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Abstract 

This paper presents the relationship between climate change (temperature, rainfall, humidity) and 

incidence of malaria in Homabay County, Kenya. Climate change impacts, household exposure, 

sensitivity, and adaptive capacity were analysed to inform policy. The study combined ecological time-

series analysis, household surveys, and key informant interviews. It analysed climate and morbidity 

data from 2010-2024, supplemented with primary data from 401 households and insights from 19 

stakeholders. Standardized questionnaires and in-depth interviews guided data collection. The ARDL 

models assessed short and long-run climate effects on malaria, logistic regression examined 

determinants of household vulnerability, and thematic analysis generated qualitative insights. The 

findings showed malaria cases averaged 23,082 per month (SD = 13,402), mean temperature 23.3°C 

(SD = 1), rainfall 117.7 mm (SD = 67), and humidity 74%. The long-run model showed a significant 

baseline incidence and a highly significant first-month lag (IRR ≈ 1.92). Similarly, short-run results 

confirmed strong persistence, with first differenced lag significant (IRR ≈ 1.82). The household survey 

showed an overall moderate vulnerability to malaria (median 0.35), driven by high exposure, moderate 

sensitivity and adaptive capacity. Sensitivity linked to older household-head, low education, poor 

housing, and climate-dependent livelihoods significantly increased odds of malaria by 52%. Exposure 

had a positive effect on malaria incidence (OR ≈ 1.29) while stronger adaptive capacity lowered 

malaria risk. The study concluded that climate change has a significant impact on malaria in Homa 

Bay County. It highlights the need for real-time climate-health early warning systems by integrating 

meteorological data into IDSR for timely outbreak detection. 

Keywords: Adaptation, Climate Change, Impact, Malaria, Vulnerability. 

Introduction 

Globally, climate change presents a 

fundamental threat to human health [1]. The 

health effects of climate change can arise 

directly from weather events like heat stress, 

floods, droughts, and storms, or indirectly from 

factors such as displacement, mental health 

issues, and spread of disease vectors [2]. 

Worldwide, an estimated 263 million malaria 

cases and 597,000 deaths were recorded in 2023, 

with 94% of the burden being in Africa. Children 

under five remain the most vulnerable group, 

representing close to 76% of malaria deaths across 

the continent [3]. The World Health 

Organization projects a further increase in 

annual mortalities by 250,000 between 2030 

and 2050 due to extreme weather, rising disease 

burdens, and the global spread of vector-borne 

infections [4]. 
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In many parts of Africa, climate change 

threatens to undermine many of the public 

health gains made in the last decades [5]. 

Locally, Kenya faces rising health risks from 

climate change, including higher temperatures, 

heavy rainfall, and flooding, which worsen 

existing health challenges, particularly for 

vulnerable groups [6]. Evidence from the studies 

conducted in Kenya provide baseline relationship 

between climate and malaria outcomes. For 

example, temperature and heat in informal 

settlements in Nairobi [7]; and the impact of 

warming temperatures on malaria vector species 

habitat and lifecycles in coastal regions of Kenya 

[8]. 

The Homa Bay County climate change policy 

highlights the region’s growing challenges-

including declining water quality, frequent 

flooding, and droughts; and calls for more research 

on climate impacts, vulnerability, and adaptation 

[9]. In response, this study examined the 

relationship between climate factors 

(temperature, rainfall, and humidity) and 

malaria incidence, assessed household 

vulnerability, and identified public health 

adaptation measures to reduce the impact of 

climate change on malaria in Homa Bay 

County, Kenya. This paper acknowledges that 

human activities play a central role in causing 

climate change, shaping its impacts, and 

fostering resilience. Its findings will improve 

understanding of both current and future health 

effects of climate change and support the 

formulation of effective public health policies. 

Materials and Methods 

Study Design 

This study adopted a mixed-method design 

that integrates quantitative and qualitative 

approaches to explore relationships between 

climate variables and malaria, population 

vulnerability, and local adaptation strategies. 

