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Abstract

This paper presents the relationship between climate change (temperature, rainfall, humidity) and
incidence of malaria in Homabay County, Kenya. Climate change impacts, household exposure,
sensitivity, and adaptive capacity were analysed to inform policy. The study combined ecological time-
series analysis, household surveys, and key informant interviews. It analysed climate and morbidity
data from 2010-2024, supplemented with primary data from 401 households and insights from 19
stakeholders. Standardized questionnaires and in-depth interviews guided data collection. The ARDL
models assessed short and long-run climate effects on malaria, logistic regression examined
determinants of household vulnerability, and thematic analysis generated qualitative insights. The
findings showed malaria cases averaged 23,082 per month (SD = 13,402), mean temperature 23.3°C
(SD = 1), rainfall 117.7 mm (SD = 67), and humidity 74%. The long-run model showed a significant
baseline incidence and a highly significant first-month lag (IRR = 1.92). Similarly, short-run results
confirmed strong persistence, with first differenced lag significant (IRR ~ 1.82). The household survey
showed an overall moderate vulnerability to malaria (median 0.35), driven by high exposure, moderate
sensitivity and adaptive capacity. Sensitivity linked to older household-head, low education, poor
housing, and climate-dependent livelihoods significantly increased odds of malaria by 52%. Exposure
had a positive effect on malaria incidence (OR ~ 1.29) while stronger adaptive capacity lowered
malaria risk. The study concluded that climate change has a significant impact on malaria in Homa
Bay County. It highlights the need for real-time climate-health early warning systems by integrating
meteorological data into IDSR for timely outbreak detection.
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Introduction cases and 597,000 deaths were recorded in 2023,
with 94% of the burden being in Africa. Children
under five remain the most vulnerable group,
representing close to 76% of malaria deaths across
the continent [3]. The World Health
Organization projects a further increase in
annual mortalities by 250,000 between 2030
and 2050 due to extreme weather, rising disease
burdens, and the global spread of vector-borne
infections [4].

Globally, climate change presents a
fundamental threat to human health [1]. The
health effects of climate change can arise
directly from weather events like heat stress,
floods, droughts, and storms, or indirectly from
factors such as displacement, mental health
issues, and spread of disease vectors [2].
Worldwide, an estimated 263 million malaria
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In many parts of Africa, climate change
threatens to undermine many of the public
health gains made in the last decades [5].
Locally, Kenya faces rising health risks from
climate change, including higher temperatures,
heavy rainfall, and flooding, which worsen
existing health challenges, particularly for
vulnerable groups [6]. Evidence from the studies
conducted in Kenya provide baseline relationship
between climate and malaria outcomes. For
example, temperature and heat in informal
settlements in Nairobi [7]; and the impact of
warming temperatures on malaria vector species
habitat and lifecycles in coastal regions of Kenya
[8].

The Homa Bay County climate change policy
highlights the region’s growing challenges-
including declining water quality, frequent
flooding, and droughts; and calls for more research
on climate impacts, vulnerability, and adaptation
[9]. In response, this study examined the
relationship  between  climate  factors
(temperature, rainfall, and humidity) and
malaria  incidence, assessed  household
vulnerability, and identified public health
adaptation measures to reduce the impact of
climate change on malaria in Homa Bay
County, Kenya. This paper acknowledges that
human activities play a central role in causing
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climate change, shaping its impacts, and
fostering resilience. Its findings will improve
understanding of both current and future health
effects of climate change and support the
formulation of effective public health policies.

Materials and Methods
Study Design

This study adopted a mixed-method design
that integrates quantitative and qualitative
approaches to explore relationships between
climate variables and malaria, population
vulnerability, and local adaptation strategies.

Study Area

The study was conducted in Homa Bay
County in western Kenya, a predominantly
rural region situated (Latitude 0° 15 - 0°52°
South: Longitudes 34° - 35° East) along the
shores of Lake Victoria. The county, with over
1.13 million people, features two main
ecological zones, the lakeshore lowlands and
the upland plateau, and experiences a moderate
inland equatorial climate. Its economy is
largely driven by agriculture and an expanding
blue economy supported by extensive lake
access [10]. The Figure 1 below shows the
study area of Homabay County in Kenya.
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Figure 1. A map showing the study location of Homa Bay County, Kenya

Source, (Ochieng, 2017).



