utilizing a 3-fold cross-
Then, a parameter grid was defined, including validation scheme and assessing performance
key hyperparameters such as the maximum based on the F1 macro score. The grid search is
depth of the tree (max_depth), minimum fitted to the prepared training data, and the best-
samples required to split an internal node performing decision tree model is extracted
(min_samples_split), ~ minimum  samples from the grid search results and stored in
required to be at a leaf node best_dt for subsequent utilization (Figure 5).
'y GridSearchCV

fGridSearchCV(cv=3, estimator=DecisionTreeClassifier(random_state=42), n_jobs=-1,
param_grid={'criterion': ['gini', 'entropy'l,
'max_depth': [None, 10, 20, 30],
'min_samples_leaf': [1, 2, 4],
'min_samples_split': [2, 5, 10]},
scoring="f1_macro')
v estimator: DecisionTreeClassifier
DecisionTreeClassifier(random_state=42)

iy DecisionTreeClassifier
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Figure 5. Decision Tree Pipeline Flow

Support Vector Machine: This pipeline parameters, including enabling probability
conducts hyperparameter tuning for a support estimates and setting a random state. Grid
vector machine (SVM) classifier using grid search CV is utilized to explore various
search cross-validation. Initially, a parameter combinations of these hyperparameters,
grid was defined, encompassing values for key employing a 5-fold cross-validation scheme
hyperparameters such as the regularization and parallel processing for efficiency. The grid
parameter (C), kernel coefficient for 'rbf', 'poly’, search was fitted to the prepared training data,
and 'sigmoid' kernels (gamma), and the kernel and the best-performing SVM model was
type to be used in the algorithm (kernel). Then, extracted from the grid search results and stored
an SVM model is initialized with the specified in best_svm for subsequent use (Figure 6).

- - GridSearchCV eS—

\GridSearchCV(cv=5, estimator=SVC(probability=True, random_state=42), n_jobs=-1, :
param_grid={'C': [0.1, 1, 10, 100], 'gamma': [1, 0.1, 0.01, 0.001],
'kernel': ['rbf', 'poly', 'sigmoid']},
verbose=1)
v estimator: SVC
SVC(probability=True, random_state=42)
Y SVC
§SVC(probability=True, random_state=42)

Figure 6. Support Vector Pipeline Flow



Gradient Boosting Machine: This pipeline
performs hyperparameter tuning for a gradient
boosting classifier via grid search cross-
validation. Initially, a parameter grid was
defined, which includes wvalues for key
hyperparameters such as the number of
boosting stages (n_estimators), the learning rate
that controls the contribution of each tree
(learning_rate), and the maximum depth of the
individual regression estimators (max_depth).
Then, a gradient boosting classifier was

initialized with the specified parameters,
including  setting a random  state.
GridSearchCV is utilized to explore various
combinations of these hyperparameters,
employing a 5-fold cross-validation scheme
and parallel processing for efficiency. The grid
search was fitted to the prepared training data,
and the Dbest-performing gradient boosting
model was extracted from the grid search
results and stored in best_gbm for subsequent
use (Figure 7).
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n_jobs=-1,
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v estimator: GradientBoostingClassifier
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Figure 7. Gradient Boosting Pipeline Flow

Avrtificial Neuronal Network: This pipeline
conducts  hyperparameter tuning for a
multilayer perceptron (MLP) classifier using
grid search cross-validation. Initially, a
parameter grid was defined, encompassing
values for key hyperparameters such as the size
of the hidden layers (hidden_layer_sizes),
activation functions for the hidden layers
(activation), and the initial learning rate
(learning_rate_init). Then, an MLP classifier
was initialized with specified parameters,

including setting a random state and increasing
the maximum number of iterations for better
convergence. Grid search CV was employed to
explore various combinations of these
hyperparameters, utilizing a 5-fold cross-
validation scheme and parallel processing for
efficiency. The grid search was fitted to the
prepared training data, and the best-performing
MLP model was extracted from the grid search
results and stored in best NN for subsequent
utilization (Figure 8).

v GridsearchCy
GridSearchCV(cv=5, estimator=MLPClassifier(max_iter=10000, random_state=42),

n_jobs=-1,

param_grid={'activation': ['tanh', 'relu'l],
‘hidden_layer_sizes': [(50,), (100,), (50, 50),

(100, 100)],

'learning_rate_init': [0.001, 0.01, 0.1]},

verbose=1)
v estimator: MLPClassifier
MLPClassifier(max_iter=10000, random_state=42)
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Figure 8. Artificial Neural Network pipeline Flow



