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Abstract 

Malaria remains a pressing public health issue in Guinea, with approximately 13 million individuals 

at risk of contracting the disease. Despite efforts to reduce malaria incidence, it remains the leading 

cause of consultations, hospitalizations, and deaths in the country. To address this challenge, machine 

learning (ML) techniques have gained traction in epidemiology for predicting disease outbreaks and 

identifying high-risk areas. During this internship, we aim to use ensemble learning algorithms to 

develop a predictive model for malaria incidence in Guinea. Our methodology involved data 

integration, feature engineering, and model training using various ML algorithms, such as logistic 

regression, random forest, decision tree, support vector machine, gradient boosting machine, artificial 

neural network and ensemble stacking leveraging diverse datasets, including clinical records, 

demographic health surveys, and climatic data spanning six years from 2018 to 2023. We evaluated 

model performance using the F1-score metric. We found that the ensemble stacking method, 

particularly balanced stacking, demonstrated superior predictive accuracy (F1-score = 0.74). This 

highlights the importance of interdisciplinary collaboration and data integration in epidemiological 

research, as well as the potential of ML in informing targeted interventions and resource allocation 

strategies for malaria control. Challenges such as multicollinearity and imbalanced datasets were 

addressed through robust statistical techniques and model tuning. This research underscores the 

significance of translating research findings into actionable insights for malaria control efforts in 

Guinea. By harnessing the power of ML and deploying user-friendly tools, public health authorities can 

make informed decisions to mitigate the burden of malaria and improve health outcomes for affected 

populations. 
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Introduction 

In Guinea, approximately 13 million people 

are at risk of contracting malaria, with 75% of 

the population estimated to be at risk according 

to the Ministry of Health. Malaria is the leading 

cause of consultations, hospitalizations, and 

deaths in the general population, with more 

than 1.5 million cases reported in 2018 [1]. 

Between 2017 and 2020, the number of malaria 

cases fell by 9.7%, from 354 to 320 per 1,000 

inhabitants at risk nationwide, although the 

number of deaths rose by 1.6%, from 0.77 to 

0.78 per 1,000 inhabitants at risk. The primary 

vector of transmission is the female Anopheles 

gambiae mosquito, which has a significant 

economic burden on the country, leading to 

decreased productivity and a loss of gross 

domestic product (GDP). The World Health 

Organization (WHO) estimates that between 

2008 and 2015, malaria control interventions in 
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Guinea prevented 1.3 million deaths and 4.6 

million clinical cases [2]. 

Machine learning (ML) is becoming 

increasingly popular in the field of 

epidemiology for identifying factors that are 

associated with the incidence of infectious 

diseases and predicting their outbreaks. 

Ensemble learning is an ML algorithm that has 

been used to pinpoint areas with a high risk of 

malaria incidence and to determine the 

contextual factors associated with this risk. 

However, this research has not fully explored 

all possible prediction models, making it 

difficult to establish the most reliable stacking 

algorithm [3, 4]. Studies have further revealed 

that these methods can be used to detect spatial 

clusters of high malaria incidence and to 

recognize environmental and socioeconomic 

components that are associated with these 

clusters. Additionally, they are capable of 

revealing temporal patterns of malaria 

incidence and forecasting future incidence 

trends [4-6]. Although malaria-specific data-

driven models are limited due to a lack of 

structured datasets [7-9], some predictive 

models for malaria incidence have been created 

in several West African countries, mostly using 

climatic features such as relative humidity, 

rainfall and temperature [10-13]. However, 

other powerful and versatile ML algorithms, 

such as the CART, random forest, GBM, SVM 

and ANN algorithms, could be used to develop 

a strong and accurate predictive model for the 

incidence of malaria, taking advantage of each 

algorithm's unique strengths and ability to 

capture complex nonlinear patterns in the data. 

To reduce the burden of the disease, it is 

essential to understand the contextual factors 

that influence its incidence. In addition to 

climatic factors affecting the intensity, 

seasonality and geographical distribution of 

malaria transmission, vector, 

sociodemographic and economic parameters 

need to be taken into account to prevent malaria 

epidemics [14-18]. In addition, the ownership 

and use of insecticide-treated mosquito nets, 

combined with access to health care and clean 

water, are essential for reducing malaria 

cases [19-22]. In addition, the ownership and 

use of insecticide-treated mosquito nets, 

combined with access to health care and clean 

water, are essential for reducing malaria 

cases [23-27]. The aim of this work was to 

predict the incidence of malaria in Guinea at the 

national level by considering climatic, clinical 

and demographic factors. More specifically, we 

aimed to identify factors that are correlated with 

the incidence of malaria in Guinea, to build a 

machine learning model that predicts malaria 

incidence at the national level and to create a 

web application for malaria incidence 

prediction. 