Study Population

The 15 years (2010-2024) secondary data for
malaria illnesses were extracted from the Kenya
Health Information System, while climate
variables (rainfall, temperature, and humidity)
were obtained from the Kenya Meteorological
Department. The target population for assessing
household wvulnerability comprised of all
262,036 households in Homa Bay County. The
head of the household served as the primary
unit of analysis. Further, 19 respondents from
key sectors such as health, water, agriculture,
climate, and local governance volunteered as
participate in the qualitative in-depth
interviews.

Sample Size and Sampling Technique

All patients diagnosed with confirmed
malaria in Homabay County from January 2010
to December 2024 were included in this study.
Further, climate related data (temperature,
rainfall and humidity) for the same 15 year-
period were obtained from Kenya
Meteorological Department. According to the
World Meteorological Organisation, more than
10 years of data can offer predictive accuracy.

A multi-stage sampling was applied to
determine the sample size for the household
survey. The initial stage comprised selecting 4
sub-counties based on the ecological strata,
followed by proportional allocation of
households. The sample size for household
survey was determined using Leslie Fischer’s
formula Equation 1, n = 200-D) \vhere: 1 is

2
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required sample size at 95% confidence
interval, standard deviation z =1.96 with a
default margin of error e =0.05.The degree of
variability for the targeted households is not
known, thus the study assumed the maximum
variability of p = 0.5 to determine a more
conservative sample size [11]. A total of 384
households were recruited as study participants,
later adjusted to 422 to account for potential
non-response. Systematic sampling with an
interval of five households was used to select
survey participants. Additionally, purposive
simple random sampling was used to identify
19 key stakeholders across health, water,
agriculture, climate, and local governance
sectors for key informant interviews.
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Table
Variable Statistic Decision PStatistic Decision
Malaria 9.573 Not na Not
Temperature 60.041 Detected, 2.362 Deseasonalized
Rainfall 91.361 Detected, 2.032 Deseasonalized
Humidity 58.899 Detected, 0.916 Deseasonalized
Signif.
alnitial
Pre- Unit
Table
First Second
Variable ADF PP Decision ADF PP Decision
p- pvalue p- pvalue
Malaria 0.567 0.216 NS 0.010** | 0.010** S
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Temperature 0.010** | 0.010** S 0.010** | 0.010** S
Rainfall 0.010** | 0.010** S 0.010** | 0.010** S
Humidity 0.010** | 0.010** S 0.010** | 0.010** S