Stacking Model: This pipeline implements
a stacking ensemble classifier, which combines
predictions from multiple base models using a
meta-learner. Initially, a list of base models was
retrieved from the previous models, and the
corresponding best-performing model was
obtained from previous hyperparameter tuning.
Then, a meta-learner, in this case, a logistic
regression classifier, was defined.
Subsequently, a stacking classifier was
instantiated with the list of best base models,

the meta-learner, and additional parameters
such as the number of folds for cross-validation
(cv=b) and the method used for stacking
(stack_method="auto"). The stacking classifier
was fitted to the prepared training data,
combining predictions from the best base
models and training the meta-learner on these
predictions. Finally, the best estimator was
extracted from the stacking classifier,
representing the entire stacked ensemble model
(Figure 9).
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Figure 9. Stacking pipeline flow

All these steps were repeated with a balanced
approach by setting the “class weight”
parameter to ‘'balanced' (Figure 10). This
automatically adjusts the weights inversely

proportional to the class frequencies. The two
approaches, balanced and unbalanced, were
evaluated and compared with each other to
extract the best model.

StackingClassifier
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Figure 10. Balanced Stacking Pipeline Flow



Model Evaluation and Selection

Model performance was evaluated using the
F1-score, a harmonic mean of precision and
recall, providing a balance between the two
metrics. This choice is particularly relevant for
imbalanced datasets or when the cost of false
positives and false negatives is high.

1. F1-Score Calculation: The F1-score was
calculated for each model to assess its
performance following this formula:

e Fl-score = 2 * (precision * recall) /
(precision + recall).

2. Comparison and Selection: The models'
F1-scores were compared, and the model
with the highest F1-score was selected as
the best performing model.

Model Deployment

To ensure that we have correctly collected
the needs of our future end users, we have

adopted the formalism of the Unify Modeling
Language (UML)" standards to model the static
and dynamic views of our future application.
This use case diagram depicts the
interactions between users (actors) and a
system to predict a given region (Figure 11):

1. The actor here is any authorized user from
the NMCP who has access to the system.

2. The use case is “Predict Malaria
incidence”.

3. The relationships show how actors interact
with these use cases, such as "Users",
which are associated with "Predict Malaria
incidence" and "Report sharing".

4. The relationships show that “predict”
includes the functionality of "manually
inputting data".

5. Extended relationships  show  that
"predicts” can be extended to include
"shared reports" under certain conditions.
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Figure 11. Prediction Use Case

Figure 12 shows the interactions between
DHIS2 and our Flask application during the
prediction process. It shows the sequence of
events starting from when the user submits a
prediction request through the Flask web
interface, triggering a request to the Flask
server. The server then interacts with the
prediction algorithm to process the input data
and generate a prediction. This sequence is
represented by messages exchanged between

1

https://en.wikipedia.org/wiki/Unified_Modeling_L
anguage#:~:text=The%20unified%20modeling%20

the client (user interface) and the server, as well
as between the server and the prediction
algorithm. Additional interactions include data
validation, error handling during processing,
and response delivery back to the user interface.
The sequence diagram provides a detailed view
of how different parts of the application
collaborate to perform the prediction task,
aiding in understanding the system's behavior
and potential optimizations.

language%20(UML,the%20design%200f%20a%20
system.
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This state-transition diagram (Figure 13)
includes "user logging," "data processing," and
"prediction display,” representing different
stages of our tool's functionality. Transitions
depict how the tool moves between these states,
triggered by events such as user submission of
request of data, processing, and display of the
malaria prediction result. The initial state
signifies the starting point when the user
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accesses the tool, while the final state
represents the conclusion of the prediction
process. Internal transitions occur during data
processing, indicating intermediate steps within
a single state. Overall, this state diagram offers
a clear visualization of the tool's behavior and
flow, aiding in the understanding and
development of malaria prediction
applications.
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Results

Descriptive Analysis

Overall, we find an increasing trend in the
mean incidence across most regions from 2018

to 2023. This is evident from the higher mean
incidence values in later years compared to
earlier years for many regions (Figure 14).

Very low: <100 cases per 1000 person;

Low: Between 100 to 250 cases per 1000 person;

Moderate: Between 250 to 450 cases per 1000 person;
. High: >450 cases per 1000 person.

Figure 14. Annual Incidence per 1000 Population by Region between 2018 and 2023 in Guinea?2

Variance Inflation Factor

The variance inflation factor (VIF) measures
how much the variance of an estimated

regression coefficient increases if the predictors
are correlated. The table below (Table 1)
summarizes our main findings.

Table 1. Variance Inflation Factor

Features VIF
constant 14.55
Temperature 2.67
Humidity 2.02
Pressure 2.24
Precipitation 1.66
Incidence 1.11
Number of mosquito beds nets 8.34
Well-being index 11.22

The constant term had a high VIF (14.55),
suggesting  multicollinearity  issues. The
temperature, humidity, pressure, precipitation
and incidence have relatively low VIF values,
indicating low multicollinearity among them.
The VIF for "number of mosquito bed nets" was
8.34, which indicates moderate
multicollinearity. Although not extremely high,
this suggests that the variance of its regression

coefficient may be somewhat inflated due to
correlations with other predictors.

