Application of Stem Cells in Endodontics

Satish Vishwanathaiah^{1, 2*}, Oladapo Titus Okareh³, Shankargouda Patil⁴

¹PhD Department of Public Health, Texilla American University; Georgetown Guyana
 ²Preventive Dental Sciences, Division of Pediatric Dentistry, Jazan University, Jazan, KSA
 ³SPH, Professor, University of Ibadan, Nigeria
 ⁴College of Dental Medicine, Roseman University of Health Science, South Jordan, USA

Abstract

The discovery of stem cells in dental pulp has expanded our understanding concerning the various mechanisms that play a substantial role in the maintenance of dental pulp homeostasis to improve health and also regarding the pulp response to injury. Stems cells play a pivotal role in the physiology of the dental pulp tissue throughout the entire lifespan of the tooth. The ideology that these cells are intimately associated with regulating pulp angiogenesis as a response to cariogenic challenges is also inferred. In recent times, we are witnessing an increasing number of passionate individuals showing enthusiasm in the field of regenerative endodontics as stem cells exhibit potential benefits in dental pulp tissue engineering. The article here focuses predominantly on stem cells—the dental stem cells and non-dental stem cells which play an active part in benefitting pulpal necrosis tooth, the cardinal objective of these cells in the field of endodontic therapy, and the current, as well as the future role, stem cells could play in the clinical practice of endodontics eventually.

Keywords: Dental stem cells, Pulpal necrosis, Stem cells, Regenerative.

Introduction

Stem cells, also known as "progenitor or precursor" cells, can be defined as clonogenic cells that have the potential for multi-lineage differentiation as well as self-renewal capability [1]. It's possible to classify stem cells based on their origin.

- 1. Embryonic/fetal and,
- 2. Postnatal/adult stem cells.
- 3. As the name implies, embryonic stem cells are those cells that are taken from the inner

cell mass of the early embryo, popularly known as 'blastocyst,' and can self-divide and self-renew for a long period without differentiating. On the contrary, adult stem cells are fetched from the mature tissue, which is property lineage-restricted and named depending on their tissue of origin. These cells are principally involved in the repair and regeneration of local tissue [2,3]. Stem cells can also be classified according to their mobility (Table 1) [4].

Totipotent stem cells	These are differentiated into all embryonic and extraembryonic cells
Pluripotent stem cells	These are differentiated into the type of cells except cells of the
	embryonic membrane
Multipotent stem cells	These are differentiated into more than one mature cell

Table 1. Classification of Stem Cells

Adult Stem Cells

It is also well-known as somatic or postnatal stem cells; adult stem cells are multipotent and exhibit traits of differentiating into a limited number of cell lines. Adult stem cells play a functional role in the repair and regeneration of local tissues. The type of adult stem cells are described in Table 2.

Table 2.	Types	of	Adult	Stem	Cells
----------	-------	----	-------	------	-------

Hematopoietic Stem Cells	Mesenchymal Stem Cells
These are multipotent primitive cells that have the	A type of adult stem cells, these are
potential to grow into various types of blood cells,	also called mesenchymal stromal
such as the myeloid-lineage and lymphoid-lineage	cells. Being multipotent, these stem
cells. Hematopoietic stem cells are present in different	cells are found in the bone marrow,
organs of the body, including the bone marrow,	oral and maxillofacial structures, skin,
peripheral blood, and umbilical cord blood [5].	and adipose tissue [5, 6].
TTI111	tette flattal and a term will De

There are many general mesenchymal stem cells, such as Adipose-derived stem cells, Umbilical cord-derived stem cells, (Table 3), Amniotic fluid-derived stem cells, Bone marrow-derived mesenchymal stem cells and Dental tissue-derived stem cells.

