Molecular Docking of Phytochemicals from *Adhatoda vasica* Against Caries, Periodontitis and Inflammatory Mediators – A Computational Study

Murukesan S^{*}, Kishore Kumar Department of Orthodontics, Sree Balaji Dental College and Hospital. Chennai, India

Abstract

Orthodontic treatment is associated with pain, difficulty in plaque control, caries incidence, and slow movement of teeth. Authors hypothesize that the answer to these questions may lie in phytochemicals which are a huge unexplored area. Due to previous reports on Adhathoda vasica about its anti-inflammatory and antimicrobial properties, its use in orthodontics is explored in the dry lab scenario. This can be considered as a preliminary step to study the herb in great detail for use in orthodontic therapy. Computational algorithms from Auto Dock version 4 were used in the study. Vasicine, Vasinone, Vasicoline and Anisotine were analysed against Glucosyltransferase (GFT) of Streptococcus mutans, Gingipain K - Porphyromonas gingivalis, FIM A of Porphyromonas gingivalis, TNF ALPHA and Prostaglandin H synthases. Compounds exerted promising inhibiting action against Streptococcus mutans, Gingipain K, FimA, TNF-alpha and prostaglandin E2. The said phytochemicals - Vasicine, Vasicinone, Vasicoline and Anisotine and Anisotine can further be explored for proper delivery to saliva, periodontal region and to bone for effective use during and after orthodontic treatment.

Keywords: Adhatoda vasica, docking, Glucosyltransferase, Gingipain K - Porphyromonas gingivalis, FIM A of Porphyromonas gingivalis, TNF ALPHA and Prostaglandin H synthases.

Introduction

In nature, caries and periodontitis do not commonly exist together, except in cases of very poor oral hygiene [1]. This is because distinct flora are associated with caries and periodontitis which antagonize each other [2] However, rare situations like orthodontic treatment cause an increase in both cariogenic and periodontal flora. As mentioned, orthodontic treatment, especially using fixed appliances greatly hinders the maintenance of oral hygiene. Therefore, various aids are used to promote this cleaning process to prevent caries and periodontitis, which are equally deleterious to the patient [3]

agent that can achieve all this. For controlling pain, NSAIDs are used and duration may not

Of various modalities used to treat the situation, after physical techniques of brushing, chemical methods come into play. Mouthwashes play a major role in plaque control in these situations. Though they are successful, numerous adverse events like damaging mucosa, staining of teeth, and altering taste perception are associated with it [4].

In another direction, many patients refuse orthodontic treatment due to the pain associated with it and its long duration [5]. If these issues can be addressed, acceptance of orthodontic treatment would increase and more patients would benefit from it. In the present scenario, there is no single be effectively controlled by drugs or chemicals [6]. Authors hypothesize that the answer to these questions may lie in phytochemicals which are a huge unexplored area. In that direction, due to previous reports on *Adhathoda vasica* about its anti-inflammatory and antimicrobial properties, its use in orthodontics is explored in the dry lab scenario. This can be considered as a preliminary step to study the herb in great detail for use in orthodontic therapy.

Materials and Methods

Protein-Ligand Docking

Computational algorithms predicting the possibility of leads over selected targets were performed by using a standard docking tool (Auto Dock version 4). The outcome of screening was ascertained by observing the binding affinity and interaction pattern of the lead with targets [7].

The three-dimensional structure of the target proteins illustrated in Figure 1 was retrieved from the Research Collaboratory for Structural Bioinformatics (RCSB). The retrieved protein construct was subjected to surface optimization by removing the preloaded lead candidate and subsequent water molecules cleaved. Gasteiger charges were computed with additional polar hydrogen atoms, and the merging of non-polar and rotatable bonds was defined using AutoDock 4 [8].

Ligand Model Preparation

Two- and three-dimensional structures of selected ligands viz. Vasicine, Vasicinone, Vasicoline and Anisotine subjected to molecular docking investigation were constructed by using ChemDraw sketch software. Figure 2 represents the 2D and 3D structures of selected ligand molecules subjected to molecular docking investigation.

