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Abstract 

Global longitudinal strain (GLS) is a sensitive measure of LV dysfunction and is better than EF at 

predicting CVD events and deaths. Recently 3D/4D/4D X strain speckle tracking echocardiography 

(STE) is used to analyse complex LV mechanics. Interestingly, HFpEF is related to both GLS and 

increased Aortic stiffness. TDI of ascending Aorta is an effective technique to assess Aortic stiffness. 

The aim of the present study is to establish normal values of TDI of AA by 2DE and 4D X-strain 

volumetric and strain parameters of LV of healthy adults. 102 subjects were enrolled, 72 assessed by 

2DE-GROUP-A, and 30 were analysed by 4D X-strain echocardiography-GROUP-B. Important TDI 

parameters of Aortic stiffness were 3.90 ±3.79& 5.23 ± 10.55, (p = NS), in males & females respectively 

and Aortic strain were 10.55 ± 7.67% and 9.49 ± 5.56%, (p = NS), in males & females respectively. 

Volumetric data of EF were 64 ± 7.0 % & 65 ± 6.0 %, (p = NS), in males & females respectively and 

CO were 5.6 ± 1.5 l/min & 4.91±1.53l/min, (p = NS), in males & females respectively. Moreover, 4D 

X-strain STE indices of GLS being -17.29 ± 2.71 & -19.00 ± 3.51, (p = NS), in males & females, 

respectively GCS being -15.46 ± 7.1 & -14.12 ± 6.15, (p =NS), in males & females respectively and 

GRS being -24.53 ± 9.8 & -21.93 ± -8.81, (p= NS), in males & females respectively. No previous data 

is available, making the research a singular experience. 

Keywords: 2Dimensional Speckle Tracking, 4Dimensional X Strain echocardiography, 

Echocardiography, LV segmental strain, 4D volumetric data. 

Introduction 

Left ventricular (LV) function can be 

evaluated using directional components of 

myocardial deformation or strain. Longitudinal 

LV strain, also referred to as global longitudinal 

strain (GLS), appears to be a sensitive measure 

of impaired LV systolic function [1-3] and has 

been shown in several studies to be better than 

ejection fraction at predicting cardiovascular 

disease events and death [4-7]. Recently, 3-

Dimensional Speckle Tracking 

Echocardiography (3D STE) has been 

introduced by applying speckle tracking 

technologies to 3D echocardiography images. 

Images are usually acquired using a matrix-array 

transducer from the apical position in a wide-

angled acquisition “full-volume” mode. In this 
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mode, a number of wedge-shaped subvolumes 

are acquired over consecutive cardiac cycles 

during single breath-hold and stitched together 

to create one pyramidal volume sample. A major 

limitation of 3D STE to date is the temporal 

resolution of the volumetric pyramidal data sets. 

Usually, the rate of acquisition does not exceed 

20-30 volumes/s, and, in most cases, to obtain a 

higher temporal resolution, the field of view 

needs to be considerably narrowed. By fusing 

2D speckle tracking information obtained from 

standard apical 4CH, 2CH, and 3CH views, X-

StrainTM four-dimensional (4D) aims to make 

myocardial quantification imaging interpretation 

easier by the 3D/4D reconstruction of the LV. 

The Beutel can be freely rotated, zoomed, and 

super imposed on the echocardiographic 

scanning planes to better evaluate the 

contractility properties of the LV, using a 

physiological tool to analyze the complex multi-

dimensional LV mechanics [7], including a 

parallel assessment of myocardial regional and 

global function (Figure 1). 

 

Figure 1. X Strain Global LV Analysis 

Longitudinal shortening of the LV produces 

aortic displacement during systole [8-10] and 

stretches the ascending Aorta [11]. The force 

required to produce a longitudinal strain of the 

Aorta represents an often-overlooked form of 

direct mechanical load on the LV that may have 

important implications for the relation between 

aortic stiffness and LV systolic function, 

particularly in the long axis. [11, 12]. Alterations 

in both LV and aortic physiology may play an 

important role in predisposition to heart failure 

and especially heart failure with preserved 

ejection fraction (HFpEF). Whereas HFpEF is 

almost as common as heart failure with reduced 

ejection fraction, HFpEF has proven relatively 

refractory to treatment in a number of 

randomized clinical trials [13-15] underscoring 

the importance of efforts to better understand its 

pathophysiology. Interestingly, HFpEF has been 

related to both reduced GLS and increased aortic 

stiffness in a number of prior studies [3, 16-20]. 

Furthermore, both HFpEF and aortic stiffness 

are prevalent in older individuals, particularly 

women [16, 17] suggesting possible 

pathophysiological links between aortic stiffness 

and subclinical alterations in LV systolic 
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function that may promote the development of 

HFpEF in susceptible individuals. 

Several procedures have been used for the 

determination of aortic stiffness and 

or/distensibility, such as MRI, Angiography, 

applantation tonometry, Velocity vector imaging 

(VVI) [22-25]. But the vast majority of this 

technique was invasive and time-consuming and 

may require complex equipment and training. 

Tissue Doppler imaging (TDI) 

echocardiography of AA has been analysed in a 

number of studies and was found to be a useful 

method in the evaluation of elastic properties of 

Aorta [26, 30]. Increased arterial stiffness index 

has been formerly determined in various patient 

groups, including those with CAD, diabetes 

mellitus, overt hypothyroidism, and on different 

vascular beds and at different sites such as the 

radial artery, carotid artery, and Aorta [27-33]. 

As earlier stated, 4D X-

STRAINTMechocardiography is a reliable, 

intuitive, affordable, and simple tool for 

quantification of regional myocardial function 

[7]. Studies regarding normal reference values of 

LV volumetric and strain parameters by X strain 

4DE and TDI indices of AA by 2DE in healthy 

adult population could not be found despite 

exhaustive and thorough review of the literature. 

Hence, we embarked on this study of Indian 

healthy adults without overt cardio-vascular 

disease, with the aims to establish normal values 

of LV volumetric and strain parameters by 4D X 

strain echocardiography and moreover of TDI 

parameters of AA by 2D echocardiography. To 

the best of our knowledge, there is no study 

published till date on normal reference values of 

volumetric and strain parameters of LV by 4D X 

strain echocardiography and neither any on TDI 

parameters of AA by 2DE, in the healthy adult 

population and, more importantly, in Indian 

subsets. 