Adipose-derived	Such cells are generally isolated from human fat using liposuction in
stem cells	most cases [7].
Umbilical cord-	As the name suggests, these cells are derived from the blood of the
derived stem cells	umbilical cord [5].
Amniotic fluid-	These cells have the potential for isolation from the aspirates of
derived stem cells	amniocentesis during genetic screening or collection at the time of
	delivery [5].
Bone marrow-	These stem cells have the pride of being the first successfully
derived	accomplished stem cell therapies. Also known as derived mesenchymal
mesenchymal stem	stem cells, peripheral blood stem cell collection is used more
cells	frequently than bone marrow aspiration in recent times [5].
Dental tissue-	Having the potential to be isolated from both, developing and
derived stem cells	permanent teeth, extracted or exfoliated teeth, tooth follicles, pulp and
	apical papilla, gingiva, and periodontal ligament, these stem cells could
	be termed as one of the most easily obtainable types of stem cells [4].

Table 3. Mesenchymal Stem Cells

Induced Pluripotent Stem Cells

The ability of these cells to divide makes them comparable to embryonic stem cells, except for the fact that any ethical restraints do not bind them. Transfecting genes available in the embryonic stem cells to a donor cell using vectors produces induced pluripotent stem cells [8].

Dental Stem Cells

These are impressive with their accessibility potential as they surpass dental tissue-derived

stem cells to be termed the most accessible stem cells.

The dental pulp of healthy teeth including both primary and permanent teeth, the periodontal ligament that's inclusive of the apical region of the developing tooth, and other tooth structures are the most commonly used regions for isolating dental stem cells [9]. Dental hard tissue formation is possible with the involvement of two major cell types: epithelium-derived ameloblasts that are responsible enamel formation for and mesenchymal-originated odontoblasts that oversee dentin production [10]. Various types

of dental stem cells are listed in Table 4.

Dental pulp-derived stem	Secured from the pulp of permanent teeth, these are the
cells (DPSC)	commonest sources of dental tissue-derived stem cells. These are
	well-equipped to produce pulp dentin complex in-vivo and can
	also differentiate into odontogenic, osteogenic, adipogenic,
	myogenic, and neurogenic components both in-vivo and in-vitro
	[11]
Stem cells from human	These cells are obtained from exfoliated teeth and exhibit better
exfoliated deciduous	proliferation compared to DPSC. SHED can differentiate into
teeth (SHED)	adipogenic, neurogenic, and odontogenic components and prove
()	beneficial in the field of tissue regeneration that involves orofacial
	bony structures [11]
Periodontal ligament	Fetched from the separated periodontal ligaments of the third
stem cells (PDLSC)	molars, there are progenitors present in PDLSC, which contribute
stem cens (1 DLSC)	toward self-renewal of oral structures, including cementum and
	bone [11]
Dental follicle stem cells	The third molars of the human teeth are surrounded by follicles
(DFSC)	that contribute toward these stem cells. Comprising of pluripotent
(DFSC)	characteristics, DFSCs are capable enough to differentiate into
	osteoblasts, adipocytes, and neuroblasts in-vitro and periodontal
	ligament in-vivo [12]
Stem cells from apical	Every tooth in the developing stage consists of these cells that are
-	
part of papilla (SCAP)	present in their apical part. High proliferation, regeneration, and
	migration capabilities are some of the unique traits possessed by SCAP.
Human dantal anith -11-1	
Human dental epithelial	These cells can be obtained in two ways—either from the third
stem cells (hDESC)	molars or the epithelial sheaths that disintegrate into the rest of
	Malasez [11]
Periosteum-derived stem	These cells are derived from the human periosteum and are
cells	multipotent with chondrogenic, odontogenic, myogenic, and
	adipogenic capabilities both in-vitro and in-vivo.
Salivary-gland derived	Capable of forming duct cells and acinar cells in-vitro, these stem
stem cells	cells are obtained from the salivary gland and possess high
	potential to produce mucin and amylase.

Table 4. Types of Dental Stem Cells

The regenerative property of human dental stem cells can be extremely helpful from the standpoint practical and in retrieving autologous dental stem cells. However, deriving a sub-population of stem cells can be quite challenging. Without a doubt, there are stem cells available in every single tooth, but the main barricade for obtaining them lies in the eligibility criteria-there are only some teeth that meet the required standards for extracting these cells. Extracting SHED from canines and deciduous incisors having no pathology but staying intact with at least one-third of the root remaining is possible. But, in the real-time world, it doesn't stop with one carious tooth but extends to many more in most clinical cases. Also, the longer the time taken for exfoliation of the tooth, the higher the resorption needed for the root having no pulp, which in turn means zero availability of stem cells. Unlike the bone marrow that is replenished postextraction, the DPSCs in adults is restricted only to the availability of the third molars [13].