Fig. 1. 2D and 3D Structure of Phytocomponents

Protein Preparation

Compound	Molar Weight g/mol	Molecular Formula	H Bond Donor	H Bond Acceptor	Rotatable Bonds
Vasicine	188.23 g/mol	$C_{11}H_{12}N_2O$	1	2	0
Vasicinone	202.213 g/mol	$C_{11}H_{10}N_2O_2$	1	3	0
Vasicoline	291.4 g/mol	$C_{19}H_{21}N_3$	0	2	2
Anisotine	349.4 g/mol	$C_{20}H_{19}N_3O_3$	1	5	4

Table 1. Ligand Properties of the Compounds Selected for Docking Analysis

Docking Simulations

In-silico docking predictions were performed using a licensed version of AutoDock 4. The virtual screening tool works behind the algorithm to predict the possible interaction between the functional group of the lead with the active site (amino acid residue) of the protein target. The three-dimensional conformation of target proteins retrieved from RCSB was subjected to computational docking by using AutoDock 4. Molecular energy and free dynamics calculation were optimized using the auto dock algorithm and protein charge calculation set with the Gasteiger simulation module. Solvation parameters and other respective polar hydrogens were added to the receptor for the preparation of protein for successive docking

simulation. Since ligands are phytotherapeutics and not of peptide origin hence, Gasteiger charges were essentially applied and then non-polar hydrogens were merged. As per the requirement of the AutoDock programming, the pre-calculated grid maps were set for one for each atom type, present in the ligand being docked as it stores the potential energy arising. The docking pocket was set with affinity (grid) maps of 70×70×70 Å grid points and with 0.375 Å. Each docking calculation was derived from 10 different runs that were set to terminate after a maximum of 250000 energy evaluations. The population size was set to 150. During the search, a translational step of 0.2 Å, and quaternion and torsion steps of 5 were applied [9, 10].

Table 2. Deta	ils of Targets
---------------	----------------

S. No.	Purpose	PDB	Name of Target
1	Anti-Microbial activity - Caries	3AIC [11]	Glucosyltransferase (GFT) of Streptococcus mutans
2	Anti-microbial activity - Periodontal	6I9A	Gingipain K - Porphyromonas gingivalis
3	Anti-microbial activity - Periodontal	4Q98	FIM A of Porphyromonas gingivalis
4	Analgesic / Anti-Inflammatory Activity	2AZ5	TNF ALPHA
5	Anti-Inflammatory Activity	1IGX	Prostaglandin H synthases

Receptor Structures

The crystalline structure of the target proteins was retrieved from the protein data bank and protein clean-up process was done and essential missing hydrogen atoms were added. Different orientation of the lead molecules concerning the target protein was evaluated by the Autodock program and the best dock pose was selected based on the interaction study analysis.

Docking calculations were carried out for retrieved phytocomponents against target protein 3CL pro. Essential hydrogen atoms, Kollman united atom type charges, and solvation parameters were added with the aid of AutoDock tools.[10] Affinity (grid) maps of \times Å grid points and 0.375 Å spacing were generated using the Autogrid program. AutoDock parameter setand distancedependent dielectric functions were used in the calculation of the van der Waals and the electrostatic terms, respectively. Docking simulations were performed using the Lamarckian genetic algorithm (LGA) and the Solis & Wets local search method [12]. The initial position, orientation, and torsions of the ligand molecules were set randomly. All rotatable torsions were released during

docking. Each docking experiment was derived from 2 different runs that were set to terminate after a maximum of 250000 energy evaluations. The population size was set at 150. During the search, a translational step of 0.2 Å, and quaternion and torsion steps of 5 were applied [13, 14, 15].

In-silico docking simulations were performed by using Auto Dock version 4. The molecular interaction of residual amino acids with the core functional groups determines the efficacy of the lead molecules. Three dimensional pharmacophores of FDA-approved lead molecules were subjected to virtual screening against selected protein target Gingipain K -Porphyromonas gingivalis with PDB 6I9A retrieved from RCSB by using Auto Dock 4. Docking grids were set with the pocket size measuring maps of 70×70×70 Å grid points and with 0.375 Å. Each docking calculation is set to run with 10 different cycles after a maximum of 250000 energy evaluations. The population size was set at 150. During the search, a translational step of 0.2 Å, and quaternion and torsion steps of 5 were applied [7, 16].