Materials and Methods 

Our data processing journey commenced 

with the collection and extraction of six years 

of diverse data from clinical and demographic 

health surveys and climatic records, focusing 

on variables such as malaria cases, mosquito 

net availability, population demographics, 

well-being indices, and climatic factors. 

Following this, the data underwent 

transformation and integration, ensuring 

standardized formats, coherence, and 

consistency across all datasets. Thorough 

quality assurance checks were conducted to 

validate the accuracy, completeness, and 

consistency, and the integrated dataset was 

explored to discern variable relationships and 

distribution characteristics. Relevant features 

were selected for machine learning analysis, 

including independent variables such as 

population, temperature, humidity, 

precipitation and rainfall, with subsequent 

splitting of the dataset for training and testing, 

coupled with preprocessing for model 

readiness. Machine learning models were 

developed using the prepared dataset to predict 

malaria incidence, their performance was 

evaluated, and iterations were made as needed 

to optimize predictive accuracy. Figures 1 and 



   

 

   

 

2 summarize the data processing and machine 

learning flow, respectively. 

 

Figure 1. Data processing flow 

Data Collection 

Our dataset comprises six years of 

continuous recording and originates from three 

distinct databases: 

1. Clinical data: Malaria cases were sourced 

from the routine DHIS2, the national 

repository for data on malaria cases and 

other priority diseases in Guinea. These 

data were collected at the health facility 

level and recorded monthly in the DHIS2 

across all 38 health districts in the country. 

2. Demographic health survey data: 

Information regarding the availability of 

mosquito bed nets, total population, and 

socioeconomic well-being index was 

collected every three years at the national 

level. 

3. Climatic data: Monthly average 

temperature, pressure, precipitation, and 

humidity values were collected in each of 

Guinea's eight administrative regions and 

stored in the national DHIS2 data 

warehouse. 

We have integrated these three data sources 

into a unified dataset comprising seven 

variables and 2,736 observations spanning from 

2018 to 2023: 

1. Features: 

i. Total population 

ii. Temperature 

iii. Rainfall 

iv. Humidity 

v. Number of mosquito nets 

vi. Well-being index 

vii. Number of malaria cases 

2. Target variable: Malaria incidence 

(quantitative variable). 

Data Integration and Processing 

In the data processing pipeline, the initial 

phase involves data discovery, where the 

structure, format, and variables of each dataset 

are identified and understood. Following this, 

data extraction was carried out using 

appropriate methods to ensure 

representativeness and relevance. 

Subsequently, the data underwent 

transformation, including standardization, 

merging, cleaning, and enrichment, to prepare 



   

 

   

 

them for analysis. Once transformed, the 

dataset was loaded into a CSV format, which 

was ready for exploratory data analysis and our 

machine learning application steps. Quality 

assurance measures were then implemented to 

validate accuracy, completeness, and 

consistency, addressing any identified issues. 

Data governance policies were applied to 

maintain security, privacy, and compliance, 

with access controls defined to safeguard 

sensitive information. Finally, procedures for 

ongoing maintenance and monitoring were 

established to ensure that the dataset remains 

accurate, up-to-date, and free from errors or 

anomalies, with regular updates from source 

systems and proactive monitoring of data 

pipelines. 

Exploratory Data Analysis (EDA) 

We conducted a thorough exploratory data 

analysis (EDA) to understand the relationships 

between our features and the target variable, 

starting with scatter plots and line plots to 

provide insights into which features might be 

most relevant. We used a test for collinearity 

(variance inflation factor (VIF)) to identify 

predictors that had high collinearity. VIF values 

close to 1 indicate low multicollinearity, 

suggesting that the variance of the regression 

coefficient for that feature is not significantly 

inflated due to correlations with other features. 

We removed all variables with a VIF above 5 

or 10 since they were considered high and 

indicated that multicollinearity may be a 

problem. We used Pearson’s correlation test to 

assess the relationships between our feature 

variables and target variables. Pearson’s 

correlation coefficient lies between -1 and +1, 

where -1 indicates a negative correlation, 0 

indicates no correlation, and 1 signifies a strong 

positive correlation. 