According to recent publications, even the inflamed pulps human containing the mesenchymal stem/progenitor cells comprise regenerative potentials [14], and there are treasures of information yet to be discovered in connection to the inflamed periapical tissue. RS et al., when exploring various means to utilize somatic mesenchymal stem cells (MSCs) fetched from other sources with the help of a bio-mimetic dental pulp extracellular matrix (ECM)-incorporated scaffold, the researchers found the presence of odontogenic differentiation of PDLSCs and HMSCs independent of the exogenous addition of differentiation and growth factors which were a result of the stimulation of the dental pulp stem

derived ECM scaffold. Epithelial-mesenchymal transition is also possible in the case of epithelial rests of Malassez (ERMs) [15].

Caiet al. researched about utilizing nondental stem cells for dental treatments and came up with a unique methodology for growing teeth using stem cells derived from human urine [16]. In the laboratory, the research team made use of pluripotent stem cells (iPSCs) obtained from human urine in a group of mice to promote the growth of tooth-like structures and the team reported a success rate of around 30%. The generated teeth behaved just like the human teeth when comparing their physical properties but there was a huge difference witnessed in terms of the tooth's hardness-the resulting tooth exhibited only one-third of the hardness levels of a regular human tooth. Clinical application of dental stem [17] cells can be summarized in Table 5.

Study	Type of	Purpose of	Procedure of	Outcome	Method of assessment	Clinical applications	Authors
design	stem cells	utilization	obtainment				observation
Invitro	Mesencymal	Is to evoke	Canal has been opened	MSCs found	Intracanal bleeding from the	According to hypothesis	This study bleeding
	stem cells	bleeding from	debridement is done	compartmentalize	periapical tissues was	that intracanal bleeding	technique delivers
	[MSCs]	periapical tissue	till the intra canal	d mainly within	achieved, and intracanal	evoked by the over	undifferentiated
		and influx MSCs	bleeding from apical	vasculature	blood samples were	instrumentation of	MSCs into the root
		into root canal	region achieved and	structures which	collected. Total RNA was	periapical tissues elicits	canal systems of
		system for mature	blood sample is	is presented in	isolated and used as a	the influx of cells with	adult patients with
		teeth with apical	collected in cartilage	lesion according	template in quantitative	MSC markers into the root	mature teeth. [18]
		lesions.	during LA.	immunohistoche	reverse transcription	canal system of mature,	
				mical analysis.	polymerase chain reactions	fully formed teeth with	
					using MSC-specific arrays.	apical lesions.	
Invivo	Apical	To regenerate lost	Stem cells of apical	The root canal	Histological analysis has	extracted human teeth has	The purpose of this
	papilla and	pulp and dentinal	papilla and dental pulp	space was filled	been done to evaluate	been horizontally	study is to show
	Dental pulp	wall structure in	is isolated,	with pulp-like	pulp/dentin regeneration	sectioned. The root canal	pulp/dentin
5		the root canal	characterized, seeded	tissue with	using SCAP. As been	space was enlarged and	regeneration can be
		region and	onto synthetic	vascularity and	examined after 3 months.	sealed with MTA Cement.	accomplished with
		regenerate	scaffolds consisting of	layer of dentin-		Root fragments were	progenitor cell-
		vascularization	poly-D, L-	like tissue was		soaked at room	mediated tissue
		and produce new	lactide/glycolide,	deposited onto		temperature. Fragments	engineering
		dentin	inserted into the tooth	the canal dentinal		were then rinsed in sterile	approach.[19]
			root canal and injected	wall. There is		PBS, soaked in PBS, and	
			into mice	formation		then incubated at 37°C for	
				odontoblast.		3-7 days to remove	
						residual sterilization	
						agents and to ensure that	
						there is no microbial	
						contamination	