Significant
Note:
Correlation
Table
Table
Malaria Temperature Rainfall Humidity
Malaria 1.000 0.099 - -
Temperature 1.000 - -
Rainfall 1.000 0.439
Humidity 1.000
Structural
o : ' |
=} . | :
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Figure
Checks An
Table
Table
Variable Outlier(s) Dates Skewness | Kurtosis
Malaria No n/a - 2.032
Temperature Yes March 0.626 5.407
Rainfall Yes January - 5.755
Humidity No n/a - 2.651
No The
Secondary
Table
Table
Variable Mean SD Median I0OR Min Max
Malaria 23,081.76 | 13,402.86 | 20,303.00 | 20,021.00 | 5,603.00 | 70,224.00
Temperature 23.3 1 23.2 11 20.7 27.8
Rainfall 1174 67 103.2 82.7 5.4 3245
Humidity 74 8.4 74.5 12 52 92
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Results The
The
Table Three
Table
Coefficient "Estimate P- IRR VIF
Intercept 9.077 0.005** na na
L(Malaria, 0.652 <0.001*** | 1.920 6.171
L(Malaria, - 0.154 0.925 5.801
L(Temperature, - 0.333 0.602 1.421
L(Temperature, - 0.035* 0.291 1.382
L(Rainfall, - 0.596 0.974 1.731
L(Rainfall, - 0.850 0.992 1.629
L(Humidity, 0.436 0.090f 1.546 3.550
L(Humidity, - 0.292 0.724 3.450
Breakl 0.522 <0.001*** | 1.686 3.685
Break?2 - <0.001*** | 0.639 4.258
Break3 0.355 <0.001*** | 1.427 2.592
R 0.847
Adjusted 0.836
Model 83.200 <0.001***
Residual 1.294 0.524
'Serial 17.143 0.002**
Heteroskedasticity 11.324 0.417
Ramsey 0.116 0.891
Recursive 0.340 0.934
OLS- 0.627 0.827
Bounds 8.400 <0.001
Signif.
Dependent
IRR-
"Robust
VIF-
The The
The The
However,
Table
Table
Coefficient "Estimate P- IRR VIF
(Intercept) 0.016 0.669 na na
L(AMalaria, 0.598 <0.001*** 1.819 3.891
L(AMalaria, - 0.222 0.930 1.070
L(ATemperature, - 0.588 0.768 1.789
L(ATemperature, - 0.091f 0.399 1.781
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L(ARainfall, - 0.949 0.997 1.620
L(ARainfall, 0.002 0.960 1.002 1.596
L(AHumidity, 0.312 0.335 1.367 1.746
L(AHumidity, 0.217 0.384 1.242 1.716
L(ECT, - <0.001*** na 3.811
Breakl - 0.900 0.994 1.240
Break?2 - 0.662 0.980 1.740
Break3 0.019 0.732 1.020 1.483
R 0.232
Adjusted 0.175
Model 4.069 <0.001***
Residual 1.407 0.495
Serial 16.075 0.003**
Heteroskedasticity 11.992 0.446
Ramsey 1.689 0.188
Recursive 0.979 0.040
OLS- 0.623 0.833
Signif.
Dependent
IRR-
"Robust
VIF-
The Socio-
The A
Spatially,
Table
Table
Characteristic N
Sex
Male 198
Female 203
Age 49
Age
Young 90
Middle- 243
Older 68
Highest
Primary 93
Secondary 175
Tertiary/University 96
None 37
Number 5.00
Number 1.00
Number
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No 177
1- 218
3 6
Main
Farming 158
Fishing 40
Casual 56
Business 120
Salaried 27
Malaria
297
104
Sub-
Homa 96
Rachuonyo 138
Rachuonyo 94
Suba 73
Domains
Sensitivity 0.44
Exposure 0.63
Adaptive 0.61
Household 0.35
In
Household- Household
Environmental Overall,
Test
Table
Table
Household
Characteristic No, Yes, P-
Sub- 0.1802
Homa 17 79
Rachuonyo 38 100
Rachuonyo 26 68
Suba 23 50
Sex >0.900°
Male 51 147
Female 53 150
Age 44 52 <0.001°
Age <0.001?
Young 35 55
Middle- 62 181
Older 7 61
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Highest <0.001?
Primary 12 81
Secondary 52 123
Tertiary/University 38 58
None 2 35
Main 0.0282
Farming 34 124
Fishing 14 26
Casual 8 48
Business 40 80
Salaried 8 19
Number 0.820°
No 45 132
1- 57 161
3 2 4
Household 0.006°
>120,000 2 6
24,000 32 48
<23,000 70 243
Any <0.0012
Yes 22 131
No 82 166
<0.001°
Main
Piped 5 10
Borehole 64 96
Surface/River/Pond 35 191
Type 0.740°
Flush 0 2
Pit 53 164
Pit 51 130
Open 0 1
Primary <0.001°
LPG/Electricity 5 7
Charcoal 37 49
Firewood 62 241
Any 0.0152
Yes 6 47
No 98 250
Heard 0.0022
Yes 94 224
No 10 73
Climate 0.162°
Yes 99 291
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No 5 6
Household 0.919?
Yes 53 155
No 51 142
Household <0.001?
No 48 72
Yes 56 225
Area 0.003°
Yes 96 293
No 8 4
Area >0.900°
Yes 104 296
No 0 1
Education <0.001?
Secondary 2 35
Primary 12 81
None 90 181
Access 0.0462
Yes 74 241
No 30 56
Any 0.4662
Yes 90 246
No 14 51
Own 0.186%
Yes 94 251
No 10 46
Household 0.0022
Never 13 48
Occasionally 88 206
Regularly 3 43
Household 0.005°
Never 3 8
Occasionally 95 235
Regularly 6 54
Household 0.0442
Yes 52 113
No 52 184
Any 0.0042
Yes 60 121
No 44 176
Domain
Sensitivity 0.44 0.50 <0.001°¢
Exposure 0.50 0.63 <0.001°¢
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Adaptive 0.72 0.61 0.017¢
Household 0.12 0.46 <0.001°
n
2Pearson's
Logistic Conversely, stronger Adaptive Capacity
Pre- reduced the likelihood of malaria by 24% (OR

Equation 5 results for malaria indicate that
household-level climatic vulnerability
significantly influences disease occurrence.
§ensitivity to climatic factors was positively
associated with malaria, with each unit increase
$n sensitivity raising the odds of reporting
malaria by 1.52 times (OR = 1.52, 95% CI:
i.15-2.05, p = 0.005), while higher Exposure
also increased risk (OR = 1.29, 95% CI: 1.01-