Results

		Inhibition			
	Binding Free	Constant Ki	Electrostatic	Intermolecular	Total
	Energy	μM	Energy	Energy	Interaction
Compounds	Kcal/mol	(*mM)(**nM)	Kcal/mol	Kcal/mol	Surface
Vasicine	-7.02 kcal/mol	7.20 uM	-2.79 kcal/mol	-7.31 kcal/mol	539.729
Vasicinone	-5.01 kcal/mol	212.78 uM	-0.07 kcal/mol	-5.31 kcal/mol	464.886
Vasicoline	-9.24 kcal/mol	169.65 nM	-2.70 kcal/mol	-9.42 kcal/mol	671.964
Anisotine	-7.04 kcal/mol	6.94 uM	-0.01 kcal/mol	-7.55 kcal/mol	662.994

 Table 3. Summary of the Molecular Docking Studies of Compounds Against Glucosyltransferase (GFT) of

 Streptococcus mutans- PDB- 3AIC

	Intera											
Compounds	ction	Amir	10 Acid I	Residues		-						
		433			478	481		517	507	588	916	
		LE	475	477	AL	AS	515	TR	387 100	AS	ΤY	
Vasicine	3	U	ARG	ASP	А	Ν	TRP	Р	піз	Р	R	
		433			480	481		517	588			
		LE	477	478	AS	AS	515	TR	AS			
Vasicinone	3	U	ASP	ALA	Р	Ν	TRP	Р	Р			
		430			477	480		515	517	507	588	916
		ΤY	433	475	AS	AS	481	TR	TR	587 100	AS	ΤY
Vasicoline	3	R	LEU	ARG	Р	Р	ASN	Р	Р	HIS	Р	R
		433			517	588		592	593	610	907	916
		LE	477	515	TR	AS	589	GL	AS	ΤY	PH	TY
Anisotine	3	U	ASP	TRP	Р	Р	SER	Ν	Р	R	Е	R

 Table 4. Amino acid Residue Interaction of Lead against Glucosyltransferase (GFT) of Streptococcus mutans-PDB- 3AIC

 Table 5. Summary of the Molecular Docking Studies of Compounds Against Gingipain K - Porphyromonas

 gingivalis – PDB 6I9A

		Inhibition				
	Binding	Constant Ki	Electrostatic	Intermolecular	Total	
	Free Energy	μΜ	Energy	Energy	Interaction	
Compounds	Kcal/mol	(*mM)(**nM)	Kcal/mol	Kcal/mol	Surface	
	-5.94	44.10 mM	0.90 tract/mol	6.24 keel/mel	447 220	
Vasicine	kcal/mol	44.19 ulvi	-0.80 Kcal/III0	-0.24 Kcal/III0	447.239	
	-5.93	45.0C M	0.10.1.001/m.01	$(22 \log 1/m s)$	424 722	
Vasicinone	kcal/mol	43.00 ulvi	-0.10 Kcal/III0	-0.25 Kcal/III0	424.733	
	-7.49	2.26	0.59 has 1/m s1	7.22 [real/mail	577 76	
Vasicoline	kcal/mol	5.20 UM	-0.58 Kcal/mol	-7.25 Kcal/mol	577.70	
	-5.65	72.15 vM	0.02 keel/mel	6.22 keel/mel	502 422	
Anisotine	kcal/mol	72.13 ulvi	-0.05 Kcal/mol	-0.52 Kcal/mol	392.433	

Table 6. Amino Acid Residue Interaction of Leads Against Gingipain K - Porphyromonas gingivalis - PDB6I9A

	Intera							
Compounds	ction	Amino acid	Residues					
			444	477	511	512	513	516
Vasicine	2	442 THR	HIS	CYS	SER	TYR	TRP	ASP
			476	477	511	513	516	
Vasicinone	2	444 HIS	CYS	CYS	SER	TRP	ASP	
		200 4 00	391	444	477	511	513	
Vasicoline	3	388 ASP	TRP	HIS	CYS	SER	TRP	
		200 4 60	390	391	444	477	511	513
Anisotine	3	388 ASP	SER	TRP	HIS	CYS	SER	TRP