Materials & Methods 

Study Population & Design 

The present study was performed at Prakash 

Heart Station & Diagnostic, Lucknow, India an 

approved centre of Texila American University 

for the current Ph.D. Cardiology program of the 

author. We state that our study confirms to the 

ethical guidelines of the 1975 declaration of 

Helsinki and that informed consent has been 

obtained from the study participants (or their 

guardians), and final approval was done by our 

Prakash Heart Station & Diagnostic Institutions’ 

Ethical Committee. 

The study comprised of 426 healthy adult 

subjects from which 324 cases were excluded 

due to inferior image quality, and 102 

participants were finally enrolled for the study 

after a careful selection process, during a period 

of spanning for 7 months from May to 

November 2021. 

Healthy adults of age group 18-60 years, of 

either sex, were included if they were 

asymptomatic, free from overt cardiovascular 

disease, not receiving any drugs, non-smoker, 

non-tobacco chewer, non-diabetic, 

nonhypertensive according to JNC-8 guidelines, 

having normal thyroid and lipid profile, normal 

resting ECG in Sinus Rhythm with a normal 2 

Dimensional color echocardiography and 

Treadmill Stress ECG with a normal physical 

examination, BMI- 23 or less, waist- size 85 cm 

or less in men and 80 cm or less in women. 

Those individuals were excluded if there was the 

presence of thyroid disease, valvular heart 

disease,history of cardiac rhythm abnormalities, 

heart failure systemic hypertension, and 

significant pulmonary hypertension. Moreover, 

the presence of diabetes mellitus, neurological or 

psychiatric illness, malignany, CAD Aortic root 

abnormalities, and aortic dilatation lead to the 

exclusion of such participants from the present 

study. 

Biochemical & Hormonal Assessment 

Blood samples were withdrawn, in the 

morning, after 12 hours of overnight fasting for 

HBAIC, T3, T4, TSH, Serum creatinine, Serum 

uric acid, Total cholesterol (TC), Triglycerides 

(TG) & high-density cholesterol (HDL-C). 

Serum Low-density Lipoprotein cholesterol 
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(LDL-C) was calculated according to 

Freidwald’s formula [34]. 

Echocardiography Imaging 

In the current study, 2Dimensional 

echocardiography system of GE HEALTH 

CARE –VIVID T8 was utilized for 

comprehensive assessments of cardiac functions 

in left lateral decubitus position for M-MODE, 

2D mode, Doppler, Global Longitudinal Strain 

analysis of LV by Speckle Tracking 

Echocardiography (STE) & Tissue Doppler 

Imaging of Ascending Aorta from May 1 – 

September 9, 2021, and the data of the enrolled 

72 healthy subjects was obtained (2D group – 

Group A). From September 10, 2021 – Nov 30, 

2021, 30 additional healthy subjects were 

enrolled for a similar exhaustive evaluation of 

cardiac functions on MY LAB X7 4D X 

STRAIN echocardiography machine of 

ESAOTE, ITALY (4D X STRAIN group – 

GROUP B). In addition to the procurement of 

data as in Group A, GLS, Global circumferential 

strain (GCS), strain rate (GCSR), Global Radial 

strain (GRS) strain rate (GRSR), and volumetric 

data by 4D X Strain echocardiography was 

further derived. The study on both the 

echocardiography machines was performed with 

consistent system presets, according to the pre-

specified protocols [35, 36]. 

A minimum of 3 cardiac cycles were 

recorded. Standard LV APICAL views 

(APLAX, 4CH & 2CH views) were acquired, 

avoiding foreshortening with a frame rate of 50 

– 80 frames/sec, thus compatible with speckle 

tracking analysis. For TDI, images were 

obtained from LV septal and lateral MV annulus 

walls in 4CH views and from the superior wall 

of ascending Aorta 3 cm above the aortic valve 

in the parasternal long-axis view. Similarly, 3 

cm above the aortic valve, systolic and diastolic 

inner diameters of as ascending Aorta were 

recorded by M-MODE echocardiography. 

Aortic systolic diameter (AOS) and diastolic 

aortic diameter (AOD) were measured [Figure 

2]. Distensibility and stiffness index of the 

ascending Aorta were calculated by using the 

following formula’s [37- 40]: 

1. AORTIC DISTENSIBILITY = 2X AOS–

AOD/[(SBP–DBP) X AOD (10-6 cm2 dyn-

1)]. 

2. AORTIC STIFFNESS INDEX: ln 

(SBP/DBP)/ [ (AOS – AOD)/AOD] (pure 

number), 

3. ln = natural logarithm. 

4. AORTIC PULSATILE CHANGE = AOS – 

AOD (cm). 

5. AORTIC SYSTOLIC INDEX will be 

estimated by dividing AOS, AOD and 

pulsatile. 

6. AORTIC DIASTOLIC INDEX change by 

BSA respectively. 

7. AORTIC PULSATILE INDEX. 

8. ELASTICITY MODULUS = (SBP - DBP)/ 

[(AOS - AOD)/ AOD] (Pa). 

9. AORTIC STRAIN = (SAO - AOD) X100/ 

AOD (%). 

Following data was estimated by TDI of the 

superior wall of ascending aorta – (Figure - 3). 

1. SAO – Aortic superior wall velocity in 

systole- will be calculated at the same point 

used in M-mode measurement. 

2. EAO- Early diastolic velocity. 

3. AAO- late diastole velocity. 

LV myocardial deformation was analysed 

offline by the Speckle Tracking software 

package. 

1. 72 subjects in GROUP A were analysed by 

GE-VIVID T8 2D Echocardiography 

software package AFI 2.0 echopac version 

202. The transducer used was adult probe 

35c- RS (1.3 – 4.0 Mhz). 

2. 30 subjects in GROUP B were analysed by 

MYLAB X7 4D X STRAIN 

echocardiography software package X 

STRAIN TM advanced technology with 

TOMTEC GMGH 3D/4D rendering and 

BeutelTM computation compatibilities [55]. 