= 0.76, 95% CI: 0.58-0.99, p = 0.046),
highlighting the protective role of coping
mechanisms. Age of the household head was
another significant predictor, with middle-aged
(OR =1.76) and older adults (OR = 2.74) more
likely to report malaria than younger adults.
These findings underscore that high sensitivity
and exposure elevate malaria risk, whereas
adaptive capacity can buffer households against
climatic vulnerabilities. Post-model diagnostics
support the reliability and adequacy of the fitted
logistic regression model

1.67, p = 0.045).
r Table 10.
e Table 10. Malaria Model
9 | predictor Estimate (B) (95% CI) | OR (95% CI) P-value
r o
e Sensitivity 0.422 (0.131, 0.713) 1.520 (1.150, 2.050) 0.005**
s Exposure 0.258 (0.006, 0.510) 1.290 (1.010, 1.670) 0.045*
s Adaptive capacity -0.274 (-0.543, -0.005) 0.760 (0.580, 0.990) 0.046*
i Age of Household Head
o Young Adult (18-<40 years) | - - -
n Middle-aged Adult (41-<65 | 0.566 (0.033, 1.099) 1.760 (1.030, 3.000) 0.037*
years)
Older Adult (>65 years) 1.007 (0.037, 1.977) 2.740 (1.080, 7.670) 0.042*
R Abbreviations: Cl = Confidence Interval, OR = Odds Ratio
E
= Signif. codes: <0.001 “***’ 0.001 “***’ 0.01 ‘*** 0.05*’ 0.1}’
Malaria Model Diagnostics final model was 429.35, suggesting a

— The model recorded a null deviance of
559.05 and a residual deviance of 417.35,
Fesulting in a reduction of approximately 41.7
Boints Figure 7. This reduction in deviance
fdicates an improvement in model fit when the
EJredictors were included, compared to the null
fhodel containing only the intercept. The
é\kaike Information Criterion (AIC) for the

g w w N

reasonably good fit with moderate model
complexity. A lower AIC value generally
reflects a better trade-off between goodness of
fit and parsimony, implying that the selected
model achieves an acceptable level of
explanatory power without overfitting.
Variance Inflation Factor (VIF) diagnostics
were used to check for multicollinearity among



the independent variables. The generalized VIF
(GVIF) values ranged from 1.09 to 1.31,
corresponding to adjusted values between 1.04
and 1.15. These results fall well below the
conventional threshold of 5, suggesting that
multicollinearity was not a concern in the
model. Therefore, the estimates for Sensitivity,
Exposure, Adaptive Capacity, and Age of
Household Head can be considered stable and
independently meaningful.

The Hosmer-Lemeshow goodness-of-fit test
further confirmed the adequacy of the model.
The test yielded a Chi-square statistic of 3.42
with a p-value of 0.906, indicating that the
model’s predicted probabilities align well with
the observed outcomes. A non-significant result
(p > 0.05) implies that there is no evidence of
lack of fit, hence the model accurately captures
the observed distribution of malaria cases
across households.

The McFadden pseudo-R2 for the model was
0.091, while the ML and Cragg-Uhler
(Nagelkerke) R2 values were 0.099 and 0.145,
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respectively. These indicate that the model
explains between 9% and 14% of the variation
in the likelihood of malaria occurrence across
households. Although pseudo-R2 values are
typically lower than those of linear models,
these results are consistent with acceptable
explanatory power in epidemiological and
behavioural studies where multiple unobserved
factors may influence disease outcomes.

The predictive ability of the model was
further evaluated using the Receiver Operating
Characteristic (ROC) curve, which yielded an
Area Under the Curve (AUC) of 0.706. This
suggests that the model has moderate
discriminative ability, correctly distinguishing
between households that reported malaria and
those that did not approximately 71% of the
time (Figure 6). According to standard
interpretation, an AUC between 0.7 and 0.8
indicates satisfactory model performance for
prediction in public health and social science
contexts.

ROC Curve for Malaria Model
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Figure 7. Malaria Model ROC Curve

Overall, the diagnostic checks confirm that
the logistic regression model is statistically
sound, well-fitted, and free from
multicollinearity. The Hosmer-Lemeshow test
indicates excellent calibration, and the AUC
value suggests a moderate ability to
discriminate between malaria and non-malaria
households. These diagnostics collectively
validate the robustness of the model and the
reliability of its estimates for inferential and
policy interpretation.