Study Area 

The study was conducted in Homa Bay 

County in western Kenya, a predominantly 

rural region situated (Latitude 00 15 - 0052’ 

South: Longitudes 340 - 350 East) along the 

shores of Lake Victoria. The county, with over 

1.13 million people, features two main 

ecological zones, the lakeshore lowlands and 

the upland plateau, and experiences a moderate 

inland equatorial climate. Its economy is 

largely driven by agriculture and an expanding 

blue economy supported by extensive lake 

access [10]. The Figure 1 below shows the 

study area of Homabay County in Kenya. 

 

Figure 1. A map showing the study location of Homa Bay County, Kenya 

Source, (Ochieng, 2017). 
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Study Population 

The 15 years (2010-2024) secondary data for 

malaria illnesses were extracted from the Kenya 

Health Information System, while climate 

variables (rainfall, temperature, and humidity) 

were obtained from the Kenya Meteorological 

Department. The target population for assessing 

household vulnerability comprised of all 

262,036 households in Homa Bay County. The 

head of the household served as the primary 

unit of analysis. Further, 19 respondents from 

key sectors such as health, water, agriculture, 

climate, and local governance volunteered as 

participate in the qualitative in-depth 

interviews. 

Sample Size and Sampling Technique 

All patients diagnosed with confirmed 

malaria in Homabay County from January 2010 

to December 2024 were included in this study. 

Further, climate related data (temperature, 

rainfall and humidity) for the same 15 year-

period were obtained from Kenya 

Meteorological Department. According to the 

World Meteorological Organisation, more than 

10 years of data can offer predictive accuracy. 

A multi-stage sampling was applied to 

determine the sample size for the household 

survey. The initial stage comprised selecting 4 

sub-counties based on the ecological strata, 

followed by proportional allocation of 

households. The sample size for household 

survey was determined using Leslie Fischer’s 

formula Equation 1, n =
Z2p(1−p)

e2  where; n is 

required sample size at 95% confidence 

interval, standard deviation z =1.96 with a 

default margin of error e =0.05.The degree of 

variability for the targeted households is not 

known, thus the study assumed the maximum 

variability of p = 0.5 to determine a more 

conservative sample size [11]. A total of 384 

households were recruited as study participants, 

later adjusted to 422 to account for potential 

non-response. Systematic sampling with an 

interval of five households was used to select 

survey participants. Additionally, purposive 

simple random sampling was used to identify 

19 key stakeholders across health, water, 

agriculture, climate, and local governance 

sectors for key informant interviews. 

Study 

Climate 
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Figure 

 

Figure 

 

Figure 

Strong 

Table 

Variable aStatistic Decision bStatistic Decision 

Malaria 9.573 Not na Not 

Temperature 60.041 Detected, 2.362 Deseasonalized 

Rainfall 91.361 Detected, 2.032 Deseasonalized 

Humidity 58.899 Detected, 0.916 Deseasonalized 

Signif. 

aInitial 

Pre- Unit 

Table  

First Second 

Variable ADF 

p-

PP 

pvalue 

Decision ADF 

p-

PP 

pvalue 

Decision 

Malaria 0.567 0.216 NS 0.010** 0.010** S 
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Temperature 0.010** 0.010** S 0.010** 0.010** S 

Rainfall 0.010** 0.010** S 0.010** 0.010** S 

Humidity 0.010** 0.010** S 0.010** 0.010** S 

Significant 

Note: 

Correlation 

Table 

Table  

Malaria Temperature Rainfall Humidity 

Malaria 1.000 0.099 - -

Temperature 

 

1.000 - -

Rainfall 

  

1.000 0.439 

Humidity 

   

1.000 

Structural 

 

Figure 

Checks An 

Table 

Table 

Variable Outlier(s) Dates Skewness Kurtosis 

Malaria No n/a - 2.032 

Temperature Yes March 0.626 5.407 

Rainfall Yes January - 5.755 

Humidity No n/a - 2.651 

No 

Secondary 

The 

Table 

Table 

Variable Mean SD Median IQR Min Max 

Malaria 23,081.76 13,402.86 20,303.00 20,021.00 5,603.00 70,224.00 

Temperature 23.3 1 23.2 1.1 20.7 27.8 

Rainfall 117.4 67 103.2 82.7 5.4 324.5 

Humidity 74 8.4 74.5 12 52 92 
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Results 