Imaging was performed by 1 – 5 Mhz 

electronic single-crystal array transducer. 

Speckle Tracking Echocardiography (STE) 
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was performed to analyse appropriate 

images, acquired, and captured according to 

the standardized protocol [35, 36]- (Figure 

4, 5). 

Statistical Methods 

The data were summarized as mean±SD. The 

95 % confidence interval (CI) of the mean was 

also calculated. The mean of male and female 

was tested by t-test for independent groups. The 

level of significance used was 0.05. A higher t-

value having a probability smaller than 0.05 was 

marked significant. A p-value smaller than 0.01 

was marked highly significant. 

Result 

The study comprised of 426 healthy adults, 

from which 324 were excluded due to inferior 

image quantity on echocardiography. 102 

subjects were finally enrolled for the study after 

a careful selection process, during a period 

spanning 7 months from May – November 2021. 

 

Figure 2. M Mode of Ascending Aorta 

 

Figure 3. M-Mode and TDI of Ascending Aorta 
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Figure 4. Speckle Tracking Echocardiography Images 

 

Figure 5. Speckle Tracking Echocardiography Images 

Table 1 shows the characteristics of the study 

population of the 102 participants 72 consisted 

of the 2D group-Group A, and additionally, 30 

subjects constituted the 4D group –Group B. In 

group A there are 44 males (age 32.55±9.63 

years) and 28 females (age 29.11 ± 11.83 years). 

In group B, there are 16 males (age 38.81 ± 12.94 

years) and 14 females (age 38.50 ± 11.65 years). 

6



T
a

b
le

- 
1
. 

D
em

o
g
ra

p
h

ic
 D

at
a-

 G
ro

u
p

 A
 &

 G
ro

u
p

 B
 

V
a
r
ia

b
le

s 

G
ro

u
p

 A
 (

N
-7

2
) 

G
ro

u
p

 B
 (

N
-3

0
) 

M
a

le
 (

N
-4

4
) 

F
e
m

a
le

 (
N

-2
8
) 

P
 

M
a
le

 (
N

-1
6

) 
F

e
m

a
le

 (
N

-1
4

) 
P

 

M
e
a

n
 

S
D

 
M

e
a
n

 
S

D
 

P
-V

a
l.

 
S

ig
n

. 
M

e
a
n

 
S

D
 

M
e
a

n
 

S
D

 
P

-V
a

l.
 

S
ig

n
. 

A
g

e 
(Y

R
S

) 
3

2
.5

5
 

9
.6

3
 

2
9
.1

1
 

1
1
.8

3
 

0
.1

8
1
 

N
S

 
3
8
.8

1
 

1
2

.9
4
 

3
8

.5
0
 

1
1

.6
5
 

0
.9

4
5
 

N
S

 

W
ei

g
h

t(
k

g
) 

6
8

.1
0
 

1
1
.3

3
 

5
2
.8

8
 

9
.1

0
 

0
.0

0
0
 

*
*
 

6
6
.1

3
 

7
.5

4
 

5
9

.0
0
 

1
0

.8
3
 

0
.0

4
4
 

*
 

H
T

 (
cm

) 
1

6
5

.2
3
 

6
.0

6
 

1
5
0
.3

6
 

9
.5

2
 

0
.0

0
0
 

*
*
 

1
6
9
.9

4
 

6
.4

6
 

1
6

1
.6

4
 

7
.0

0
 

0
.0

0
2
 

*
*
 

B
S

A
(M

2
) 

1
.7

6
 

0
.1

6
 

1
.4

8
 

0
.1

6
 

0
.0

0
0
 

*
*
 

1
.7

6
 

0
.1

2
 

1
.6

2
 

0
.1

8
 

0
.0

1
0
 

*
*
 

B
M

I 
(k

g
/m

2
) 

2
4

.9
2
 

3
.7

1
 

2
3
.3

8
 

3
.4

7
 

0
.0

8
2
 

N
S

 
2
2
.8

8
 

2
.0

8
 

2
2

.4
7
 

3
.3

4
 

0
.6

8
8
 

N
S

 

S
B

P
 (

m
m

h
g

) 
1

2
1

.1
4
 

8
.6

8
 

1
1
6
.7

9
 

1
0
.5

6
 

0
.0

6
1
 

N
S

 
1
1
8
.0

0
 

9
.5

5
 

1
1

9
.5

7
 

1
2

.4
8
 

0
.6

9
9
 

N
S

 

D
B

P
 (

m
m

h
g

) 
7

9
.3

2
 

7
.2

8
 

7
5
.7

1
 

8
.7

9
 

0
.0

6
3
 

N
S

 
7
7
.5

0
 

6
.8

3
 

7
7

.8
6
 

5
.7

9
 

0
.8

7
9
 

N
S

 

H
ea

rt
r
a
te

 (
b

p
m

) 
7

3
.2

3
 

1
3
.6

0
 

8
1
.9

6
 

2
0
.2

6
 

0
.0

3
2
 

*
 

7
6
.0

6
 

1
2

.5
4
 

8
8

.3
6
 

1
6

.6
2
 

0
.0

2
9
 

*
 

N
S

=
N

o
t 

S
ig

n
if

ic
a

n
t(

p
>

0
.0

5
) 

*
 S

ig
n

if
ic

a
n

t=
(p

<
0

.0
5

) 

*
*

 H
ig

h
ly

 S
ig

n
if

ic
a

n
t=

(p
<

0
.0

1
) 

T
a

b
le

 2
. 

C
on

v
en

ti
on

al
 E

ch
o
ca

rd
io

g
ra

p
h

y
 D

at
a 

o
f 

G
ro

u
p

 A
 &

 G
ro

u
p
 B

 

V
a
r
ia

b
le

s 

G
ro

u
p

 A
 (

N
-7

2
) 

G
ro

u
p

 B
 (

N
-3

0
) 

M
a
le

 (
N

-4
4
) 

F
e
m

a
le

 (
N

-2
8
) 

P
 

M
a

le
 (

N
-1

6
) 

F
e
m

a
le

 (
N

-1
4

) 
P

 

M
e
a
n

 
S

D
 

M
e
a
n

 
S

D
 

P
-V

a
l.