Table 5. Clinical Applications of Dental Stem Cells

Invivo dental pulp	pulp all	ECM-based	Collection of extracted	DPM-based	Histological analysis has	The ECM has potential bioactive agents for	DPM provides an
DPSC	deri	has to be	identify, dish coated	could serve as a	were used to identify	inducing DPSC reaction,	environment for the
ved ECM	CM	evaluated for	with DPM and	cell niche and	whether the newly formed	which affects repair and	DPSCs to preserve
(DPM)		dental pulp	immunoflurosence	modulate DPSC	tissues followed the process	regeneration in dental pulp	themselves before
		regeneration.	staining has been done	behaviour, also	of mineralization	tissue. Involvement of	the implantation,
		DPM was used to	and observed under	provided an		DPM and DPSCs were	and ECM plays an
		imitate the	electric microscope	alternative to		further investigated by	essential part in
		original dental		harvest		histological staining in	reconstructing the
		pulp niche, which		tissue-specific		vivo. The results	dental pulp
		was compared to a		ECM and		demonstrated that the	tissue.[20]
		conventional		provided a		DPM influenced the	
		polystyrene		strategy for		structural integrity of the	
		culture surface		ECM-cell interaction		regenerated dental pulp FCM	
Periodontal	lontal	Biological	Criteria involved	Calcium silicate-	Assess the biological	Calcium silicate sealer are	Calcium silicate-
ligament		interactions, that is	periodontal ligament	based sealers and	interactions of PDLSCs with	used as root canal filling	based cement and
stem cells		cytocompatibility,	stem cells	Calcium sealers	calcium silicate-based	materials and calcium	sealers, as a group of
comparing	uring	cell differentiation	intervention, culture	cements which is	sealers (CSSs) and cements	silicate cement referred to	endodontic
with		and mineralization	media treated with	group of	(CSCs) as inclusion.	as 'putty' biomaterials are	materials, exhibit
calcium	ш	potential, between	calcium silicate-based	endodontic	Evaluation of the 'biological	reserved for defect repair.	adequate
silicate-	e-	calcium silicate-	sealers or cement,	materials exhibit	interaction' of the	These both biomaterial	cytocompatibility,
based		based biomaterials	comparisons/control,	adequate	cytotoxicity,	subsets will be placed in	osteogenic,
biomaterials	terials	and periodontal	untreated culture	cytocompatibility	cytocompatibility, cell	direct contact with	cementogenic
		ligament stem	media outcome.	and favour the	plasticity or differentiation	biological tissues i.e one	differentiation, and
		cells (PDLSCs)	PDLSCs viability,	osteo/ cementog-	potential, and bioactive	of cell population of	mineralization
		which is clinical	proliferation,	enic	properties of PDLSCs	periodontal tissue stem	potential of human
		used in endodontic	migration,	differentiation	cultured in CSC or CSS-	cells during endodontic	periodontal ligament
		procedures	differentiation and	and	conditioned media.	procedures	stem cells, as
		involving direct	mineralization and	mineralization			evidenced in this
		contact with	study selection process	potential of			study. Within the
		periodontal		PDLSCs, has			limitations of the in
		tissues.		been evidenced			vitro nature of the
							included studies. this

						work supports their
						potential use in stem
						cell therapy and
						biologically based
						regenerative
						endodontic
						procedures.[21]
Εvε	Evaluate the	Non vital tooth with	Tooth	Rats has been collected,	As vascular and tissue	As hypothesize that
abil	ability of	pulpless chamber,	revascularization	dental pulp cells preparation,	regeneration can be	a direct vascular
vas	vascularized tissue	filled with collagen I	and tissue	isolation, culturing is done,	induced in an empty root	supply plays a
to c	to develop within	gel containing isolated	generation was	scaffolded growth factor	canal space as long as a	pivotal role in tissue
a pi	a pulpless tooth	rat dental pulp cells	observed in the	preparation, two groups have	blood clot does not impede	regeneration in an
usi	using tissue	(DPC) and angiogenic	femur group, and	been done as experimental	tissue ingrowth but Direct	empty root canal.
eng	engineering with	growth factors, was	role of vascular	group. Histological	access to a vascular supply	Study aims to
ste	stem cells	placed into a hole	supply in tissue	assessment has been done	together with addition of	evaluate the ability
		created in the femoral	regeneration. The		cell and growth factor will	of vascularized
		cortex or into its own	addition of cells		participate in regenerative	tissue to develop
		tooth socket,	and growth		situation.	within a pulpless rat
		respectively.	factors			incisor, to promote
		Histological and	significantly			dental pulp cell
		biochemical	promoted			(DPC) survival and
		characteristics of the	connective tissue			to ultimately
		tissue were evaluated	production in the			regenerate dental
		for 4- and 8-weeks	tooth chamber			pulp tissue.[22]
		post-transplantation				