The 

The 

Table Three 

Table 

Coefficient rEstimate P- IRR VIF 

Intercept 9.077 0.005** na na 

L(Malaria, 0.652 <0.001*** 1.920 6.171 

L(Malaria, - 0.154 0.925 5.801 

L(Temperature, - 0.333 0.602 1.421 

L(Temperature, - 0.035* 0.291 1.382 

L(Rainfall, - 0.596 0.974 1.731 

L(Rainfall, - 0.850 0.992 1.629 

L(Humidity, 0.436 0.090† 1.546 3.550 

L(Humidity, - 0.292 0.724 3.450 

Break1 0.522 <0.001*** 1.686 3.685 

Break2 - <0.001*** 0.639 4.258 

Break3 0.355 <0.001*** 1.427 2.592 

R 0.847 

   

Adjusted 0.836 

   

Model 83.200 <0.001*** 

  

Residual 1.294 0.524 

  

rSerial 17.143 0.002** 

  

Heteroskedasticity 11.324 0.417 

  

Ramsey 0.116 0.891 

  

Recursive 0.340 0.934 

  

OLS- 0.627 0.827 

  

Bounds 8.400 <0.001   

Signif. 

Dependent 

IRR- 

rRobust 

VIF- 

The 

The 

However, 

The 

The 

Table 

Table 

Coefficient rEstimate P- IRR VIF 

(Intercept) 0.016 0.669 na na 

L(ΔMalaria, 0.598 <0.001*** 1.819 3.891 

L(ΔMalaria, - 0.222 0.930 1.070 

L(ΔTemperature, - 0.588 0.768 1.789 

L(ΔTemperature, - 0.091† 0.399 1.781 
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L(ΔRainfall, - 0.949 0.997 1.620 

L(ΔRainfall, 0.002 0.960 1.002 1.596 

L(ΔHumidity, 0.312 0.335 1.367 1.746 

L(ΔHumidity, 0.217 0.384 1.242 1.716 

L(ECT, - <0.001*** na 3.811 

Break1 - 0.900 0.994 1.240 

Break2 - 0.662 0.980 1.740 

Break3 0.019 0.732 1.020 1.483 

R 0.232 

   

Adjusted 0.175 

   

Model 4.069 <0.001*** 

  

Residual 1.407 0.495 

  

Serial 16.075 0.003** 

  

Heteroskedasticity 11.992 0.446 

  

Ramsey 1.689 0.188 

  

Recursive 0.979 0.040 

  

OLS- 0.623 0.833 

  

Signif. 

Dependent 

IRR- 

rRobust 

VIF- 

The 

The 

Socio-

A 

Spatially, 

Table 

Table 

Characteristic N 

Sex 

Male 198 

Female 203 

Age 49 

Age 

Young 90 

Middle- 243 

Older 68 

Highest 

Primary 93 

Secondary 175 

Tertiary/University 96 

None 37 

Number 5.00 

Number 1.00 

Number 
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No 177 

1– 218 

3 6 

Main 

Farming 158 

Fishing 40 

Casual 56 

Business 120 

Salaried 27 

Malaria 

 297 

 104 

Sub-

Homa 96 

Rachuonyo 138 

Rachuonyo 94 

Suba 73 

Domains 

Sensitivity 0.44 

Exposure 0.63 

Adaptive 0.61 

Household 0.35 

1n 

Household-

Environmental 

Test 

Household 

Overall, 

Table 

Table 

 Household 

Characteristic No, Yes, P-

Sub-   0.180a 

Homa 17 79  

Rachuonyo 38 100  

Rachuonyo 26 68  

Suba 23 50  

Sex   >0.900a 

Male 51 147  

Female 53 150  

Age 44 52 <0.001c 

Age   <0.001a 

Young 35 55  

Middle- 62 181  

Older 7 61  
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Highest   <0.001a 

Primary 12 81  

Secondary 52 123  

Tertiary/University 38 58  

None 2 35  

Main   0.028a 

Farming 34 124  

Fishing 14 26  

Casual 8 48  

Business 40 80  

Salaried 8 19  

Number   0.820b 

No 45 132  

1– 57 161  

3 2 4  

Household   0.006b 

>120,000 2 6  

24,000– 32 48  

<23,000 70 243  

Any   <0.001a 

Yes 22 131  

No 82 166  

 