Discussion

Relationship Between Climate Factors
and Malaria Incidence

The results of this study provide clear
empirical evidence that climatic factors,
particularly temperature and humidity, exert a
significant influence on the incidence of
malaria diseases in Homa Bay County. Using
the ARDL framework, the analysis revealed
both long-run and short-run relationships, with



incidence rate ratios (IRRs) quantifying the
magnitude of these effects. These results extend
previous evidence from Kenya and Sub-
Saharan Africa by identifying lag-dependent
and disease-specific  responses, offering
actionable insights for early warning and
adaptive disease control strategies.

The positive and highly significant
autoregressive component of malaria incidence
(B = 0.652, p < 0.001; IRR = 1.92) indicates
strong temporal persistence, suggesting that
elevated case levels tend to carry over across
months. This persistence underscores the need
for continuous, rather than episodic, vector
control and surveillance activities, as outbreaks
are likely to sustain themselves even after
climatic conditions stabilize. These findings
support the argument that malaria transmission
in highland and lake regions of Kenya is
characterized by self-reinforcing dynamics
linked to environmental and behavioural
stability [12, 13].

The  significant  negative  long-run
association between temperature and malaria at
a two-month lag (p =-1.233, p=0.035; IRR =
0.29) implies that sustained high temperatures
may reduce mosquito survival and parasite
development. This aligns with the “thermal
limit hypothesis” [14, 15], suggesting that
beyond certain temperature thresholds, vector
reproduction and parasite incubation decline
sharply. In policy terms, this has implications
for spatial targeting of interventions. As
warming trends continue, malaria control
programs may need to shift focus from
traditional hotspots to cooler, highland areas
that are becoming newly suitable for
transmission.

Humidity exhibited both immediate and
delayed effects. The marginally positive short-
term association (f = 0.436, p = 0.090; IRR =
1.55) suggests that transient rises in humidity
increase malaria risk, while the strong negative
effect at a three-month lag (B = —0.753, p <
0.001; IRR = 0.47) indicates that prolonged
humid  conditions  eventually  suppress
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transmission. This underscores the importance
of integrating meteorological monitoring with
entomological surveillance in the County
Integrated Disease Surveillance and Response
(IDSR) system. Predictive models that
incorporate humidity thresholds could support
the Ministry of Health and Kenya
Meteorological Department (KMD) in issuing
climate-informed vector control advisories.

The structural stability analysis for the
malaria ARDL models, identified three key
structural breaks, in December 2012, March
2018, and October 2021, indicating shifts in the
malaria-climate relationship over time. The
2012 break, which was positive and significant
(IRR = 1.686), corresponds to a period when
malaria incidence increased markedly. This
coincided with transitional phases in Kenya’s
malaria control programs, likely linked to
variations in intervention coverage following
the earlier Kenya Malaria Strategy (2009-
2017). The 2018 break, which was negative and
significant (IRR = 0.639), aligns with
intensified malaria prevention campaigns,
including mass distribution of insecticide-
treated nets (ITNs) and implementation of
county-level surveillance strengthening. This
structural shift suggests that public health
interventions may have temporarily weakened
the sensitivity of malaria transmission to
climatic variations.

Conversely, the 2021 break (IRR = 1.427)
reflects a resurgence in malaria incidence,
coinciding with the COVID-19 pandemic
period, which disrupted routine control
measures, health-seeking behavior, and supply
chain operations. Collectively, these breaks
underscore that malaria transmission dynamics
in Homa Bay County are shaped by an
interaction between climate variability and
episodic policy or environmental shocks.
Adjusting for these breaks improved model fit
and interpretability, reaffirming that malaria-
climate linkages must be interpreted within the
broader context of intervention intensity and
health system resilience [12, 16].



Influence of Sensitivity to Climate-
Related Risks on Malaria Incidence

In relation to malaria occurrence, the
sensitivity domain showed a statistically
significant positive association: § = 0.422 (95%
Cl: 0.131-0.713, p = 0.005), translating to an
odds ratio (OR) of approximately 1.52 (95% ClI:
1.15-2.05). This indicates that households with
higher sensitivity to climatic stressors, such as
older household head, lower education, poor
housing and more climate-exposed livelihoods,
had about 52 % higher odds of reporting
malaria cases. These results align with the
bivariate  association  findings  where
households with malaria had higher median
sensitivity scores [0.50 (IQR 0.39-0.61) vs.
0.44 (IQR 0.33-0.50), p < 0.001]. Studies in
similar African settings show that household
fragility (low socioeconomic status, limited
preventive capacity) amplifies vector-borne
disease risk under climatic variability [17]. This
finding underscores the necessity of
strengthening  household-level  resilience,
through improved housing, education, and
livelihood diversification, as part of malaria
control in climate-sensitive zones.