 
S

ig
n

. 
M

e
a

n
 

S
D

 
M

e
a

n
 

S
D

 
P

-V
a

l.
 

S
ig

n
. 

D
E

 A
m

p
li

tu
d

e(
m

m
) 

1
.9

3
 

0
.3

3
 

1
.7

1
 

0
.2

6
 

0
.0

0
4
 

*
*

 
2
.0

6
 

0
.6

4
 

2
.0

0
 

0
.6

7
 

0
.7

9
7
 

N
S

 

E
F

 S
lo

p
e(

c
m

/s
ec

) 
1

1
.0

8
 

4
.0

3
 

9
.1

9
 

3
.5

3
 

0
.0

4
6
 

*
 

9
.7

1
 

3
.7

8
 

9
.9

6
 

2
.7

7
 

0
.8

4
3
 

N
S

 

E
P

S
S

 (
m

m
) 

0
.6

1
 

0
.3

5
 

0
.5

5
 

0
.2

9
 

0
.4

4
7
 

N
S

 
0
.5

8
 

0
.2

2
 

0
.6

9
 

0
.4

7
 

0
.3

7
5
 

N
S

 

A
o
rt

ic
 r

o
o

t(
c
m

) 
2

.3
7
 

0
.3

4
 

2
.0

4
 

0
.3

0
 

0
.0

0
0
 

*
*

 
2
.2

6
 

0
.4

0
 

2
.0

9
 

0
.5

4
 

0
.3

5
5
 

N
S

 

A
o
rt

ic
 c

u
sp

 o
p

e
n

in
g

 (
c
m

) 
1

.8
8
 

0
.2

8
 

1
.7

6
 

0
.2

0
 

0
.0

4
7
 

*
 

1
.9

3
 

0
.2

6
 

1
.8

0
 

0
.2

2
 

0
.1

6
8
 

N
S

 

L
ef

t 
A

tr
iu

m
 (

c
m

) 
2

.8
8
 

0
.4

9
 

2
.5

6
 

0
.3

7
 

0
.0

0
5
 

*
*

 
3
.0

4
 

0
.6

5
 

2
.8

1
 

0
.5

5
 

0
.3

2
4
 

N
S

 

IV
S

 d
 (

c
m

) 
0

.7
7
 

0
.1

7
 

0
.6

6
 

0
.1

5
 

0
.0

0
7
 

*
*

 
0
.7

5
 

0
.2

1
 

0
.7

3
 

0
.1

5
 

0
.7

2
3
 

N
S

 

IV
S

 s
 (

c
m

) 
1

.0
6
 

0
.1

6
 

0
.9

1
 

0
.1

7
 

0
.0

0
0
 

*
*

 
1
.1

3
 

0
.2

1
 

1
.0

3
 

0
.1

7
 

0
.1

7
0
 

N
S

 

7



L
V

ID
 d

 (
c
m

) 
4

.7
6
 

0
.4

3
 

4
.3

7
 

0
.4

4
 

0
.0

0
0
 

*
*

 
4
.8

2
 

0
.4

9
 

4
.5

0
 

0
.4

7
 

0
.0

7
5
 

N
S

 

L
V

ID
 s

 (
c
m

) 
3

.0
9
 

0
.4

1
 

2
.7

9
 

0
.3

5
 

0
.0

0
2
 

*
*

 
3
.1

6
 

0
.4

5
 

2
.7

9
 

0
.3

0
 

0
.0

1
4
 

*
 

L
V

P
W

 d
 (

c
m

) 
9

8
.3

4
 

2
9
.7

4
 

9
8
.8

6
 

3
0
.6

1
 

0
.0

0
0
 

*
*

 
0
.8

3
 

0
.1

3
 

0
.7

4
 

0
.1

3
 

0
.0

8
5
 

N
S

 

L
V

P
W

S
 s

 (
cm

) 
2

4
.9

8
 

1
0
.2

7
 

2
7
.1

8
 

1
3
.1

6
 

0
.0

0
1
 

*
*

 
1
.3

7
 

0
.2

2
 

1
.3

9
 

0
.1

5
 

0
.7

6
4
 

N
S

 

L
V

E
D

V
 (

m
l)

 
1

0
8
.4

1
 

2
8
.6

3
 

8
3
.0

4
 

2
5
.1

5
 

0
.0

0
0
 

*
*

 
8
5
.2

4
 

1
8

.3
0
 

7
7

.9
6
 

1
5

.4
9
 

0
.2

5
3
 

N
S

 

L
V

E
S

V
 (

m
l)

 
2

9
.2

5
 

1
2
.1

2
 

2
0
.4

6
 

7
.8

2
 

0
.0

0
0
 

*
*

 
3
7
.8

0
 

8
.5

2
 

3
4

.6
3
 

1
0

.0
6
 

0
.3

5
8
 

N
S

 

L
V

 M
A

S
S

 d
 (

g
m

) 
1

4
4
.4

6
 

4
5
.4

0
 

9
9
.7

1
 

3
3
.7

9
 

0
.0

0
0
 

*
*

 
7
3
.2

5
 

1
6

.9
1
 

6
4

.5
0
 

1
7

.6
0
 

0
.1

7
6
 

N
S

 

L
V

 M
A

S
S

 s
 (

g
m

) 
1

3
3
.7

9
 

3
2
.3

8
 

9
0
.0

1
 

2
9
.2

5
 

0
.0

0
0
 

*
*

 
1
2
7

.6
3
 

3
6

.2
9
 

1
0

4
.5

0
 

3
0

.5
5
 

0
.0

7
2
 

N
S

 

C
.O

. 
(L

/m
in

) 
 

5
.9

0
 

1
.8

1
 

5
.0

9
 

1
.7

3
 

0
.0

7
0
 

N
S

 
3
.4

5
 

0
.8

3
 

3
.5

4
 

0
.9

7
 

0
.7

7
8
 

N
S

 

C
I 

(L
/m

in
/m

2
) 

 
3

.3
7
 

1
.1

1
 

3
.4

4
 

1
.1

2
 

0
.8

1
6
 

N
S

 
1
.9

5
 

0
.4

2
 

2
.1

8
 

0
.5

6
 

0
.0

8
6
 

N
S

 