The monthly malaria incidence rate, defined 

as the number of confirmed malaria cases per 

1000 inhabitants in the general population 

reported in a month, was determined and 

adjusted by considering the rates of 

confirmation of biological test diagnosis and 

attendance at health facilities for each health 

district. We used the crude incidence that was 

determined by reporting the cases of malaria 

confirmed by biological tests per 1000 

inhabitants in the general population following 

this calculation algorithm: 

The malaria incidence rate was calculated as 

the number of new cases/total population × 

1000 person-months. 

where: 

Number of New Cases = Number of 

individuals who developed malaria in a given 

month registered at the health center. 

Total Population = Total number of 

individuals living in the given area in the same 

month. 

We will classify malaria incidence using the 

four WHO standard malaria incidence classes 

[14] as follows: 

1. Very low malaria transmission zone: 

incidence less than 100 cases per 1000 

people; 

2. Low malaria transmission zone: incidence 

between 100 and 250 cases per 1000 

people; 

3. Moderate malaria transmission zone: 

incidence between 250 and 450 cases per 

1000 people; 

4. High malaria transmission zone: incidence 

greater than 450 cases per 1000 people. 

Feature Engineering 

This step is critical for enhancing model 

performance and involves creating new features 

from existing features to better capture the 

underlying patterns in our data. The following 

steps were performed: 

1. Encode the Target Variable: Since our 

newly created variable 'Class' was 

categorical, to ensure that it was in a format 

suitable for machine learning algorithms, 

we converted these categories into 

numerical codes: Very low = 0, Medium = 

1, Medium = 2, and High = 3. 



   

 

   

 

2. Standardization/Normalization of 

Numerical Features: Since our features 

were likely on different scales (temperature 

vs. pressure), we found it beneficial to 

normalize (scale them to a range between 0 

and 1). This is particularly important for 

models such as support vector machines 

(SVMs) and can also help with gradient 

descent convergence in neural networks. 

3. Creating interaction terms: Sometimes, 

the interaction between two or more 

features can have a significant impact on 

the target variable. For example, high 

temperature combined with high humidity 

might have a different effect on the 'Class' 

than each feature individually. 

4. Polynomial Features: Generating 

polynomial and interaction features can 

uncover relationships between features that 

can help improve model performance. 

5. Missing Values: If any of the features have 

missing values, we will need to decide 

whether to fill them (imputation), remove 

the rows with missing values, or even use 

the presence of missing values as a feature 

itself. Our pipeline performs simple 

imputation by imputing any missing 

values. 

6. Feature Selection: After adding 

polynomial features, the dimensionality of 

our data increases, and not all features 

might be useful for predicting our target 

variable. We used recursive feature 

elimination (RFE) to select the most 

important features. 

Model Training and Tuning 

After preprocessing, we split our data into 

training and testing sets. The training set of 

80% of our process dataset and testing set 

(20%) will contain the scaled original features, 

their polynomial transformations, and the 

interaction terms, which are ready to be used for 

training machine learning models. 

To find the optimal hyperparameters for a 

given model to maximize its performance, we 

used “grid search and cross validation”, a 

popular method for hyperparameter tuning in 

Python's scikit-learn library, which performs an 

exhaustive search over a specified parameter 

grid and returns the best parameters. 

Since our “Class” variable was imbalanced, 

we trained our models with both imbalanced 

and balanced approaches. Then, we compared 

all two approaches together to select the best 

model to be used in our application as a 

predictive model. The modeling, evaluation and 

selection stages are described in detail in the 

following figure below (Figure 2). 

 

Figure 2. Machine Learning Building, Evaluation and Selection Process Flow 



   

 

   

 

Multiclass logistic regression: Through our 

regression pipeline, we perform 

hyperparameter tuning for a logistic regression 

classifier using grid search cross-validation, 

where parameter “C” is equal to a list of options 

for the regularization strength, with the values 

(0.1, 1, 10, 100) representing how strongly our 

model tries to avoid fitting to noise by 

penalizing large coefficients. Smaller values 

specify stronger regularization and parameter 

“solver”, a list of algorithms that the logistic 

regression model uses for optimization with a 

list of values equal to newton-cg, lbfgs, 

liblinear, sag, and saga. We first define a 

parameter grid containing values for 

regularization strength and solver algorithms. 