	Binding	Inhibition				
	Free	Constant Ki	Electrostatic	Intermolecular	Total	
	Energy	μM	Energy	Energy	Interaction	
Compounds	Kcal/mol	(*mM)(**nM)	Kcal/mol	Kcal/mol	Surface	
	-5.37	115 00 vM	-0.04	5.67 least/mal	501.66	
Vasicine	kcal/mol	115.99 uM	kcal/mol	-3.07 Kcal/III01	521.00	
	-6.69	12 41 mM	-0.15	6.00 keel/mel	519.072	
Vasicinone	kcal/mol	12.41 uM	kcal/mol	-0.99 Kcal/III01		
	-7.54	2.05	-0.01	8.04.leas1/m.sl	664 104	
Vasicoline	kcal/mol	2.95 uM	kcal/mol	-8.04 Kcal/mol	004.194	
	-5.25	141.07 M	-0.05	5 29 1 1/ 1	C41.010	
Anisotine	kcal/mol	141.27 uM	kcal/mol	-5.38 Kcal/mol	641.019	

Table 7. Docking Studies of Compounds Against FIMA - PDB 4Q98

Table 8. Amino Acid Residue Interaction of Leads Against FIMA with PDB 4Q98

	Int											
	era											
Compo	cti											
unds	on	Amino Acid	l Residu	es								
					325							
Vasicin			317	319	AS	363	364	367				
e	1	237 TYR	PRO	LEU	Ν	PRO	GLN	GLN				
					325				367	368		
Vasicin			317	319	AS	327	363	364	GL	AL	370	
one	1	237 TYR	PRO	LEU	Ν	TYR	PRO	GLN	Ν	А	LEU	
					325				367	368		
Vasicol			317	319	AS	327	363	364	GL	AL		
ine	1	237 TYR	PRO	LEU	Ν	TYR	PRO	GLN	Ν	А		
					325				364	367	368	
Anisoti			317	319	AS	357	360	363	GL	GL	AL	370
ne	3	237 TYR	PRO	LEU	Ν	THR	PRO	PRO	Ν	Ν	А	LEU

Table 9. Summary of the Molecula	Docking Studies of	Compounds Against	TNF-alpha (2AZ5)
----------------------------------	--------------------	-------------------	------------------

		Inhibition			
	Binding	Constant Ki	Electrostatic	Intermolecular	Total
	Free Energy	μΜ	Energy	energy	Interaction
Compounds	Kcal/mol	(*mM)(**nM)	Kcal/mol	Kcal/mol	Surface
Vasicine	-4.41 kcal/mol	581.81 uM	-0.19 kcal/mol	-4.71 kcal/mol	378.73
Vasicinone	-4.67 kcal/mol	376.54 uM	-0.07 kcal/mol	-4.97 kcal/mol	380.683
Vasicoline	-6.21 kcal/mol	27.83 uM	-0.04 kcal/mol	-5.89 kcal/mol	472.27
Anisotine	-6.25 kcal/mol	26.10 uM	-0.11 kcal/mol	-6.87 kcal/mol	606.919

Compounds	Interaction	Amino Acid Residues							
		59	61	119	151				
Vasicine	3	TYR	GLN	TYR	TYR				
		57	59	61	119	120	151		
Vasicinone	4	LEU	TYR	GLN	TYR	LEU	TYR		
		57	59	119	151	155			
Vasicoline	4	LEU	TYR	TYR	TYR	ILE			
		57	59	61	119	151			
Anisotine	4	LEU	TYR	GLN	TYR	TYR			

Table 10. Amino Acid Residue Interaction of Lead Against TNF-alpha (2AZ5)

Discussion

With regard to computational analysis related to the use of AV in orthodontics, five targets Primarily, were chosen. the maior complication is the dental caries as sequelae of orthodontic treatment. Caries are caused by multiple groups of microbes, of which Streptococcus mutans is the predominant pathogen. Glycosyltransferase (Gtf) is a critical virulence factor of Streptococcus mutans. Extracellular polysaccharides, especially glucans produced by S. mutans Gtfs, appear to contribute to the cariogenicity of dental biofilms, according to all available evidence. As a result, inhibiting Gtf activity and the resulting polysaccharide synthesis may reduce the virulence of cariogenic biofilms, which could be an alternative strategy for disease prevention caused by biofilms [17]. In this study binding of the four phytochemicals/leads with the said molecule was analysed.

It was observed that all 4 leads such as Vasicine, Vasicinone, Vasicoline and Anisotine reveal maximum of 3 interactions with the core active amino acid residues present on the target Glucosyltransferase (GFT) of *Streptococcus mutans*. Based on the results of the computational analysis it was concluded that the bio-active compound reveals significant binding against the target Glucosyltransferase protein (GFT) of mutans, it Streptococcus thereby was concluded that these compounds may exert promising to inhibit against GFT enzyme and hereby halt the catalytic transfer reactions which are essential for the survival of the organism Streptococcus mutans.