M
it

ra
l 

V
e
lo

c
it

y
 E

(c
m

/s
ec

) 
0

.7
7
 

0
.1

7
 

0
.8

6
 

0
.1

6
 

0
.0

2
2
 

*
 

0
.7

2
 

0
.2

1
 

0
.7

9
 

0
.2

2
 

0
.3

5
3
 

N
S

 

M
it

ra
l 

V
e
lo

c
it

y
 A

(c
m

/s
e
c)

 
0

.5
3
 

0
.1

4
 

0
.5

9
 

0
.2

1
 

0
.2

0
3
 

N
S

 
0
.5

8
 

0
.1

6
 

0
.7

1
 

0
.2

5
 

0
.0

8
7
 

N
S

 

E
/A

 R
A

T
IO

 
1

.5
1
 

0
.4

8
 

1
.6

5
 

0
.6

1
 

0
.2

9
9
 

N
S

 
1
.3

4
 

0
.6

1
 

1
.2

0
 

0
.4

8
 

0
.4

9
5
 

N
S

 

S
ep

ta
l 

T
D

I 
E
’ 

0
.8

5
 

0
.1

8
 

0
.9

2
 

0
.1

6
 

0
.0

9
5
 

N
S

 
0
.8

8
 

0
.2

4
 

1
.0

4
 

0
.3

0
 

0
.1

2
3
 

N
S

 

S
E

P
T

A
L

 T
D

I 
E

/E
’ 

R
A

T
IO

  
0

.9
1
 

0
.1

5
 

0
.9

5
 

0
.1

6
 

0
.3

1
8
 

N
S

 
0
.8

3
 

0
.2

1
 

0
.8

4
 

0
.3

3
 

0
.9

8
0
 

N
S

 

2
D

-F
S

 (
%

) 
3

5
.0

0
 

5
.0

0
 

3
6
.0

0
 

5
.0

0
 

0
.3

7
0
 

N
S

 
3
5
.0

0
 

7
.0

0
 

3
8

.0
0
 

4
.0

0
 

0
.1

0
9
 

N
S

 

2
D

-E
F

 (
%

) 
6

4
.0

0
 

7
.0

0
 

6
5
.0

0
 

6
.0

0
 

0
.3

5
9
 

N
S

 
6
2
.7

5
 

8
.8

 
6

8
.0

0
 

5
.0

0
 

0
.7

7
0
 

N
S

 

C
O

: 
C

a
rd

ia
c 

O
u

tp
u

t,
C

I:
 C

a
rd

ia
c 

In
d

e
x
,T

D
I:

 T
is

su
e
 d

o
p

p
le

r 
Im

a
g
in

g
,E
’:

 E
 P

ri
m

e,
F

S
: 

F
r
a
c
ti

o
n

a
l 

S
h

o
rt

e
in

g
,E

F
: 

E
je

c
ti

o
n

 F
ra

ct
io

n
 

N
S

=
N

o
t 

S
ig

n
if

ic
a

n
t(

p
>

0
.0

5
) 

*
 S

ig
n

if
ic

a
n

t=
(p

<
0

.0
5

) 

*
*
 H

ig
h

ly
 S

ig
n

if
ic

a
n

t=
(p

<
0

.0
1

) 

 

8



Table 2. Comprising of the conventional 2D 

echocardiographic data. In group A the LVEDV 

is 108.41± 28.63 ml in males 83.04±25.15 ml in 

females (p < 0.01), LV Mass is 144.46 ± 45.40 

gm in diastole in males and 99.71 ± 33.79 gm in 

females (p < 0.01), Cardiac output (CO) being 

5.90 ± 1.81 l/min in males and 5.09 ± 1.73 l/min 

in females (p= NS) and EF is 64 ±7% in males 

and 65 ± 6 % in females (p = NS). In group B, 

the LVEDV is 85.24 ± 18.30 ml in males and 

77.96 ± 15.49 ml in females (p = NS), LV Mass 

in diastole being 73.25 ±16.91 gm in males and 

64.80 ± 17.60 gm in females (p = NS), CO is 

3.45 ± 0.83 L/min in males and 3.54 ± 0.97 

L/min in females (p = NS) and EF is 62.75 ± 8.8 

% in males and 68 ± 5 % in females (p = NS). 

In Table 3. data of various parameters of TDI 

of AA and GLS of LV are enumerated in detail. 

In group, A pulsatile change, Aortic 

distensibility, Aortic stiffness index, Aortic 

pulsatile index, Aortic systolic and diastolic 

index, Aortic strain, and elasticity modulus did 

not reveal any significance in their values when 

the data of male subjects was compared to 

females (p = NS). However, the Aortic diastolic 

diameter (AOD) & Systolic diameter (AOS) 

were significantly higher in males when 

compared with females. The AOD & AOS in 

males being 2.79 ± 0.45 cm and 3.05 ± 0.49 cm 

respectively, when compared to females, who 

had a AOD & AOS of 2.49 ± 0.37 cm and 2.72 

± 4.40 cm respectively (p < 0.01). Furthermore, 

the average GLS values in group A males is -

16.64 ± 1.90 % and -17.87 ± 2.1 % in females 

suggesting that GLS values is higher in healthy 

adult females. (p < 0.05). 

Likewise, elaborate data values of a various 

parameter of TDI of AA GLS of LV of Group B 

is presented. It is important to note that the 

values are not significantly different in between 

male & female subjects (p = NS). 

In Table 4. 2D volumetric data of Group A 

and 4D volumetric data of Group B are 

summarized. The Group A values of LVEDV, 

EF, CO have already been mentioned earlier 

while discussing Table 2. 4D volumetric data of 

group B shows the sphericity index values in 

males is 0.44 ± 0.13 and 0.37 ± 0.15 in diastole 

& systole, respectively. In females the sphericity 

index values are 0.39 ± 0.09 and 0.33 ± 0.11 in 

diastole and systole (p = NS), LVEDV being 

85.24 ± 18.30 ml in males and 77.96 ± 15.49 ml 

in female (p = NS) LVESV being 37.80 ± 8.5 ml 

in males and 34.63 ± 10.06 ml in females (p = 

NS) and EF being 55.56 ± 5.53 % in males and 

56.21 ± 6.58 % in females (p = NS), respectively. 
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Table 5. consists of segmental strain data of 

16 segment models of GLS of Group A. Largely, 

there is no significant difference in values of 

male & female subsets (p = NS). 