The VIF for the "well-being index" is 11.22,
which is higher and suggests stronger
multicollinearity compared to the other
features. This indicates that the variance of its
regression coefficient is significantly inflated
due to correlations with other predictors.

2 https://portail.sante.gov.gn/base-connaissances/snis-section/
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Correlation Matrix

These results (Table 2) provide insight into
the relationships between all our variables. We
focus her on the correlation between incidence
and all features. The incidence had weak
positive correlations with humidity (0.30)
(Figure 15B), pressure (0.20) (Figure 15D), and

precipitation (0.14) (Figure 15C), indicating a
slight tendency for the incidence to increase as
humidity, pressure and precipitation increase.
There is a very weak negative correlation with
temperature (-0.24) (Figure 15A), suggesting a
slight tendency for the incidence to decrease as
temperature increases.

Table 2. Correlation Matrix

Temperature | Humidity | Pressure | Precipitation | Incidence
Temperature | 1.000000 -0.610601 | -0.733448 | -0.541672 -0.238186
Humidity 1.000000 | 0.546362 | 0.585471 0.304338
Pressure 1.000000 | 0.425031 0.204627
Precipitation 1.000000 0.141541
Incidence 1.000000
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Figure 15. Scatterplots of Incidence vs Feature

Our final dataset consists of 576 records for
temperature (°C), humidity (%), pressure (kph),
precipitation (mm), and incidence (expressed
per 1000 people). The mean values indicate an
average temperature of 27.52°C, humidity of
64.86%, pressure of 29.89 kph, precipitation of
4.70 mm, and an incidence of 185.43 per 1000
people. The standard deviations reveal the

variability within the dataset, with the
temperature showing a deviation of 2.63°C,
humidity at 22.95%, pressure with a minimal
deviation of 0.04 kph, precipitation exhibiting a
deviation of 7.17 mm, and incidence displaying
a deviation of 104.26 per 1000 people (Figure
16).



Measure Numbers of records

Temperature (°C) 576
Humidity (%) 576
Pressure (kph) 576

Precipitation (mm) 576

Incidence (per 1000 population) 576

Mean Standard Deviation

27.52 263
64.86 22.95
29.89 0.04
4.7 117
185.43 104.26

Figure 16. Descriptive Statistics

Following the stratification of our incidence
into four categories (very low, low, medium
and high), Figure 17 provides an overview of
the frequency of malaria incidence levels
within the dataset. This suggests that the
majority of instances have either "Low" (323

instances) or "Very Low" (129 instances)
malaria incidence, with fewer instances
classified as "Moderate™ (111 instances) and
even fewer instances classified as "High" (13
instances) malaria incidence.
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Figure 17. Counts of Cases in each Class

Machine Learning Models

The best estimator, representing the logistic
regression model with optimal
hyperparameters, was the one with a strength C
= 1. The best-performing random forest was the
one with bootstrap = False, max_depth = 10,
min_samples_leaf = 2, and
min_samples_split=5. For the decision tree, our
best  parameters were  max_depth=10,
min_samples_leaf=2, and
min_samples_split=10. For gradient boosting,
we find that n_estimator = 10 is the best
parameter. With a support vector machine, we
found that the best parameters were C = 0.1,
gamma = 1, kernel = 'poly’, and probability =
True. The model with the default parameter was

found to be the best among all the neuronal
networks.

Among our models (Table 3 and Figure 18),
the balanced stacking model achieved the
highest Fl1-score (0.74), indicating superior
overall performance in our classification tasks.
The balanced random forest and balanced
support vector machine models also performed
very well, with F1-scores close to those of the
balanced stacking models (0.63 and 0.61,
respectively). Although not as high as the
balanced stacking model, the unbalanced
stacking model still performed well, indicating
the effectiveness of the ensemble methods
(0.58). The balanced decision tree model
performed slightly better than its unbalanced
counterpart, indicating that balancing the
dataset improved its performance (0.56).



Unbalanced models generally fall below
their balanced counterparts. However, some
unbalanced models, such as decision tree (dt),
random forest (rf), and support vector machine
(SVM), still achieved moderate F1-scores. The
balanced neural network (0.47), balanced
gradient boosting machine (0.44), and balanced
logistic regression (0.43) achieved moderate

F1-scores, indicating reasonable performance
but not as high as that of the top performers.
The neural network (0.37), gradient boosting
machine (0.34), and logistic regression (0.23)
models achieved lower F1-scores, suggesting
that they may require further tuning or may not
be suitable for this particular dataset.