Periodontitis is caused by an inflammatory response to normal microbiota that is exacerbated by the presence of dysbiotic species. *P. gingivalis* is a "keystone pathogen" among these species, converting other benign biofilm members into pathobionts and causing aggressive damage to periodontal tissues.

Virulence factors of P. gingivalis include peptidases, which degrade proteins in infected tissues, nourishing bacteria and facilitating their spread and host colonisation. Peptidases also compromise host defences and outcompete bacterial competitors in periodontal pockets. The cysteine peptidases gingipain K are the most important (Kgp). Kgp is required for bacterial survival and the progression of periodontal disease, making it an ideal target for the development of new drugs [18].

	Binding Free Energy	Inhibition Constant Ki µM (*mM)	Electrostatic Energy	Intermolecular Energy	Total Interaction		
Compounds	Kcal/mol	(**nM)	Kcal/mol	Kcal/mol	Surface		
	-5.34	121 37 uM	-0.50	-5 64 kcal/mol	532 527		
Vasicine	kcal/mol	121.57 um	kcal/mol	5.04 Keal/1101	552.527		
	-5.66	70.64 uM	-0.10	5.06 kcal/mol	531 166		
Vasicinone	kcal/mol	70.04 ulvi	kcal/mol	-3.90 KCal/1101	554.400		
	-5.75	60.71 nM	-0.03	5 27 kool/mol	602.972		
Vasicoline	kcal/mol	00.71 uM	kcal/mol	-5.57 Kcal/III01			
	-6.51	16 90 mM	-0.00	7.09 tract/mol	620 429		
Anisotine	kcal/mol	10.89 UNI	kcal/mol	-7.08 Kcal/mol	030.438		

 Table 11. Summary of the Molecular Docking Studies of Compounds Against Prostaglandin H Synthases –PDB

 1IGX

Vasicoline and Anisotine revealed 100% binding efficacy by occupying the core amino acid residues (444 HIS, 477 CYS and 388 ASP) over the Gingipain K. Followed by compounds such as Vasicine and Vasicinone ranked second with the maximum of 2 interactions with the active site of the target enzyme Gingipain K. Vasicoline and Anisotine revealed significant binding affinity with all three active residual amino acids present on the active site of the target protein Gingipain K. Therefore, it was concluded that these compounds may exert promising inhibiting against Gingipain K.

The fimbriae are the main structures responsible for P. gingivalis's virulent behaviour. They adhere to epithelial cells, fibroblasts, salivary components, and collagen, and thus play an important role in periodontal tissue colonisation and invasion. The fim A gene encodes the main fimbria. Six genotypes of the FIM A gene have been identified based on the nucleotide sequence. Several studies have discovered links between periodontitis and a higher prevalence of fim A [19].

Nearly 24 amino acids are present in the sequence 339- 363 present in the active site of FIM A of Porphyromonas gingivalis. In our present investigation, it was observed that out of 4 compounds' the lead Anisotine reveals 3 potential interactions by occupying some of the active amino acid residues with the sequence (339- 363) present on the FIM A. Followed by this the compound Vasicine, Vasicinone and Vasicoline ranked second with the maximum of 1 interaction with the active site of the target protein FIM-A.

Anisotine revealed convincing binding affinity with the amino acids present on the active site of the target protein FIM-A and thereby it was concluded that the compound Anisotine may

TNF- has been linked to the immunology of periodontal disease. TNF- concentrations may be elevated in periodontal inflammation as a side effect of monocyte stimulation. This cytokine's elevation affects insulin sensitivity through both direct and indirect mechanisms, worsening diabetic status. A worsening of the diabetic condition may result in further periodontal breakdown. Thus, TNF- appears to play a key role in the vicious cycle that connects periodontal disease and diabetes [20]. exert some productive efficacy in hindering the bio-film formation by the organism *Porphyromonas gingivalis*.

Vasicinone, Vasicoline Anisotine and possessed a maximum of four interactions followed by Vasicine which had three viable interactions with the core active amino acid residues present on the target TNF-alpha. Therefore, all the bio-active compounds revealed significant binding affinity against the target enzyme TNF-alpha by interacting with active amino acid present on the active site thereby it was concluded that these compounds may exert promising antiinflammatory activity.