Table-5. LV Segmental Strain Data-Group A (N=58) ** 

Variables 

Male (N-35) Female (N-23) P 

Mean  SD Mean  SD P-Val. Sign 

AVC 

GLS Avg (%) -16.64 -1.91 -17.87 -2.13 0.013 * 

APLAX (%) -16.30 -2.95 -17.21 -3.45 0.237 NS 

AP 4CH (%) -16.71 -2.63 -17.55 -2.96 0.208 NS 

AP 2CH (%) -16.90 -2.60 -18.85 -3.55 0.009 ** 

AP 4CH 

Basal sep (%) -17.03 -4.82 -17.35 -8.86 0.860 NS 

Mid sep (%) -20.94 -3.83 -17.91 -9.03 0.083 NS 

Ap sep (%) -17.63 -4.48 -15.78 -7.82 0.258 NS 

Basal lat(%) -17.91 -5.99 -18.70 -8.22 0.677 NS 

Mid lat (%) -16.94 -5.09 -20.04 -5.15 0.028 * 

Ap lat (%) -10.66 -5.48 -13.74 -7.02 0.066 NS 

AP 2CH 

Basal inf (%) -19.00 -5.69 -21.30 -6.65 0.164 NS 

Mid inf (%) -21.94 -5.30 -24.17 -5.49 0.128 NS 

Apical inf (%) -18.71 -5.50 -20.09 -5.42 0.354 NS 

Basal ant (%) -19.11 -4.85 -22.43 -7.81 0.050 * 

Mid ant (%) -16.74 -5.35 -16.30 -8.55 0.811 NS 

Ap ant (%) -11.23 -6.62 -10.57 -6.23 0.704 NS 

APLAX 

Basal post (%) -14.51 -7.03 -19.70 -8.68 0.015 NS 

Mid Post (%) -17.94 -7.09 -20.39 -4.65 0.150 NS 

Apical post (%) -13.86 -6.18 -13.70 -6.15 0.923 NS 

Basal ant (%) -19.54 -5.67 -15.17 -10.62 0.046 * 

Mid ant (%) -17.11 -6.24 -15.09 -8.67 0.305 NS 

Ant Ap sep. (%) -10.20 -7.05 -11.57 -6.65 0.464 NS 

AVC=Aortic Valve Closure 

**Out Of 72 healthy subjects segmental strain data of only 58 subjects 

could be properly procured during acquisition. 

NS=Not Significant(p>0.05) 

* Significant=(p<0.05) 

**Highly Significant=(p<0.01) 

 

In Table 6, 17 segment model of GLS 

inclusive of LV apex is outlined, and overall, the 

values are insignificant when comparing males 

and females (p=NS). 
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Table-6. LV Segmental Strain Data-Group B(N=30) 

Variables 
Male (N-16) Female (N-14)  P 

Mean  SD Mean  SD P-Val. Sign. 

AVC 

GLS Avg (%) -17.29 -2.71 -19.00 -3.51 0.145 NS 

APLAX (%) -15.90 -2.95 -18.75 -3.97 0.032 NS 

AP 4CH (%) -17.61 -3.33 -18.49 -5.23 0.582 NS 

AP 2CH (%) -18.37 -3.97 -19.74 -2.88 0.291 NS 

Basal ant (%) -20.58 -5.90 -24.25 -6.52 0.117 NS 

Basal ant septal (%) -16.06 -5.48 -20.05 -6.68 0.083 NS 

Basal septal (%) -16.99 -8.41 -17.99 -5.77 0.711 NS 

Basal Inferior (%) -22.00 -7.79 -23.34 -7.70 0.640 NS 

Basal posterior (%) -20.57 -6.20 -25.10 -6.30 0.058 NS 

Basal Lateral (%) -21.04 -6.49 -18.97 -7.93 0.438 NS 

Mid Anterior (%) -13.98 -5.07 -18.40 -6.44 0.045 * 

Mid ant septal (%) -16.77 -4.21 -18.01 -4.66 0.449 NS 

Mid Septum (%) -18.62 -4.12 -19.67 -3.83 0.476 NS 

Mid inf (%) -20.48 -5.16 -19.48 -4.49 0.581 NS 

Mid Posterior (%) -15.74 -6.03 -18.59 -4.20 0.149 NS 

Mid Lateral (%) -14.52 -4.56 -18.48 -5.62 0.042 * 

Apical ant (%) -13.90 -5.05 -16.09 -6.49 0.309 NS 

Apical septal (%) -25.99 -6.49 -27.78 -9.39 0.544 NS 

Apical inf (%) -19.04 -4.61 -18.80 -5.65 0.901 NS 

Apical lateral (%) -21.07 -7.18 -23.34 -10.96 0.504 NS 

 Apex (%) -16.09 -3.67 -17.65 -5.30 0.350 NS 

AVC=Aortic Valve Closure 

NS=Not Significant(p>0.05) 

* Significant=(p<0.05) 

 

Table 7. is displaying Global circumferential 

strain (GCS), strain rate (GCSR), Global Radial 

strain (GRS) and strain rate (GRSR) of LV. GCS 

values at mitral valve and papillary muscle level 

are -15.46 ± 7.10 % & -20.28 ± 6.78 % 

respectively in males, and -14.12 ± 6.15 % & -

19.69 ± 7.98 % respectively, in females (p = NS). 

GRS values at the mitral valve and papillary 

muscles level are -24.53 ± 9.82 % & -24.40 ± 

10.52% respectively in males, and -21.93 ± 8.81 

% & -22.12 ± 11.00 % respectively in females (p 

= NS). Likewise, the GCSR & GRSR values 

were insignificant in male & female subsets (p = 

NS). 

Table-7. 4-Dimensional X Strain and Strain rate Data - Group-B (N=30) 

Variables 
Male (n=16) Female (n=14) P 

Mean  SD Mean  SD P-Val. Sign. 