Then, we initialize a logistic regression 

classifier with specified parameters. Next, grid 

search cross validation was initialized with the 

classifier, parameter grid, and cross-validation 

settings. It uses cross-validation (cv=5) to 

assess the performance of each parameter 

combination, ensuring that the chosen 

parameters generalize well to unseen data, 

Verbose = 1 means that the search process will 

print out progress messages, and n_jobs = -1 

allows the process to use all available CPU 

cores for faster completion. A grid search was 

then conducted on the training data to find the 

best combination of hyperparameters (Figure 

3). 

 

Figure 3. Regression Pipeline Flow 

Random Forest: Through this pipeline, we 

conducted hyperparameter tuning for a random 

forest classifier via grid search cross-validation. 

Initially, a random forest classifier was 

instantiated with a specified random state. 

Then, a parameter grid was defined, 

encompassing values for key hyperparameters 

such as the number of trees in the forest 

(n_estimators), maximum depth of trees 

(max_depth), minimum samples required to 

split an internal node (min_samples_split), 

minimum samples required to be at a leaf node 

(min_samples_leaf), and whether bootstrap 

samples are used during tree construction 

(bootstrap). Subsequently, grid search CV was 

utilized to explore various combinations of 

these hyperparameters, utilizing a 3-fold cross-

validation scheme and assessing performance 

based on the F1 macro-score (Figure 4). 

 

Figure 4. RF Pipeline Flow 



   

 

   

 

Decision Tree: For this pipeline, we 

conducted hyperparameter tuning for a decision 

tree classifier through grid search cross-

validation. Initially, a decision tree classifier 

was instantiated with a specified random state. 

Then, a parameter grid was defined, including 

key hyperparameters such as the maximum 

depth of the tree (max_depth), minimum 

samples required to split an internal node 

(min_samples_split), minimum samples 

required to be at a leaf node 

(min_samples_leaf), and the criterion for 

quality measurement of a split (criterion). 

Subsequently, Grid Search CV was employed 

to explore various combinations of these 

hyperparameters, utilizing a 3-fold cross-

validation scheme and assessing performance 

based on the F1 macro score. The grid search is 

fitted to the prepared training data, and the best-

performing decision tree model is extracted 

from the grid search results and stored in 

best_dt for subsequent utilization (Figure 5). 

 

Figure 5. Decision Tree Pipeline Flow 

Support Vector Machine: This pipeline 

conducts hyperparameter tuning for a support 

vector machine (SVM) classifier using grid 

search cross-validation. Initially, a parameter 

grid was defined, encompassing values for key 

hyperparameters such as the regularization 

parameter (C), kernel coefficient for 'rbf', 'poly', 

and 'sigmoid' kernels (gamma), and the kernel 

type to be used in the algorithm (kernel). Then, 

an SVM model is initialized with the specified 

parameters, including enabling probability 

estimates and setting a random state. Grid 

search CV is utilized to explore various 

combinations of these hyperparameters, 

employing a 5-fold cross-validation scheme 

and parallel processing for efficiency. The grid 

search was fitted to the prepared training data, 

and the best-performing SVM model was 

extracted from the grid search results and stored 

in best_svm for subsequent use (Figure 6). 

 

Figure 6. Support Vector Pipeline Flow 



   

 

   

 

Gradient Boosting Machine: This pipeline 

performs hyperparameter tuning for a gradient 

boosting classifier via grid search cross-

validation. Initially, a parameter grid was 

defined, which includes values for key 

hyperparameters such as the number of 

boosting stages (n_estimators), the learning rate 

that controls the contribution of each tree 

(learning_rate), and the maximum depth of the 

individual regression estimators (max_depth). 

Then, a gradient boosting classifier was 

initialized with the specified parameters, 

including setting a random state. 

GridSearchCV is utilized to explore various 

combinations of these hyperparameters, 

employing a 5-fold cross-validation scheme 

and parallel processing for efficiency. The grid 

search was fitted to the prepared training data, 

and the best-performing gradient boosting 

model was extracted from the grid search 

results and stored in best_gbm for subsequent 

use (Figure 7). 