Table 12. Amino Acid Residue Interaction of Lead Against Prostaglandin H Synthases -PDB 1IGX

	Inte															
	ract															
Compounds	ion	Amino acid Residues														
Vasicine	4	205 PHE	209 PHE	344 VAL	348 TYR	349 VAL	352 LEU	381 PHE	384 LEU	385 TYR	387 TRP	530 SER	534 LEU			
Vasicinone	4	205 PHE	344 VAL	348 TYR	349 VAL	352 LEU	381 PHE	385 TYR	530 SER	534 LEU						
Vasicoline	3	344 VAL	348 TYR	349 VAL	352 LEU	381 PHE	385 TYR	518 PHE	523 ILE	527 ALA	530 SER					
Anisotine	3	116 VAL	120 ARG	348 TYR	349 VAL	352 LEU	353 SER	355 TYR	381 PHE	384 LEU	385 TYR	387 TRP	523 ILE	527 ALA	530 SER	531 LEU
Salicylic acid	3	348 TYR	349 VAL	352 LEU	381 PHE	384 LEU	385 TYR	387 TRP	518 PHE	522 MET	530 SER					

PGE2 (prostaglandin E2) is a key inflammatory mediator in the pathophysiology of periodontitis. Three groups of enzymes act sequentially to catalyse PGE2 biosynthesis: phospholipase A2 (PLA2), cyclooxygenases (COX-1 and COX-2) and prostaglandin E (PGE) synthases, which act as catalysts in the final step of PGE2 synthesis. Therefore, inhibition of prostaglandin synthase H affects reducing periodontal inflammation [21].

Anisotine, Vasicine Vasicoline, and Vasicinone revealed a maximum of three to four interactions with the core active amino acid residues present on the target enzyme Prostaglandin H synthases. All the bio-active revealed significant compounds binding affinity against the target enzyme Prostaglandin H synthases by interacting with active amino acid present on the active site thereby it was concluded that these compounds may exert promising analgesic activity by inhibiting the activity of the enzyme Prostaglandin H synthases. It was concluded that the phytocomponents may act as potential therapeutic agents for the management of pain and inflammation.

From the above results it has been seen that Vasicine, Vasicinone, Vasicoline and Anisotine had a sufficient amount of Anti-

References

[1] Strauss, F. J., Espinoza, I., Stähli, A., Baeza, M., Cortés, R., Morales, A., & Gamonal, J., 2019, Dental caries is associated with severe periodontitis in Chilean adults: A cross-sectional study, *BMC Oral Health*, 19(1), 278. https://doi.org/10.1186/s12903-019-0975-2.

[2] Manji, F., Dahlen, G., & Fejerskov, O., 2018, Caries and periodontitis: Contesting the conventional wisdom on their aetiology, *Caries Research*, 52(6), 548–564. https://doi.org/10.1159/000488948.

[3] Worthington, H. V., MacDonald, L., PoklepovicPericic, T., Sambunjak, D., Johnson, T. M., Imai,P., & Clarkson, J. E., 2019, Home use ofinterdental cleaning devices, in addition to

Microbial activity towards cariogenic bacteria and periodontopathic bacteria. They also have analgesic and anti-inflammatory Activity. Therefore, they may find great use in the field of orthodontics.

Conclusion

The main point of the current research is that compounds Vasicine, the Vasicinone, Vasicoline, and Anisotine have significant binding affinity against various target enzymes bacteria related to cariogenic and periodontopathic bacteria, also and they possess analgesic and anti-inflammatory activity, making them potentially useful in the field of orthodontics. The said phytochemicals can further be explored for proper delivery to saliva, periodontal region and bone for effective use during and after orthodontic treatment.

Conflict of Interest

There is no conflict of interest.

Acknowledgement

The authors thank Dr. S. Rangachari, retired professor of Orthodontics, Madras Dental College for his kind encouragement and guidance.

toothbrushing, for preventing and controlling periodontal diseases and dental caries, *Cochrane Database of Systematic Reviews*, 4(4), CD012018. https://doi.org/10.1002/14651858.CD012018.pub2. [4] Tartaglia, G. M., Tadakamadla, S. K., Connelly, S. T., Sforza, C., & Martín, C., 2019, Adverse events associated with home use of mouthrinses: A systematic review, *Therapeutic Advances in Drug Safety*, 10, 2042098619854881. https://doi.org/10.1177/2042098619854881. [5] Kazancı, F., Aydoğan, C., & Alkan, Ö., 2016,