Main 

  <0.001b 

Piped 5 10  

Borehole 64 96  

Surface/River/Pond 35 191  

Type   0.740b 

Flush 0 2  

Pit 53 164  

Pit 51 130  

Open 0 1  

Primary   <0.001b 

LPG/Electricity 5 7  

Charcoal 37 49  

Firewood 62 241  

Any   0.015a 

Yes 6 47  

No 98 250  

Heard   0.002a 

Yes 94 224  

No 10 73  

Climate   0.162b 

Yes 99 291  
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No 5 6  

Household   0.919a 

Yes 53 155  

No 51 142  

Household   <0.001a 

No 48 72  

Yes 56 225  

Area   0.003b 

Yes 96 293  

No 8 4  

Area   >0.900b 

Yes 104 296  

No 0 1  

Education   <0.001a 

Secondary 2 35  

Primary 12 81  

None 90 181  

Access   0.046a 

Yes 74 241  

No 30 56  

Any   0.466a 

Yes 90 246  

No 14 51  

Own   0.186a 

Yes 94 251  

No 10 46  

Household   0.002a 

Never 13 48  

Occasionally 88 206  

Regularly 3 43  

Household   0.005b 

Never 3 8  

Occasionally 95 235  

Regularly 6 54  

Household   0.044a 

Yes 52 113  

No 52 184  

Any   0.004a 

Yes 60 121  

No 44 176  

Domain    

Sensitivity 0.44 0.50 <0.001c 

Exposure 0.50 0.63 <0.001c 
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Adaptive 0.72 0.61 0.017c 

Household 0.12 0.46 <0.001c 

 

 

1n 
aPearson's 

Logistic 
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Equation 5 results for malaria indicate that 

household-level climatic vulnerability 

significantly influences disease occurrence. 

Sensitivity to climatic factors was positively 

associated with malaria, with each unit increase 

in sensitivity raising the odds of reporting 

malaria by 1.52 times (OR = 1.52, 95% CI: 

1.15-2.05, p = 0.005), while higher Exposure 

also increased risk (OR = 1.29, 95% CI: 1.01-

1.67, p = 0.045). 

Conversely, stronger Adaptive Capacity 

reduced the likelihood of malaria by 24% (OR 

= 0.76, 95% CI: 0.58-0.99, p = 0.046), 

highlighting the protective role of coping 

mechanisms. Age of the household head was 

another significant predictor, with middle-aged 

(OR = 1.76) and older adults (OR = 2.74) more 

likely to report malaria than younger adults. 

These findings underscore that high sensitivity 

and exposure elevate malaria risk, whereas 

adaptive capacity can buffer households against 

climatic vulnerabilities. Post-model diagnostics 

support the reliability and adequacy of the fitted 

logistic regression model 

Table 10. 

Table 10. Malaria Model 

Predictor Estimate (β) (95% CI) OR (95% CI) P-value 

Sensitivity 0.422 (0.131, 0.713) 1.520 (1.150, 2.050) 0.005** 

Exposure 0.258 (0.006, 0.510) 1.290 (1.010, 1.670) 0.045* 

Adaptive capacity -0.274 (-0.543, -0.005) 0.760 (0.580, 0.990) 0.046* 

Age of Household Head 

Young Adult (18-<40 years) - - - 

Middle-aged Adult (41-<65 

years) 

0.566 (0.033, 1.099) 1.760 (1.030, 3.000) 0.037* 

Older Adult (>65 years) 1.007 (0.037, 1.977) 2.740 (1.080, 7.670) 0.042* 

Abbreviations: CI = Confidence Interval, OR = Odds Ratio 

Signif. codes: <0.001‘***’ 0.001‘***’ 0.01‘**’ 0.05‘*’ 0.1‘†’ 

Malaria Model Diagnostics 

The model recorded a null deviance of 

459.05 and a residual deviance of 417.35, 

resulting in a reduction of approximately 41.7 

points Figure 7. This reduction in deviance 

indicates an improvement in model fit when the 

predictors were included, compared to the null 

model containing only the intercept. The 

Akaike Information Criterion (AIC) for the 

final model was 429.35, suggesting a 

reasonably good fit with moderate model 

complexity. A lower AIC value generally 

reflects a better trade-off between goodness of 

fit and parsimony, implying that the selected 

model achieves an acceptable level of 

explanatory power without overfitting. 