 

Figure 7. Gradient Boosting Pipeline Flow 

Artificial Neuronal Network: This pipeline 

conducts hyperparameter tuning for a 

multilayer perceptron (MLP) classifier using 

grid search cross-validation. Initially, a 

parameter grid was defined, encompassing 

values for key hyperparameters such as the size 

of the hidden layers (hidden_layer_sizes), 

activation functions for the hidden layers 

(activation), and the initial learning rate 

(learning_rate_init). Then, an MLP classifier 

was initialized with specified parameters, 

including setting a random state and increasing 

the maximum number of iterations for better 

convergence. Grid search CV was employed to 

explore various combinations of these 

hyperparameters, utilizing a 5-fold cross-

validation scheme and parallel processing for 

efficiency. The grid search was fitted to the 

prepared training data, and the best-performing 

MLP model was extracted from the grid search 

results and stored in best_NN for subsequent 

utilization (Figure 8). 

 

Figure 8. Artificial Neural Network pipeline Flow 



   

 

   

 

Stacking Model: This pipeline implements 

a stacking ensemble classifier, which combines 

predictions from multiple base models using a 

meta-learner. Initially, a list of base models was 

retrieved from the previous models, and the 

corresponding best-performing model was 

obtained from previous hyperparameter tuning. 

Then, a meta-learner, in this case, a logistic 

regression classifier, was defined. 

Subsequently, a stacking classifier was 

instantiated with the list of best base models, 

the meta-learner, and additional parameters 

such as the number of folds for cross-validation 

(cv=5) and the method used for stacking 

(stack_method='auto'). The stacking classifier 

was fitted to the prepared training data, 

combining predictions from the best base 

models and training the meta-learner on these 

predictions. Finally, the best estimator was 

extracted from the stacking classifier, 

representing the entire stacked ensemble model 

(Figure 9). 

 

Figure 9. Stacking pipeline flow 

All these steps were repeated with a balanced 

approach by setting the “class_weight” 

parameter to 'balanced' (Figure 10). This 

automatically adjusts the weights inversely 

proportional to the class frequencies. The two 

approaches, balanced and unbalanced, were 

evaluated and compared with each other to 

extract the best model. 

 

Figure 10. Balanced Stacking Pipeline Flow 



   

 

   

 

Model Evaluation and Selection 

Model performance was evaluated using the 

F1-score, a harmonic mean of precision and 

recall, providing a balance between the two 

metrics. This choice is particularly relevant for 

imbalanced datasets or when the cost of false 

positives and false negatives is high. 

1. F1-Score Calculation: The F1-score was 

calculated for each model to assess its 

performance following this formula: 

 F1-score = 2 * (precision * recall) / 

(precision + recall). 

2. Comparison and Selection: The models' 

F1-scores were compared, and the model 

with the highest F1-score was selected as 

the best performing model. 

Model Deployment 

To ensure that we have correctly collected 

the needs of our future end users, we have 

adopted the formalism of the Unify Modeling 

Language (UML)1 standards to model the static 

and dynamic views of our future application. 

This use case diagram depicts the 

interactions between users (actors) and a 

system to predict a given region (Figure 11): 

1. The actor here is any authorized user from 

the NMCP who has access to the system. 

2. The use case is “Predict Malaria 

incidence”. 

3. The relationships show how actors interact 

with these use cases, such as "Users", 

which are associated with "Predict Malaria 

incidence" and "Report sharing". 

4. The relationships show that "predict" 

includes the functionality of "manually 

inputting data". 

5. Extended relationships show that 

"predicts" can be extended to include 

"shared reports" under certain conditions. 

 

Figure 11. Prediction Use Case 

Figure 12 shows the interactions between 

DHIS2 and our Flask application during the 

prediction process. It shows the sequence of 

events starting from when the user submits a 

prediction request through the Flask web 

interface, triggering a request to the Flask 

server. The server then interacts with the 

prediction algorithm to process the input data 

and generate a prediction. This sequence is 

represented by messages exchanged between 

                                                
1 

https://en.wikipedia.org/wiki/Unified_Modeling_L

anguage#:~:text=The%20unified%20modeling%20

the client (user interface) and the server, as well 

as between the server and the prediction 

algorithm. Additional interactions include data 

validation, error handling during processing, 

and response delivery back to the user interface. 