Influence of Exposure to Climate-
Related Risks on Malaria Incidence

The exposure domain showed a statistically
significant positive effect: f = 0.258 (95% CI:
0.006-0.510, p = 0.045), OR = 1.29 (95% CI:
1.01-1.67). This suggests that households with
greater direct exposure (living near stagnant
water, poor drainage, flood-prone zones)
experienced about 29 % higher odds of
experiencing malaria. In the bivariate analysis,
malaria-affected households had higher median
exposure scores [0.63 (IQR 0.50-0.75) vs. 0.50
(IQR 0.25-0.75), p < 0.001], reinforcing this
association. Recent empirical work confirms
that exposure to vector habitats and
environmental risk zones is a significant
mediator of malaria transmission in coastal and
lakeside African communities [18]. This
outcome highlights the importance of
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environmental management (drainage
improvement, mosquito-breeding site
elimination) combined with climate-informed
spatial targeting of vector control in high-
exposure zones.

Influence of Adaptive Capacity on
Malaria Incidence

Adaptive capacity in the model showed a
statistically significant and protective effect: B
=-0.274 (95% CI: -0.543 to -0.005, p = 0.046),
OR = 0.76 (95% CI: 0.58-0.99). This indicates
that households with stronger adaptive
capacity, such as diversified income, health-
information access, insecticide-treated net use
and early treatment options, were around 24 %
less likely to experience malaria. Although
bivariate exposure to malaria prevention
measures was high and not significantly
different between groups, the regression result
reiterates the importance of measured capacity
beyond mere possessions. Recent reviews
emphasise that adaptation (behavioural and
structural) under climate stress is central to
maintaining disease resilience [19, 20]. As
such, strengthening readable climate-health
communication, ensuring equitable access to
preventive tools, and fostering household
adaptive behaviours should be integral to
malaria interventions.

Equations

The following equations were applied to
guantitatively assess the relationship between
climate change factors and malaria occurrence
within the study area. These formulas provided
the analytical framework for examining how
variations in temperature, rainfall, and humidity
influence malaria transmission patterns over
time.

Equation 1: Leslie Fischer’s formula

n=220D 1)
Equation 2:Autoregressive Distributed Lag
(ARDL) model



Yo = oo+ Zle a;Ye_; + quzlo Bljxl,t—j +
q
19:20 szxz,t—j + et Zj:ko Bijk,t—j +& (2

Equation 3: Long-run equilibrium ARDL
form
(Ye=Yeog =Yoo = =Y and Xy ¢ = Xjepq = - = Xp):
Y= Yo+ viXye V2 Xoe + o+ VieXie + U (3)

Equation 4: Short-run equilibrium ARDL
form

-1
AYy = Ao+ X0, didY; + Z?:lo 015 AXy ey +
q—1 qx—1
im0 02jAXg e+ + Xl Ok AXjerj +
YECT:—; + pe 4)

Equation 5: General logistic regression
model

Pj
(1—_P;) = Bo+ BiXy + BXz + BsXs + XiorveZix + & (1)

Conclusion

The study concludes that climate variables,
particularly temperature and humidity, play a
significant role in shaping malaria incidence in
Homa Bay County. Malaria showed strong
temporal  persistence, with  temperature
reducing long-term malaria risk and humidity
demonstrating mixed but meaningful effects.
Structural breaks aligned with major public
health milestones, confirming that disease
patterns emerge from the interplay between
climate variability and health system
interventions.

The household sensitivity substantially
increases the likelihood of malaria, driven
largely by age, education, housing quality, and
livelihood wvulnerability. Higher sensitivity
elevated malaria odds, highlighting the central
role of social and structural disadvantages in
amplifying disease risk. This study concludes
that  strengthening household resilience,
through  improved housing, education,
diversified livelihoods, is essential in
mitigating climate-sensitive disease burdens.
Moreover, the analysis concludes that exposure
to environmental risks significantly increases
malaria risk, underscoring the importance of
environmental management and climate-
responsive vector control.
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Finally, the study concludes that stronger
adaptive capacity, reflected in diversified
livelihoods, access to health information, ITN
use, and prompt treatment, meaningfully reduces
malaria incidence, lowering the odds by about
24%. This demonstrates the importance of
empowering households with preventive tools
and climate-health information.
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