Variance Inflation Factor (VIF) diagnostics 

were used to check for multicollinearity among 
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the independent variables. The generalized VIF 

(GVIF) values ranged from 1.09 to 1.31, 

corresponding to adjusted values between 1.04 

and 1.15. These results fall well below the 

conventional threshold of 5, suggesting that 

multicollinearity was not a concern in the 

model. Therefore, the estimates for Sensitivity, 

Exposure, Adaptive Capacity, and Age of 

Household Head can be considered stable and 

independently meaningful. 

The Hosmer-Lemeshow goodness-of-fit test 

further confirmed the adequacy of the model. 

The test yielded a Chi-square statistic of 3.42 

with a p-value of 0.906, indicating that the 

model’s predicted probabilities align well with 

the observed outcomes. A non-significant result 

(p > 0.05) implies that there is no evidence of 

lack of fit, hence the model accurately captures 

the observed distribution of malaria cases 

across households. 

The McFadden pseudo-R² for the model was 

0.091, while the ML and Cragg-Uhler 

(Nagelkerke) R² values were 0.099 and 0.145, 

respectively. These indicate that the model 

explains between 9% and 14% of the variation 

in the likelihood of malaria occurrence across 

households. Although pseudo-R² values are 

typically lower than those of linear models, 

these results are consistent with acceptable 

explanatory power in epidemiological and 

behavioural studies where multiple unobserved 

factors may influence disease outcomes. 

The predictive ability of the model was 

further evaluated using the Receiver Operating 

Characteristic (ROC) curve, which yielded an 

Area Under the Curve (AUC) of 0.706. This 

suggests that the model has moderate 

discriminative ability, correctly distinguishing 

between households that reported malaria and 

those that did not approximately 71% of the 

time (Figure 6). According to standard 

interpretation, an AUC between 0.7 and 0.8 

indicates satisfactory model performance for 

prediction in public health and social science 

contexts. 

 

Figure 7. Malaria Model ROC Curve 

Overall, the diagnostic checks confirm that 

the logistic regression model is statistically 

sound, well-fitted, and free from 

multicollinearity. The Hosmer-Lemeshow test 

indicates excellent calibration, and the AUC 

value suggests a moderate ability to 

discriminate between malaria and non-malaria 

households. These diagnostics collectively 

validate the robustness of the model and the 

reliability of its estimates for inferential and 

policy interpretation. 

Discussion 

Relationship Between Climate Factors 

and Malaria Incidence 

The results of this study provide clear 

empirical evidence that climatic factors, 

particularly temperature and humidity, exert a 

significant influence on the incidence of 

malaria diseases in Homa Bay County. Using 

the ARDL framework, the analysis revealed 

both long-run and short-run relationships, with 
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incidence rate ratios (IRRs) quantifying the 

magnitude of these effects. These results extend 

previous evidence from Kenya and Sub-

Saharan Africa by identifying lag-dependent 

and disease-specific responses, offering 

actionable insights for early warning and 

adaptive disease control strategies. 

The positive and highly significant 

autoregressive component of malaria incidence 

(β = 0.652, p < 0.001; IRR ≈ 1.92) indicates 

strong temporal persistence, suggesting that 

elevated case levels tend to carry over across 

months. This persistence underscores the need 

for continuous, rather than episodic, vector 

control and surveillance activities, as outbreaks 

are likely to sustain themselves even after 

climatic conditions stabilize. These findings 

support the argument that malaria transmission 

in highland and lake regions of Kenya is 

characterized by self-reinforcing dynamics 

linked to environmental and behavioural 

stability [12, 13]. 

The significant negative long-run 

association between temperature and malaria at 

a two-month lag (β = –1.233, p = 0.035; IRR ≈ 

0.29) implies that sustained high temperatures 

may reduce mosquito survival and parasite 

development. This aligns with the “thermal 

limit hypothesis” [14, 15], suggesting that 

beyond certain temperature thresholds, vector 

reproduction and parasite incubation decline 

sharply. In policy terms, this has implications 

for spatial targeting of interventions. As 

warming trends continue, malaria control 

programs may need to shift focus from 

traditional hotspots to cooler, highland areas 

that are becoming newly suitable for 

transmission. 