The sequence diagram provides a detailed view 

of how different parts of the application 

collaborate to perform the prediction task, 

aiding in understanding the system's behavior 

and potential optimizations. 

language%20(UML,the%20design%20of%20a%20

system. 

https://en.wikipedia.org/wiki/Unified_Modeling_Language#:~:text=The%20unified%20modeling%20language%20(UML,the%20design%20of%20a%20system
https://en.wikipedia.org/wiki/Unified_Modeling_Language#:~:text=The%20unified%20modeling%20language%20(UML,the%20design%20of%20a%20system
https://en.wikipedia.org/wiki/Unified_Modeling_Language#:~:text=The%20unified%20modeling%20language%20(UML,the%20design%20of%20a%20system
https://en.wikipedia.org/wiki/Unified_Modeling_Language#:~:text=The%20unified%20modeling%20language%20(UML,the%20design%20of%20a%20system


   

 

   

 

 

Figure 12. Application Sequence Diagram 

This state-transition diagram (Figure 13) 

includes "user logging," "data processing," and 

"prediction display," representing different 

stages of our tool's functionality. Transitions 

depict how the tool moves between these states, 

triggered by events such as user submission of 

request of data, processing, and display of the 

malaria prediction result. The initial state 

signifies the starting point when the user 

accesses the tool, while the final state 

represents the conclusion of the prediction 

process. Internal transitions occur during data 

processing, indicating intermediate steps within 

a single state. Overall, this state diagram offers 

a clear visualization of the tool's behavior and 

flow, aiding in the understanding and 

development of malaria prediction 

applications. 

 

Figure 13. Application state-transition diagram 



   

 

   

 

Results 

Descriptive Analysis 

Overall, we find an increasing trend in the 

mean incidence across most regions from 2018 

to 2023. This is evident from the higher mean 

incidence values in later years compared to 

earlier years for many regions (Figure 14). 

 

Figure 14. Annual Incidence per 1000 Population by Region between 2018 and 2023 in Guinea2 

Variance Inflation Factor 

The variance inflation factor (VIF) measures 

how much the variance of an estimated 

regression coefficient increases if the predictors 

are correlated. The table below (Table 1) 

summarizes our main findings. 

Table 1. Variance Inflation Factor 

Features VIF 

constant 14.55 

Temperature 2.67 

Humidity 2.02 

Pressure 2.24 

Precipitation 1.66 

Incidence 1.11 

Number of mosquito beds nets 8.34 

Well-being index 11.22 

The constant term had a high VIF (14.55), 

suggesting multicollinearity issues. The 

temperature, humidity, pressure, precipitation 

and incidence have relatively low VIF values, 

indicating low multicollinearity among them. 

The VIF for "number of mosquito bed nets" was 

8.34, which indicates moderate 

multicollinearity. Although not extremely high, 

this suggests that the variance of its regression 

                                                
2 https://portail.sante.gov.gn/base-connaissances/snis-section/ 

 

coefficient may be somewhat inflated due to 

correlations with other predictors. 

The VIF for the "well-being index" is 11.22, 

which is higher and suggests stronger 

multicollinearity compared to the other 

features. This indicates that the variance of its 

regression coefficient is significantly inflated 

due to correlations with other predictors. 

https://portail.sante.gov.gn/base-connaissances/snis-section/


   

 

   

 

Correlation Matrix 

These results (Table 2) provide insight into 

the relationships between all our variables. We 

focus her on the correlation between incidence 

and all features. The incidence had weak 

positive correlations with humidity (0.30) 

(Figure 15B), pressure (0.20) (Figure 15D), and 

precipitation (0.14) (Figure 15C), indicating a 

slight tendency for the incidence to increase as 

humidity, pressure and precipitation increase. 

There is a very weak negative correlation with 

temperature (-0.24) (Figure 15A), suggesting a 

slight tendency for the incidence to decrease as 

temperature increases. 

Table 2. Correlation Matrix 

 Temperature Humidity Pressure Precipitation Incidence 

Temperature 1.000000 -0.610601 -0.733448 -0.541672 -0.238186 

Humidity  1.000000 0.546362 0.585471 0.304338 

Pressure   1.000000 0.425031 0.204627 

Precipitation    1.000000 0.141541 

Incidence     1.000000 

 

 

Figure 15. Scatterplots of Incidence vs Feature 

Our final dataset consists of 576 records for 

temperature (°C), humidity (%), pressure (kph), 

precipitation (mm), and incidence (expressed 

per 1000 people). The mean values indicate an 

average temperature of 27.52°C, humidity of 

64.86%, pressure of 29.89 kph, precipitation of 

4.70 mm, and an incidence of 185.43 per 1000 

people. The standard deviations reveal the 

variability within the dataset, with the 

temperature showing a deviation of 2.63°C, 

humidity at 22.95%, pressure with a minimal 

deviation of 0.04 kph, precipitation exhibiting a 

deviation of 7.17 mm, and incidence displaying 

a deviation of 104.26 per 1000 people (Figure 

16). 