Patients' and parents' concerns and decisions about orthodontic treatment, *Korean Journal of Orthodontics*, 46(1), 20–26. https://doi.org/10.4041/kjod.2016.46.1.20. [6] Monk, A. B., Harrison, J. E., Worthington, H. V., & Teague, A., 2017, Pharmacological interventions for pain relief during orthodontic treatment, Cochrane Database of Systematic Reviews. 11(11), CD003976. https://doi.org/10.1002/14651858.CD003976.pub2. [7] Trott, O., & Olson, A. J., 2010, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, Journal of *Computational* Chemistry, 31(2), 455-461. https://doi.org/10.1002/jcc.21334.

[8] Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J., 2016, Computational protein-ligand docking and virtual drug screening with the AutoDock suite. *Nature Protocols*, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051.

[9] Osterberg, F., Morris, G. M., Sanner, M. F., Olson, A. J., & Goodsell, D. S., 2002, Automated docking to multiple target structures: Incorporation of protein mobility and structural water heterogeneity in AutoDock. *Proteins*, 46(1), 34–40. https://doi.org/10.1002/prot.10028.

[10] Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A.
J., 1998, Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, *Journal of Computational Chemistry*, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096
987X(19981115)19:14<1639::AID

JCC10>3.0.CO;2-B.

[11] Zhang, Q., Nijampatnam, B., Hua, Z., Nguyen,
T., Zou, J., Cai, X., Michalek, S. M., Velu, S. E., &
Wu, H., 2017, Structure-based discovery of small molecule inhibitors of cariogenic virulence. *Scientific Reports*, 7(1), 5974.
https://doi.org/10.1038/s41598-017-06168-1.

[12] Solis, F. J., & Wets, R. J.-B., 1981, Minimization by random search techniques. *Mathematics of Operations Research*, 6(1), 19–30. https://doi.org/10.1287/moor.6.1.19.

[13]Bikadi, Z., & Hazai, E., 2009, Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. *Journal of Cheminformatics*, 1, 15. https://doi.org/10.1186/1758-2946-1-15.

[14] Halgren, T. A., 1998, Merck molecular force field. I. Basis, form, scope, parametrization, and performance of MMFF94, *Journal of Computational Chemistry*, 17(5–6), 490–519.

[15] Sivaraman, D., Pradeep, P. S., Manoharan, S. S., Ramachandra Bhat, C., Leela, K. V., & Venugopal, V., 2020, Revealing potential binding affinity of FDA approved therapeutics targeting Main protease (3CLpro) in impairing novel coronavirus (SARS-CoV-2) replication that causes COVID-19. *Coronaviruses*, 1, 1–9.

[16] Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J., 2009, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal ofComputational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256.

[17] Ren, Z., Chen, L., Li, J., & Li, Y., 2016, Inhibition of *Streptococcus mutans* polysaccharide synthesis by molecules targeting glycosyltransferase activity, *Journal of Oral Microbiology*, 8, 31095. https://doi.org/10.3402/jom.v8.31095.

[18] Guevara, T., Rodríguez-Banqueri, A., Lasica, A. M., Ksiazek, M., Potempa, B. A., Potempa, J., & Gomis-Rüth, F. X., 2019, Structural determinants of inhibition of *Porphyromonas gingivalis* gingipain K by KYT-36, a potent, selective, and bioavailable peptidase inhibitor, *Scientific Reports*, 9(1), 4935. https://doi.org/10.1038/s41598-019-41354-3.

[19] Rodrigues, R. S., Silveira, V. R., & Rego, R.
O., 2020, Analysis of *Porphyromonas gingivalis*fimA genotypes in severe periodontitis patients, *Brazilian Oral Research*, 34, e090.
https://doi.org/10.1590/1807-3107bor-

2020.vol34.0090.

[20] K versus S., 2014, The effect of scaling and root planing on glycaemic control, periodontal status and gingival crevicular fluid TNF- α levels in an Indian population- to reveal the ambivalent link, *Journal of Clinical and Diagnostic Research*, 8(11), ZC22–ZC26. https://doi.org/10.7860/JCDR/2014/9490.5115. [21]Båge, T., 2011, Prostaglandin E synthases in periodontitis-affected gingival tissue and in gingival fibroblasts, *Karolinska Institutet*.