Stem Cells Therapy in Endodontics

Apexogenesis or Apexification

Any irreversible pulpal injury can result in pulp necrosis which in turn leads to the infection of the root. If the patient is younger and has immature roots, there exists the slightest ray of hope that it's still possible to preserve at least some of the vital pulp tissue, which in turn goes ahead with the root formation but to do all this we need a much more conservative approach. But, if the entire root canal is fully infected, we have no choice but to go ahead with the endodontic treatment. In such cases, it becomes mandatory to remove the rest of the pulpal tissue up to the developing root apex, thereby cutting off any contact with the apical papilla. If the permanent tooth is an immature one, it's possible to regenerate the tissue into the apex using stem cells that are available in the SCAP, vital pulp tissues, PDL, or alveolar bone. In-vitro or in-vivo tissue regeneration also becomes possible when the stem cells and growth factors are seeded on scaffolds. The primary objective of using stem cells in the field of pulpal regeneration is mainly to take a conservative approach while treating immature permanent teeth. There are greater possibilities to increase the root length and thickness, thereby leading to total root formation when we make use of short-term regenerative endodontic procedures [23].

Advantages

- 1. It has a low risk of immune injection.
- 2. Not much risk of pathogenic infection.

Disadvantages

- 1. Very less case report has be published.
- 2. If tissue becomes infection there is changes of necrosis.

Pulp Revascularization

1. Any immature tooth affected by pulpal necrosis has the potential to obstruct root development due to caries or trauma, thereby leading to thinner root canal walls and blunderbuss apices.

- 2. Getting hold of a seal with conventional obturation techniques is quite problematic, which in turn makes root canal treatment a difficult affair primarily due to the unavailability of an apical stop. Such thin root canal walls increase the risk of fracture multifold times.
- 3. In the absence of intra-pulpal infection and scaffold and when the environment is favorable to tissue growth, there are higher chances for pulpal tissue regeneration of immature teeth that are infected.
- 4. Such circumstances pave the way for the repopulation of mesenchymal cells that erupt from the dental papilla or apical periodontium [24, 25].

Whole Tooth Regeneration

By seeding various cell types on biodegradable scaffolds, we've had successful regeneration of tooth-like tissues. In-vitro harvesting, growing, and differentiation of cells and seeding cells onto scaffolds for their invivo implantation has been a common technique followed for regeneration. There have also been times when the scaffolds have been once again re-implanted onto the extracted tooth socket or the jaw [26].

Stem Cell Therapy

In stem cells of dental pulp which has multipotent stem cells in the dental pulp and have their phenotype in peri vascularity. Studies has shown that DPSCs and SHED develop from the same origin, that is, dental pulp. SHED and DPSC cells are capable of regenerating dentin and pulp-like tissues. The stem cells present as autologous or allogenic stem cells, and these are delivered to the tooth via injection with the help of matrix [27]. Major advantages and disadvantages of this method are.

- 1. It is a quick method.
- 2. Very easy delivery into tooth or root canal.

- 3. It has less pain.
- 4. The cells can be easily harvest.
- 5. Disadvantage.
- 6. Cell survival rate is low.
- 7. The cells don't produce new functional pulp.
- 8. Risk of complication.

Objectives of Stem Cells Therapy in Endodontics [28]

A majority of the research focusing on stem cell therapy primarily aims for the below-given targets:[29]

- 1. Regeneration of pulp dentin complex.
- 2. Regeneration of damaged coronal dentin.
- 3. Regeneration of resorbed root, cervical or apical dentin, and repair perforations.
- 4. Whole tooth regeneration.