Humidity exhibited both immediate and 

delayed effects. The marginally positive short-

term association (β = 0.436, p = 0.090; IRR ≈ 

1.55) suggests that transient rises in humidity 

increase malaria risk, while the strong negative 

effect at a three-month lag (β = –0.753, p < 

0.001; IRR ≈ 0.47) indicates that prolonged 

humid conditions eventually suppress 

transmission. This underscores the importance 

of integrating meteorological monitoring with 

entomological surveillance in the County 

Integrated Disease Surveillance and Response 

(IDSR) system. Predictive models that 

incorporate humidity thresholds could support 

the Ministry of Health and Kenya 

Meteorological Department (KMD) in issuing 

climate-informed vector control advisories. 

The structural stability analysis for the 

malaria ARDL models, identified three key 

structural breaks, in December 2012, March 

2018, and October 2021, indicating shifts in the 

malaria-climate relationship over time. The 

2012 break, which was positive and significant 

(IRR = 1.686), corresponds to a period when 

malaria incidence increased markedly. This 

coincided with transitional phases in Kenya’s 

malaria control programs, likely linked to 

variations in intervention coverage following 

the earlier Kenya Malaria Strategy (2009-

2017). The 2018 break, which was negative and 

significant (IRR = 0.639), aligns with 

intensified malaria prevention campaigns, 

including mass distribution of insecticide-

treated nets (ITNs) and implementation of 

county-level surveillance strengthening. This 

structural shift suggests that public health 

interventions may have temporarily weakened 

the sensitivity of malaria transmission to 

climatic variations. 

Conversely, the 2021 break (IRR = 1.427) 

reflects a resurgence in malaria incidence, 

coinciding with the COVID-19 pandemic 

period, which disrupted routine control 

measures, health-seeking behavior, and supply 

chain operations. Collectively, these breaks 

underscore that malaria transmission dynamics 

in Homa Bay County are shaped by an 

interaction between climate variability and 

episodic policy or environmental shocks. 

Adjusting for these breaks improved model fit 

and interpretability, reaffirming that malaria-

climate linkages must be interpreted within the 

broader context of intervention intensity and 

health system resilience [12, 16]. 
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Influence of Sensitivity to Climate-

Related Risks on Malaria Incidence 

In relation to malaria occurrence, the 

sensitivity domain showed a statistically 

significant positive association: β = 0.422 (95% 

CI: 0.131-0.713, p = 0.005), translating to an 

odds ratio (OR) of approximately 1.52 (95% CI: 

1.15–2.05). This indicates that households with 

higher sensitivity to climatic stressors, such as 

older household head, lower education, poor 

housing and more climate-exposed livelihoods, 

had about 52 % higher odds of reporting 

malaria cases. These results align with the 

bivariate association findings where 

households with malaria had higher median 

sensitivity scores [0.50 (IQR 0.39-0.61) vs. 

0.44 (IQR 0.33-0.50), p < 0.001]. Studies in 

similar African settings show that household 

fragility (low socioeconomic status, limited 

preventive capacity) amplifies vector-borne 

disease risk under climatic variability [17]. This 

finding underscores the necessity of 

strengthening household-level resilience, 

through improved housing, education, and 

livelihood diversification, as part of malaria 

control in climate-sensitive zones. 

Influence of Exposure to Climate-

Related Risks on Malaria Incidence 

The exposure domain showed a statistically 

significant positive effect: β = 0.258 (95% CI: 

0.006-0.510, p = 0.045), OR ≈ 1.29 (95% CI: 

1.01-1.67). This suggests that households with 

greater direct exposure (living near stagnant 

water, poor drainage, flood-prone zones) 

experienced about 29 % higher odds of 

experiencing malaria. In the bivariate analysis, 

malaria-affected households had higher median 

exposure scores [0.63 (IQR 0.50-0.75) vs. 0.50 

(IQR 0.25-0.75), p < 0.001], reinforcing this 

association. Recent empirical work confirms 

that exposure to vector habitats and 

environmental risk zones is a significant 

mediator of malaria transmission in coastal and 

lakeside African communities [18]. This 

outcome highlights the importance of 

environmental management (drainage 

improvement, mosquito-breeding site 

elimination) combined with climate-informed 

spatial targeting of vector control in high-

exposure zones. 