   

 

   

 

 

Figure 16. Descriptive Statistics 

Following the stratification of our incidence 

into four categories (very low, low, medium 

and high), Figure 17 provides an overview of 

the frequency of malaria incidence levels 

within the dataset. This suggests that the 

majority of instances have either "Low" (323 

instances) or "Very Low" (129 instances) 

malaria incidence, with fewer instances 

classified as "Moderate" (111 instances) and 

even fewer instances classified as "High" (13 

instances) malaria incidence. 

 

Figure 17. Counts of Cases in each Class 

Machine Learning Models 

The best estimator, representing the logistic 

regression model with optimal 

hyperparameters, was the one with a strength C 

= 1. The best-performing random forest was the 

one with bootstrap = False, max_depth = 10, 

min_samples_leaf = 2, and 

min_samples_split=5. For the decision tree, our 

best parameters were max_depth=10, 

min_samples_leaf=2, and 

min_samples_split=10. For gradient boosting, 

we find that n_estimator = 10 is the best 

parameter. With a support vector machine, we 

found that the best parameters were C = 0.1, 

gamma = 1, kernel = 'poly', and probability = 

True. The model with the default parameter was 

found to be the best among all the neuronal 

networks. 

Among our models (Table 3 and Figure 18), 

the balanced stacking model achieved the 

highest F1-score (0.74), indicating superior 

overall performance in our classification tasks. 

The balanced random forest and balanced 

support vector machine models also performed 

very well, with F1-scores close to those of the 

balanced stacking models (0.63 and 0.61, 

respectively). Although not as high as the 

balanced stacking model, the unbalanced 

stacking model still performed well, indicating 

the effectiveness of the ensemble methods 

(0.58). The balanced decision tree model 

performed slightly better than its unbalanced 

counterpart, indicating that balancing the 

dataset improved its performance (0.56). 



   

 

   

 

Unbalanced models generally fall below 

their balanced counterparts. However, some 

unbalanced models, such as decision tree (dt), 

random forest (rf), and support vector machine 

(SVM), still achieved moderate F1-scores. The 

balanced neural network (0.47), balanced 

gradient boosting machine (0.44), and balanced 

logistic regression (0.43) achieved moderate 

F1-scores, indicating reasonable performance 

but not as high as that of the top performers. 

The neural network (0.37), gradient boosting 

machine (0.34), and logistic regression (0.23) 

models achieved lower F1-scores, suggesting 

that they may require further tuning or may not 

be suitable for this particular dataset. 

Table 3. Model comparison 

Models F1-score 

balanced_stacking 0.74 

balanced_rf 0.63 

balanced_svm 0.61 

stacking 0.58 

balanced_dt 0.56 

dt 0.54 

balanced_NN 0.47 

balanced_gbm 0.44 

rf 0.43 

balanced_log_reg 0.43 

svm 0.41 

NN 0.37 

gbm 0.34 

log_reg 0.23 

 

Figure 18. Model Comparison 

Web Application 

The web application developed (Figure 19, 

20 and 21) in this study serves as a user-friendly 

tool for predicting malaria incidence in Guinea. 

Building upon the insights gained from 

machine learning models trained on diverse 

datasets, including clinical, demographic, and 

climatic data, the application provides a 

platform for public health authorities to access 

predictive insights and make informed 

decisions. 



   

 

   

 

The application interface is intuitive and 

easy to navigate and is designed to 

accommodate users with varying levels of 

technical expertise. Users can input relevant 

parameters such as temperature, humidity, 

pressure and precipitation. The application 

utilizes advanced algorithms to process input 

data and generate accurate forecasts, helping 

stakeholders identify high-risk areas and 

allocate resources effectively. Additionally, the 

application offers visualization capabilities, 

allowing users to explore Guinea maps and 

interact to select specific regions. 

Overall, the web application represents a 

valuable tool for enhancing malaria 

surveillance and control efforts in Guinea. By 

democratizing access to predictive analytics, 

the application empowers public health 

authorities to proactively address malaria 

transmission and improve health outcomes for 

communities across the country. 