Banking of Dental Stem Cells

The fundamental goal of stem cell therapy includes harvesting and storing these cells safely until and unless their need arises due to an accident or disease. Research data obtained until now have clear indications pointing toward the use of primary teeth for stem cell therapy in the field of regenerative medicine when compared to the use of orthodontic, wisdom, or extracted teeth [30].

Collection, Isolation, and Preservation

Step 1. Tooth Collection

As mentioned above, primary teeth are better choices for banking as they are composed of healthy pulp in comparison to permanent teeth after orthodontic extraction, wisdom tooth, or bicuspid tooth.

The first step involves keeping the selected tooth in some liquid, either fresh milk, a sterile solution, or a frozen gel pack to transfer it safely to the laboratory. Blood flow to the tooth until the time of extraction is mandatory, and this is evident when the exfoliated tooth comprises of red coloration of the pulp, indicating decent blood flow. The Gray coloration of the pulp is a clear indication that the blood flow to the tooth has been compromised. Such teeth can no longer be recovered as they are necrotic. Once the tooth recovery is successfully made, it can be transferred to a hypotonic phosphate-buffered saline solution that stops any drying up of the tissues during transportation. It is possible to transfer only up to four teeth in one vial. Once the transfer is done, the vial is tightly sealed with utmost care and placed into a thermette (a temperature phase change carrier) which, in turn, is placed into an insulated metal transport vessel. All these steps must be followed diligently to maintain the sample in a hypothermic state during transportation, and the whole procedure is referred to as 'sustentation' [5, 29].

Stem Cell Isolation

Once the kit or vial safely reaches the tooth bank, every cell inside it is patiently isolated, and the tooth surface is thoroughly cleaned using different disinfectants and by maintaining a strict protocol. The pulp tissue is extracted from the pulp chamber, and an MSM medium is used to culture the cells by maintaining suitable corrections [29]. It's possible to extract various cell lines, including adipogenic, odontogenic, and neural ones, by bringing variations to the MSC medium. In case contaminations are higher than recommended, procedural changes using STRO 1 or CD 146 can be done [29]. The total time taken from the moment the cells are harvested to the time until they reach the processing facility must not be greater than 40 hours.

Stem Cell Storage

Either approach given below can be used for storing the stem cells.

Cryopreservation

This technique involves preserving cells in liquid nitrogen vapor at a temperature of -150° to preserve their latency and potency. When done this way, there are higher chances of storing the cells for longer and keeping them viable for use [29].

Magnetic Freezing

The object is chilled below the freezing point with the help of a Cell Alive System (CAS) that makes use of a magnetic field. This way, there is even distribution of low temperatures causing no damage to the cell wall. As per Hiroshima University, following such a procedure helps in elevating the cell survival rate of the teeth to up to 83% [12, 29].

Technique of Stem Cell Identification

The stem cells are stained with specific antibody markers using a flow cytometer it's also called as fluorescent antibody cell sorting (FACs) [30].

Advantages of Flow Cytometry

- 1. It has the ability to escape dead cells and identify the cell size and structure.
- 2. The dentin thickness is checked in the root canal after cleaning and shaping.

Immunohistochemical staining: It uses the antibody-based method to detect a specific protein in the sample.

Physiological and histological criteria: These includes phenotyping, chemotaxis, proliferation, differentiation, and mineralizing.

Current Trends and Future Perspectives of Stem Cells Regeneration

Figuring out a well-suited autologous stem cell source in humans is the foremost requirement when we want to make use of tooth regeneration technology, and this is already discussed above. Concerning this, pulpal stem cells owing to their ability to differentiate into dental epithelial and mesenchymal cells might be a suitable cell source for regeneration. These cells can be obtained from the patient's very own somatic cells. It's possible to bank exfoliated deciduous teeth, third molars, teeth for orthodontic extracted reasons, and supernumerary teeth as the dental stem cells remain in the viable state in the frozen tissues. Individuals can avoid any ethical or immunological issues arising from the use of allogeneic cells by relying upon their cell tissues. The high proliferative nature of the SHED or the stem cells from the immature third molar teeth and the increased occurrence of traumatic dental injuries in the early permanent dentition makes these cells a preferred choice for banking them.