Influence of Adaptive Capacity on 

Malaria Incidence 

Adaptive capacity in the model showed a 

statistically significant and protective effect: β 

= -0.274 (95% CI: -0.543 to -0.005, p = 0.046), 

OR ≈ 0.76 (95% CI: 0.58-0.99). This indicates 

that households with stronger adaptive 

capacity, such as diversified income, health-

information access, insecticide-treated net use 

and early treatment options, were around 24 % 

less likely to experience malaria. Although 

bivariate exposure to malaria prevention 

measures was high and not significantly 

different between groups, the regression result 

reiterates the importance of measured capacity 

beyond mere possessions. Recent reviews 

emphasise that adaptation (behavioural and 

structural) under climate stress is central to 

maintaining disease resilience [19, 20]. As 

such, strengthening readable climate-health 

communication, ensuring equitable access to 

preventive tools, and fostering household 

adaptive behaviours should be integral to 

malaria interventions. 

Equations 

The following equations were applied to 

quantitatively assess the relationship between 

climate change factors and malaria occurrence 

within the study area. These formulas provided 

the analytical framework for examining how 

variations in temperature, rainfall, and humidity 

influence malaria transmission patterns over 

time. 

Equation 1: Leslie Fischer’s formula 

n =
Z2p(1−p)

e2     (1) 

Equation 2:Autoregressive Distributed Lag 

(ARDL) model 
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Yt =  α0 +  ∑ αiYt−i
p
i=1 + ∑ β1jX1,t−j

q1
j=0 +

 ∑ β2jX2,t−j
q2
j=0 + ⋯ +  ∑ βkjXk,t−j

qk
j=0 +  εt (2) 

Equation 3: Long-run equilibrium ARDL 

form 

(Yt = Yt−1 = Yt−2 = ⋯ = Y∗ and Xk,t = Xk,t−1 = ⋯ = Xk
∗ ): 

Yt =  γ0 +  γ1X1,t + γ2X2,t + ⋯ +  γkXk,t + ut (3) 

Equation 4: Short-run equilibrium ARDL 

form 

∆Yt =  λ0 + ∑ ϕiΔYt−i
p−1
i=1 + ∑ θ1j

q1

j=0 ΔX1,t−j +

 ∑ θ2j
q2−1
j=0 ΔX2,t−j + ⋯ + ∑ θkj

qk−1
j=0 ΔXk,t−j +

 ψECTt−1 +  μt     (4) 

Equation 5: General logistic regression 

model 

(
Pi

1− Pi
) =  β0 +  β1X1 + β2X2 + β3X3 +  ∑ γk

n
k=1 Zik + εi  (1) 

Conclusion 

The study concludes that climate variables, 

particularly temperature and humidity, play a 

significant role in shaping malaria incidence in 

Homa Bay County. Malaria showed strong 

temporal persistence, with temperature 

reducing long-term malaria risk and humidity 

demonstrating mixed but meaningful effects. 

Structural breaks aligned with major public 

health milestones, confirming that disease 

patterns emerge from the interplay between 

climate variability and health system 

interventions. 

The household sensitivity substantially 

increases the likelihood of malaria, driven 

largely by age, education, housing quality, and 

livelihood vulnerability. Higher sensitivity 

elevated malaria odds, highlighting the central 

role of social and structural disadvantages in 

amplifying disease risk. This study concludes 

that strengthening household resilience, 

through improved housing, education, 

diversified livelihoods, is essential in 

mitigating climate-sensitive disease burdens. 

Moreover, the analysis concludes that exposure 

to environmental risks significantly increases 

malaria risk, underscoring the importance of 

environmental management and climate-

responsive vector control. 

Finally, the study concludes that stronger 

adaptive capacity, reflected in diversified 

livelihoods, access to health information, ITN 

use, and prompt treatment, meaningfully reduces 

malaria incidence, lowering the odds by about 

24%. This demonstrates the importance of 

empowering households with preventive tools 

and climate-health information. 
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