GLS (%) -17.29 -2.71 -19.00 -3.51 0.145 NS 

GCS 0 0 0 0     

at mv level (%) -15.46 -7.10 -14.12 -6.15 0.587 NS 

at pap level (%) -20.28 -6.78 -19.69 -7.98 0.831 NS 

13



GRS 0 0 0 0     

at mv level (%) -24.53 -9.82 -21.93 -8.81 0.455 NS 

at pap level (%) -24.40 -10.52 -22.12 -11.00 0.567 NS 

GCSR             

at mv level (1/sec) 1.78 0.62 1.97 0.68 0.433 NS 

at pap level (1/sec) 1.88 0.59 2.09 0.64 0.353 NS 

GRSR             

at mv level (1/sec) 2.87 0.97 2.70 1.04 0.649 NS 

at pap level (1/sec) 2.30 0.58 2.89 1.20 0.090 NS 

GLS: global Longitudinal Strain GCS=Global circumferential Strain,GRS=Global Radial Strain 

GCSR=Global circumferential Strain rate, GRSR=Global Radial Strain rate 

NS=Not Significant(p>0.05) 

 

Discussion 

Studies reporting a comprehensive 

assessment of LV strain in the healthy adult 

population, including data of TDI of ascending 

Aorta and myocardial deformation and the 

impact of age and sex on these parameters, are 

scarce. Furthermore, the publications on 

reference values of TDI of Ascending Aorta, 4D 

volumetric and 4D X Strain data of GLS, GCS, 

GCSR, GRS, GRSR in healthy individuals could 

not be found even after vigourous & profound 

review of the literature. Perhaps this is the first 

research article on normative values of TDI of 

Ascending Aorta, 4D volumetric & 4D X Strain 

data on healthy Indian subjects. 

Echocardiography is perhaps the most useful 

non-invasive imaging technique available at 

present due to its pristine and peerless ability to 

combine safety and ease with high diagnostic 

yield. Accurate assessment of cardiac chamber 

size and function is a key objective of any 

echocardiographic examination. During 

echocardiography, such assessment is performed 

by comparing observed measurements with the 

normal ranges available for those parameters. 

The normal values published by ASE/EACVI 

are currently the most used reference for this 

purpose [41]. However, these reference values 

are mostly derived from the western populations, 

whereas previous studies have demonstrated that 

ethnicity may significantly affect cardiac 

chamber dimensions and functions [42, 46]. 

Accordingly, the applications of ASE/EACVI 

reference values to other ethnic groups is fraught 

with the potential to lead to erroneous 

interpretations. This underscores the need to 

develop ethnic-specific reference values. 

In the present study, we have described 

normal reference ranges for cardiac chamber 

size and functions in Indian men and women. It 

was found that the LV dimensions and volumes 

were larger in men as compared to women. 

These findings are consistent with those reported 

in the western populations (ASE/EACVI 

guidelines) [41] as well as a migrant (WASE and 

LOLIPOP studies) or native Indians [43, 44, 47]. 

Several previous studies have demonstrated 

that Indians have a smaller cardiac chamber than 

the western populations [43-45, 47]. Chahal et 

al. (2010) compared 499 European men and 

women with 479 Indians living in London who 

were recruited in the LOLIPOP (London Life 

Sciences Prospective Population) study [43]. 

They found that the Indians had significantly 

smaller LV volumes as compared to the 

Europeans. More recently, the WASE study has 

again demonstrated smaller cardiac chamber 

dimensions in Indians as compared to several 

other ethnic groups, even though the number of 

Indians studied was small [47]. 

Earlier studies have shown that ethnicity is an 

important determinant of cardiac chamber sizes. 

Indians have smaller chamber sizes and mildly 
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thicker LV walls, not classifiable as hypertrophy 

based on the thickness, than Europeans but 

equivalent LVEF [48, 49] It was also observed 

earlier that LVESVI and LVEDVI indexed to 

BSA were smaller in Indian Asian men and 

women compared with their European white 

counterparts while LVEF was similar between 

ethnicity- sex subgroups [44]. It was observed 

that indexing to BSA reduced the LVEDV and 

LESV differences between Indian measurements 

and ASE-defined normal values considerably 

[45]. These references make a strong point for 

the collection of different population-based 

normative data useful for comparison and 

reference by the medical community 

researchers. Our findings have revealed lower 

values for global and longitudinal strain in our 

healthy adult subjects as compared to European 

and Americans. Whether it is due to smaller LV 

with thicker walls or is it a racial variation or the 

study was carried out during the corona 

pandemic period while all the subjects were 

wearing face masks throughout their 

echocardiography workup remains to be 

answered. 

Accurate quantification of LV systolic 

function has important prognostic implications 

and is helpful to determine treatment decisions 

for a variety of therapies. 2D LVEF is the most 

commonly used echocardiographic parameter to 

evaluate the LV function in clinical practice. 

However, measurement of LVEF is limited by 

geometric structure, image quality, load 

dependence and poor reproducibility [66]. 

Therefore, it is necessary to develop a more 

sensitive and accurate technique to quantify LV 

systolic function. 

2D STE has been validated by cardiac MRI 

and 3D echocardiography as an effective method 

to assess LV function [51]. Many previous 

studies have shown that 2D STE provides more 

accurate prognostic implications than traditional 

2D LVEF in the assessment of a variety of 

clinical heart diseases, such as heart failure [52, 

53], valvular heart disease [54, 55], ischemic 

heart disease [56]. However, 2D STE has the 

potential limitation of out-of-plane motion 

tracking of speckles, which can lead to increased 

noise and reduced accuracy [57, 58]. 

4D echocardiographic techniques, including 

real-time 3D speckle tracking program and 3D 

echocardiography allow volumetric analysis and 

simultaneous measurements of multidirectional 

components of strain in a single data set. The 

acquisition of the entire LV within a single data 

set allows global assessment of LV longitudinal, 

circumferential, and radial functions across all 

myocardial segments [7]. 