Table 3. Model comparison

Models

F1-score

balanced_stacking

0.74

balanced_rf

0.63

balanced_svm

0.61

stacking

0.58

balanced_dt

0.56

dt

0.54

balanced_NN

0.47

balanced_gbm

0.44

rf

0.43

balanced_log_reg

0.43

svim

0.41

NN

0.37

0.34

0.23

Model Comparison
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Figure 18. Model Comparison

Web Application

The web application developed (Figure 19,
20 and 21) in this study serves as a user-friendly
tool for predicting malaria incidence in Guinea.
Building upon the insights gained from

machine learning models trained on diverse
datasets, including clinical, demographic, and
climatic data, the application provides a
platform for public health authorities to access
predictive insights and make informed
decisions.



The application interface is intuitive and
easy to navigate and is designed to
accommodate users with varying levels of
technical expertise. Users can input relevant
parameters such as temperature, humidity,
pressure and precipitation. The application
utilizes advanced algorithms to process input
data and generate accurate forecasts, helping
stakeholders identify high-risk areas and
allocate resources effectively. Additionally, the
application offers visualization capabilities,

ma

allowing users to explore Guinea maps and
interact to select specific regions.

Overall, the web application represents a
valuable tool for enhancing malaria
surveillance and control efforts in Guinea. By
democratizing access to predictive analytics,
the application empowers public health
authorities to proactively address malaria
transmission and improve health outcomes for
communities across the country.
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Figure 19. Flask Application Structure
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Figure 21. Prediction Outputs for the Boke, Mamou and Faranah Regions

Discussion

The present internship contributes to
understanding the dynamics of malaria in
Guinea and demonstrates the potential of
machine learning in predicting disease
incidence. By integrating diverse data sources,
including clinical, demographic, and climatic
data, this study aimed to predict malaria
incidence at the national level. The results
indicate promising avenues for leveraging

machine learning techniques to improve
malaria control strategies.
In machine learning, especially in

classification tasks, the distribution of classes in
the dataset might be imbalanced, meaning that
some classes have significantly more instances
than others. This class imbalance can lead to
biased models that favor the majority class,
often resulting in poor performance for the
minority classes. The scikit-learn® “balanced"
mode automatically adjusts the weights to be
inversely proportional to the class frequencies
in the input data. It internally calculates the
class weights based on the class distribution in
the training data and assigns higher weights to
minority classes and lower weights to majority
classes. During the training of the model, these
class weights are incorporated into the
algorithm's objective function (such as the loss
function). This means that errors on the
minority classes are penalized more heavily
during training, effectively making the model
more sensitive to minority class instances. By

3 https://scikit-learn.org/stable/

adjusting the class weights, the model is
encouraged to pay more attention to minority
classes, potentially improving its ability to
correctly classify these instances. This
approach is particularly useful when the dataset
is highly imbalanced.

One key finding of the study is the
identification of factors correlated with malaria
incidence. Through exploratory data analysis,
the study revealed relationships between
climatic variables such as temperature,
humidity, pressure and precipitation. These
insights underscore the complex interplay
between environmental, demographic, and
health-related factors in malaria transmission,
highlighting the importance of multifaceted
interventions in malaria control efforts.

Our study employed various machine
learning  algorithms, including logistic
regression, random forest, decision trees,
support vector machines, gradient boosting
machines, neural networks, and stacking
models, to predict malaria incidence. Among
these, the balanced stacking model emerged as
the top performer, achieving the highest F1-
score (0.74). This underscores the effectiveness
of ensemble methods in capturing the complex
patterns inherent in malaria transmission
dynamics. However, it is worth noting that
model performance varies across different
algorithms, indicating the importance of
selecting appropriate techniques based on
dataset characteristics and the problem domain.


https://scikit-learn.org/stable/

Furthermore, this study addresses practical
considerations in deploying predictive models
for malaria incidence prediction. By developing
a user-friendly web application, our internship
aims to facilitate the utilization of predictive
insights by public health authorities. This
underscores the importance of translating
research findings into actionable tools that can
inform  decision-making and  resource
allocation in real-world settings.

In conclusion, this study highlights the
potential of machine learning in malaria
epidemiology and underscores the importance
of interdisciplinary collaborations among
researchers, healthcare practitioners, and
policymakers in addressing public health
challenges. By harnessing the power of data-
driven approaches, we can continue to advance
our understanding of malaria dynamics and
improve intervention strategies for malaria
elimination.

Conclusion

In conclusion, our internship provides
valuable insights into the epidemiology of
malaria in Guinea and demonstrates the
potential of machine learning in predicting and
understanding disease dynamics. Despite
progress in reducing malaria cases, the disease
remains a significant public health concern,
with substantial morbidity and mortality rates.
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