The future is full of surprises, and in the times to come, it's even possible that gene therapy could be the key to regenerating dental tissues using genetically altered cells to deliver physiological-specific growth factors. Research for identifying exact novel genes and coming up with a suitable vehicle to deliver the specific cells safely is in the infancy stage. But incorporating all the ethical constraints involved in using gene therapy and coming up with in-vivo clinical applications to regenerate dental tissues remain a distant dream [31].

Conclusion

The ability of the dental pulp cells to differentiate into odontoblasts and the possibility of regenerating the dental pulp have paved the way for a plethora of strategies that help in the revitalization of necrotic teeth. Somatic cells that can be extracted from one's a deciduous tooth or permanent tooth must be preserved carefully as these could help in endodontic treatment. To achieve this, the clinician or the endodontist involved must possess knowledge about the current concept of stem cells and impart the same to their patients.

Conflict of Interest

There is no conflict of interest.

Acknowledgements

The Authors acknowledge the support of Dr Varsha Manoharan for supporting data collection and Language editing.

References

[1] Fischbach, G. D., Fischbach, R., L., 2004, Stem cells: science, policy, and ethics. *The Journal of clinical investigation*, 114(10):1364-1370.

[2] Ashri, N. Y., Ajlan, S. A., & Aldahmash, A. M., 2015, Dental pulp stem cells. Biology and use for periodontal tissue engineering. Saudi medical journal, 36(12), 1391–1399.

[3] Almeida, P. N., Cunha, K. S., 2016, Dental stem cells and their application in Dentistry: a literature review. Revista Brasileira de Odontologia, 73(4):331.

[4] Rao M. S., 2004, Stem sense: a proposal for the classification of stem cells. Stem cells and development, 13(5), 452–455.

[5] Rai, S., Kaur, M., & Kaur, S., 2013, Applications of stem cells in interdisciplinary dentistry and beyond: an overview. *Annals of medical and health sciences research*, 3(2), 245–254.

[6] Lin, L. M., & Kahler, B., 2017, A review of regenerative endodontics: current protocols and future directions. *Journal of Istanbul University Faculty of Dentistry*, 51(3 Suppl 1), S41–S51.

[7] De Ugarte, D. A., Morizono, K., Elbarbary, A., Alfonso, Z., Zuk, P. A., Zhu, M., Dragoo, J. L., Ashjian, P., Thomas, B., Benhaim, P., Chen, I., Fraser, J., & Hedrick, M. H., 2003, Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells, tissues, organs, 174(3), 101– 109.

[8] Takahashi, K., & Yamanaka, S., 2006, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

[9] Caplan A. I., 1991, Mesenchymal stem cells. *Journal of Orthopaedic Research*: official publication of the Orthopaedic Research Society, 9(5), 641–650.

[10] Bluteau, G., Luder, H. U., De Bari, C., & Mitsiadis, T. A., 2008, Stem cells for tooth engineering. *European cells & materials*, 16, 1–9.

[11] Mitsiadis, T. A., Orsini, G., & Jimenez-Rojo, L., 2015, Stem cell-based approaches in dentistry. *European cells & materials*, 30, 248–257.

[12] Huang, Y. H., Yang, J. C., Wang, C. W., Lee, S.Y., 2010, Dental stem cells and tooth banking for

regenerative medicine. *J ExpClin Med*, 2(3):111-117.

[13] Ravindran, S., Huang, C. C., & George, A., 2014. Extracellular matrix of dental pulp stem cells: applications in pulp tissue engineering using somatic MSCs. *Frontiers in physiology*, 4, 395.

[14] Alongi, D. J., Yamaza, T., Song, Y., Fouad, A.
F., Romberg, E. E., Shi, S., Tuan, R. S., & Huang,
G. T., 2010, Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regenerative medicine, 5(4), 617–631.