 

Figure 19. Flask Application Structure 

 

Figure 20. Application Interface 



   

 

   

 

 

Figure 21. Prediction Outputs for the Boke, Mamou and Faranah Regions 

Discussion 

The present internship contributes to 

understanding the dynamics of malaria in 

Guinea and demonstrates the potential of 

machine learning in predicting disease 

incidence. By integrating diverse data sources, 

including clinical, demographic, and climatic 

data, this study aimed to predict malaria 

incidence at the national level. The results 

indicate promising avenues for leveraging 

machine learning techniques to improve 

malaria control strategies. 

In machine learning, especially in 

classification tasks, the distribution of classes in 

the dataset might be imbalanced, meaning that 

some classes have significantly more instances 

than others. This class imbalance can lead to 

biased models that favor the majority class, 

often resulting in poor performance for the 

minority classes. The scikit-learn3 "balanced" 

mode automatically adjusts the weights to be 

inversely proportional to the class frequencies 

in the input data. It internally calculates the 

class weights based on the class distribution in 

the training data and assigns higher weights to 

minority classes and lower weights to majority 

classes. During the training of the model, these 

class weights are incorporated into the 

algorithm's objective function (such as the loss 

function). This means that errors on the 

minority classes are penalized more heavily 

during training, effectively making the model 

more sensitive to minority class instances. By 

                                                
3 https://scikit-learn.org/stable/ 

adjusting the class weights, the model is 

encouraged to pay more attention to minority 

classes, potentially improving its ability to 

correctly classify these instances. This 

approach is particularly useful when the dataset 

is highly imbalanced. 

One key finding of the study is the 

identification of factors correlated with malaria 

incidence. Through exploratory data analysis, 

the study revealed relationships between 

climatic variables such as temperature, 

humidity, pressure and precipitation. These 

insights underscore the complex interplay 

between environmental, demographic, and 

health-related factors in malaria transmission, 

highlighting the importance of multifaceted 

interventions in malaria control efforts. 

Our study employed various machine 

learning algorithms, including logistic 

regression, random forest, decision trees, 

support vector machines, gradient boosting 

machines, neural networks, and stacking 

models, to predict malaria incidence. Among 

these, the balanced stacking model emerged as 

the top performer, achieving the highest F1-

score (0.74). This underscores the effectiveness 

of ensemble methods in capturing the complex 

patterns inherent in malaria transmission 

dynamics. However, it is worth noting that 

model performance varies across different 

algorithms, indicating the importance of 

selecting appropriate techniques based on 

dataset characteristics and the problem domain. 

 

https://scikit-learn.org/stable/


   

 

   

 

Furthermore, this study addresses practical 

considerations in deploying predictive models 

for malaria incidence prediction. By developing 

a user-friendly web application, our internship 

aims to facilitate the utilization of predictive 

insights by public health authorities. This 

underscores the importance of translating 

research findings into actionable tools that can 

inform decision-making and resource 

allocation in real-world settings. 

In conclusion, this study highlights the 

potential of machine learning in malaria 

epidemiology and underscores the importance 

of interdisciplinary collaborations among 

researchers, healthcare practitioners, and 

policymakers in addressing public health 

challenges. By harnessing the power of data-

driven approaches, we can continue to advance 

our understanding of malaria dynamics and 

improve intervention strategies for malaria 

elimination. 

Conclusion 

In conclusion, our internship provides 

valuable insights into the epidemiology of 

malaria in Guinea and demonstrates the 

potential of machine learning in predicting and 

understanding disease dynamics. Despite 

progress in reducing malaria cases, the disease 

remains a significant public health concern, 

with substantial morbidity and mortality rates. 

The integration of diverse data sources and 

the application of advanced machine learning 

algorithms have enabled the development of 

predictive models for malaria incidence, with 

ensemble methods showing promising results. 

However, challenges such as multicollinearity 

and imbalanced datasets underscore the need 

for careful data preprocessing and model tuning 

to ensure robust and accurate predictions. 

Moving forward, the findings from this 

internship can inform targeted interventions 

and resource allocation strategies to reduce the 

burden of malaria in Guinea. By leveraging 

predictive models and deploying user-friendly 

tools, public health authorities can improve 

decision-making and allocate resources more 

efficiently to areas at highest risk of malaria 

transmission. 

Moreover, ongoing collaboration between 

Guinean researchers, healthcare practitioners, 

and policymakers is essential for advancing 

malaria research and implementing evidence-

based interventions. By harnessing the power of 

data and machine learning, we can continue to 

make progress toward malaria elimination and 

improve health outcomes for communities in 

Guinea and beyond. 
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