An interesting observation in the assessment 

of a healthy population was the difference found 

in the average values of strain between 

individual segments, as well as different walls 

and levels of the LV. Functional non-uniformity 

is a known failure of normal LV that may have a 

consequence for the validity of the assessment of 

segmental function [59-62]. Indeed, some 

differences in the performance measures of 

segmental wall motion assessment were 

previously observed between different LV 

levels, although none were substantial enough to 

warrant separate cut-off values [61]. In the 

current study, the general consistency in the 

magnitude of segmental area strain seems to 

confirm these previous findings. The 

longitudinal strain was lower in the mid-

ventricular wall compared with the basal and 

apical levels, as previously noted in an analysis 

of normal segments inpatient [60]. Moreover, 

there is considerable heterogeneity in mean 

longitudinal strain between individual segments. 

The apical, anterior wall, in particular, 

demonstrated a surprisingly low mean strain 

value compared with other segments, which may 

in part be due to the known difficulty with 

adequate visualization and tracking of this 

particularly challenging area of the LV. For 

these reasons, segment-specific cut-off values 

are warranted for these strain parameters for the 

adequate distinction between what is normal and 

what should be considered pathological, 

particularly if diagnostic or therapeutic decisions 

are based on their assessment. Ultimately, future 
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clinical studies will determine whether 4D X 

Strain STE-derived LV strain parameters have a 

value for diagnosis and prognosis of heart 

disease in clinical practice. 

Multiple studies have evaluated normal strain 

values with 2D speckle tracking 

echocardiography (2DSTE), showing a wide 

reference range of LV strain in apparently 

normal subjects. [59-62] Moreover, studies have 

demonstrated discordant results between 2DSTE 

and 3DSTE, which may be explained by the 3D 

cardiac motion that is partly lost when imaging 

in two dimensions. [63-64] Longitudinal and 

radial strains by 3DSTE are significantly smaller 

than by 2DSTE. whereas circumferential strain 

in significantly larger using 3DSTE. In our 

studies, all the 2D LV strains were lower in men 

than in women. Recent 2D and 3D speckle 

tracking echocardiography (STE) studies in 

healthy populations have shown that GLS is 

higher in women [65, 67]. 

The current study provides contemporary 

normal reference values of 2DE measurements 

of conventional echocardiographic data, TDI of 

Ascending Aorta, GLS of LV, and additionally 

4D volumetric and 4D X Strain data of GLS, 

GCS, GCSR, GRS & GRSR in healthy Indian 

adults. It demonstrates differences between men 

and women, different age groups, as well as the 

functional non-uniformity of the normal LV. 

These findings are important, because they may 

signify the necessity for gender, age, and 

segment-specific normal ranges. We have 

presented Table 8. which furnishes the 

summarized values of the above-mentioned 

parameters achieved from the present study. 

Table 8 is particularly meant for contemporary 

and prospective medical researchers to 

conceptualize further on these interesting 

original research findings. 

Table-8. Summary of Normal Reference Values of Important Parameters 

Data of Tissue Doppler imaging of Asending Aorta 

Variables Male Female 

AOD (cm) 2.7 + 0.45 2.491 ± 0.37 

AOS (cm) 3.07 ± 0.49 2.721 ± 0.40 

Pulsatile Change (cm) 0.28 ± 0.21 0.231 ± 0.14 

SAO (cm/sec) 1.05 ± 0.30 1.142 ± 0.40 

AAO (cm/sec) 1.10 ± 0.37 0.992 ± 0.35 

EAO (cm/sec) 0.99 ± 0.33 1.129 ± 0.39 

Ao Distensbility (dyn/cm2) 0.0052 ± 0.00 0.005 ± 0.00 

Ao Stiffness Index 3.90 ± 3.79 5.23 ± 10.55 

2D Global longitudinal Strain data 

GLS (%) 16.63 ± 1.91 17.87 ± 2.13 

4D Volumetric data 

Sphericity Index d 0.44 ± 0.13 0.39 ± 0.09 

Sphericity Index s 0.3656 ± 0.15 0.32 ± 0.11 

LVEDV d (ml) 85.23 ± 18.30 77.95 ± 15.49 

LVESV s (ml) 37.8 ± 8.52 34.62 ± 10.06 

EF (%) 55.56 ± 5.53 56.21 ± 6.58 

CO(L/min) 3.45 ± 0.83 3.54 ± 0.97 

CI (L/min/m2) 1.94 ± 0.42 2.18 ± 0.56 

4D X STRAIN speckle Tracking Echocardiography data 

GLS (%) -17.29 ± 2.71 -19.00 ± 3.51 
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GCS     

at mv level (%) -15.46 ± 7.10 -14.12 ± 6.15 

at pap level (%) -20.27 ± 6.78 -19.69 ± 7.98 

GRS 

at mv level (%) -24.52 ± 9.82 -21.92 ± 8.81 

at pap level (%) -24.4 ± 10.52 -22.12 ± 11.00 

GCSR 

at mv level (1/sec) 1.78 ± 0.62 1.97 ± 0.68 

at pap level (1/sec) 1.88 ± 0.59 2.09 ± 0.64 

GRSR 

at mv level (1/sec) 2.86 ± 0.97 2.7 ± 1.04 

at pap level (1/sec) 2.3 ± 0.58 2.89 ± 1.20 

TDI=Tissue Doppler Imaging,AOD=Aortic Diastolic Diameter,AOS=Aortic 

Systolic Diameter,SAO=Systolic Aortic 

upper Wall Velocity,EAO=Early diastolic Aortic Upper Wall Velocity 

AAO=Late Diastolic Aortic upper Wall velocity 

GLS=Global Longitudinal Strain,AP=Apical 

GLS: global Longitudinal Strain GCS=Global circumferential 

Strain,GRS=Global Radial Strain 

 

Conclusions 

Normal ranges of tissue Doppler imaging of 

Ascending Aorta, global and segmental 

longitudinal LV strain using 2D STE and 

additionally 4D volumetric data and GCS, 

GCSR, GRS, GRSR by 4D X strain 

echocardiography in healthy Indian adults are 

being presented for clinical use. Differences in 

the magnitude of LV strain are present in men 

and women, as well as between different 

segments, walls, and levels as part of the 

functional non-uniformity of normal LV. 
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