[15] Xiong, J., Gronthos, S., & Bartold, P. M., 2013, Role of the epithelial cell rests of Malassez in the development, maintenance, and regeneration of periodontal ligament tissues. Periodontology 2000, 63(1), 217–233.

[16] Cai, J., Zhang, Y., Liu, P., Chen, S., Wu, X., Sun, Y., Li, A., Huang, K., Luo, R., Wang, L., Liu, Y., Zhou, T., Wei, S., Pan, G., & Pei, D., 2013, Generation of tooth-like structures from integrationfree human urine induced pluripotent stem cells. Cell regeneration (London, England), 2(1), 6.

[17] Laird, D. J., De Tomaso, A. W., & Weissman, I. L.,2005, Stem cells are units of natural selection in a colonial ascidian. Cell, 123(7), 1351–1360.

[18] Chrepa, V., Henry, M. A., Daniel, B. J., & Diogenes, A., 2015, Delivery of Apical Mesenchymal Stem Cells into Root Canals of Mature Teeth. Journal of dental research, 94(12), 1653–1659.

[19] Huang, G. T., Yamaza, T., Shea, L. D., Djouad, F., Kuhn, N. Z., Tuan, R. S., & Shi, S., 2010, Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue engineering. Part A, 16(2), 605–615.

[20] Zhang, X., Li, H., Sun, J., Luo, X., Yang, H., Xie, L., Yang, B., Guo, W., & Tian, W., 2017, Cellderived micro-environment helps dental pulp stem cells promote dental pulp regeneration. Cell proliferation, 50(5), e12361.

[21] Sanz, J. L., Guerrero-Gironés, J., Pecci-Lloret, M. P., Pecci-Lloret, M. R., & Melo, M., 2021, Biological interactions between calcium silicatebased endodontic biomaterials and periodontal ligament stem cells: A systematic review of in vitro studies. International Endodontic Journal, 54(11), 2025–2043.

[22] Srisuwan, T., Tilkorn, D. J., Al-Benna, S., Abberton, K., Messer, H. H., & Thompson, E. W., 2013, Revascularization and tissue regeneration of an empty root canal space is enhanced by a direct blood supply and stem cells. Dental traumatology: official publication of International Association for Dental Traumatology, 29(2), 84–91.

[23] Friedlander, L. T., Cullinan, M. P., & Love, R. M., 2009, Dental stem cells and their potential role in apexogenesis and apexification. *International Endodontic Journal*, 42(11), 955–962.

[24] Kottoor., J, 2013, Biomimetic endodontics: barriers and strategies. Health Sciences, 2(1):JS007.

[25] Ding, R. Y., Cheung, G. S., Chen, J., Yin, X. Z., Wang, Q. Q., & Zhang, C. F., 2009, Pulp revascularization of immature teeth with apical periodontitis: a clinical study. *Journal of endodontics*, 35(5), 745–749.

[26] Gandhi, A., Gandhi, T., 2011, Madan N. Dental pulp stem cells in endodontic research: a promising tool for tooth tissue engineering. RSBO. 8(3):335-40.

[27] Harikumar., Kavitha, A., Jayaprada, J., Shetty, S.R.,2010, Regenerative Endodontics. *Ind J Dent Adv*, 2(2):203-209.

[28] Shi, S., Bartold, P. M., Miura, M., Seo, B. M., Robey, P. G., & Gronthos, S., 2005, The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthodontics & craniofacial research, 8(3), 191–199.

[29] Arora, V., Arora, P., & Munshi, A. K., 2009, Banking stem cells from human exfoliated deciduous teeth (SHED): saving for the future. *The Journal of clinical pediatric dentistry*, 33(4), 289– 294.

[30] Goldstein, G., Slizys, I. S., & Chase, M. W., 1961, Studies on fluorescent antibody staining. I. Non-specific fluorescence with fluorescein-coupled sheep anti-rabbit globulins. *The Journal of experimental medicine*, 114(1), 89–110.

[31] Baranwal, K., A, 2015, Regenerative Stem Cells for Endodontic Tissue Engineering: Past, Present and Future. Ann ProsthodontRestor Dent, 1(1):20-5.