An Epidemiological Study to Assess Water, Sanitation and Hygiene Practices among Rural Communities of Gulu, Kano, Nigeria

Article by Ahmad Salisu Aliyu¹, Bello Aminu Bello², Nuru Yakubu Umar,³ Maimuna Yahaya Yakasai⁴

¹Medical Laboratory Department Infectious Diseases Hospital (IDH), Kano, Nigeria
²Department of Biochemistry Federal University Dutse, Jigawa State
³College of Nursing and Midwifery, Bauchi State
⁴Department of Chemistry Sa’adatu Rimi College of Education, Kano State
E-mail: salisuhmadaliyu@yahoo.com

Abstract

Background: Worldwide, 663 million people do not have access to improved drinking water supplies and 2.5 billion lack access to improved sanitation including one billion who practice open defecation. Eighty-eight percent (88%) of deaths from diarrheal diseases are attributable to unsafe water, inadequate sanitation, and insufficient hygiene practices. So this study is aimed at assessing water, sanitation and hygiene practice among rural communities of Gulu, Kano, Nigeria.

Methods: A community based cross-sectional study was conducted in Gulu from January, 2019 to February, 2019. Data was collected using a pretested structured questionnaire. Descriptive analysis was performed to obtain the frequency distribution of the variables. Results: The result shows that 300 participants responded to the questionnaire. The majority of respondents used unprotected spring 70 (23.3%) followed by protected hand dug well 65 (21.7%) for all domestic use. Most of the respondents 205 (68.3%) had covered their stored water and practiced pouring method to withdraw water from the stored container. Majority 204 (68%) of households had access to water within a time of 30 minutes or less. House hold water treatment was not common in the study area, only 25 (8.3%) households practiced. About one hundred and ninety-nine (66.3%) households had latrine facility, of which 208 (69.3%) was open Pit latrine without slab. Of those households having latrine only 111 (37%) households had hand washing facility. Conclusion: This study revealed that most of the respondents had poor water, sanitation and hygiene practice. Thus, it underscores that there should be great attention and further research and interventions are required to search for other sources of water and mobilize and educate the community towards protecting the water sources.

Keywords: Water, Sanitation, hygiene, Gulu, Rural Community, Kano, Nigeria.

Background of the study

Safe drinking water and basic sanitation is of crucial importance to the prevention of human health (WWC, 2015). Water can become a vehicle for transmission of feco- oral group of infections, because the fecal contamination of water is common and its avoidance and subsequent purification is vigilant (Gupta, 2007). One of the goal of Millennium Development Goals (MDG) states - Halve, by 2015, the proportion of people without sustainable access to an improved water source and sanitation (Park, 2012).

Access to safe water alone does not reduce diarrheal diseases significantly. Even if the source is safe, water become faecally contaminated during collection, transportation, storage and drawing in the home. Water, sanitation and hygiene are among the most important determinants of public health and an adequate supply of clean water is one of the most basic human needs and one that must be met (Khan, 1997).

Sanitation practices have a major effect on community and household water issues. In most rural communities, the use of on-site sanitation is a common tradition, which is not hygienic for health. As a result of this, there is a growing concern that the wide spread use of on-site sanitation systems will cause sub-surface migration of contaminants, ultimately resulting in disease transmission and environmental degradation. Surface waters such as rivers and ponds undergo such degradation as they
are subject to biological and chemical contamination (Odai and Dugbantey, 2003).

About 2.4 billion people lack access to improved sanitation including one billion who practice open defecation. Moreover, nearly 1 in 4 people in developing countries were practicing open defecation (WHO, 2015). Approximately eighty-eight per cent of cases of diarrhea worldwide are attributable to unsafe water, inadequate sanitation or insufficient hygiene. The proportion of population in rural areas with access to safe drinking water and sanitary latrines has a direct impact on the health of the masses (Prüss-Üstün et al, 2008). Water sources and improper water handling practices constitute the socio risk factors of waterborne infectious diseases. In addition to water sources, water collection, water storage in appropriate vessel and point-of-use treatment have been shown to greatly reduce diarrhoea generally and cholera specifically (Clasen and Cairncross, 2004, Clasen and Mintz, 2004).

Globally 1.1 billion people lack access to safe drinking water, and 2.6 billion people lack access to adequate sanitation (WHO, 2004). Primarily from unsafe water and sanitation, approximately 5000 people die every day from diarrheal illness. The seventh of the eight United Nations Millennium Development Goals (MDGs) is to “halve by 2015 the proportion of people without sustainable access to safe drinking water” (MGDs, 2011). Despite the national commitment to supply safe drinking water, access to water is difficult especially in the rural areas (Pattanaik, 2005). Factors such as poor availability, affordability and distance between water source and home may lead households to depend on less safe sources and reduce the volume of water used for hygiene purposes, resulting in water-related infections (Howard and Bartram, 2005).

WHO/UNICEF Joint Monitoring Programme for water supply and sanitation released in 2013, estimates that 36% of the world's population – 2.5 billion people lack improved sanitation facilities and 768 million people still use unsafe drinking water sources. Poor farmers and wage earners are less productive due to illness, health systems are overwhelmed and national economies suffer (WASH, 2011). According to data from WHO and UNICEF estimated in 2008 only 38% of total population had access for improved water supply (98% for urban areas and 26% for rural areas), 12% had access for improved sanitation (29% in urban areas, 8% in rural areas) (WHO/UNICEF, 2010).

People living in rural communities are the population sector most affected by hydro-transmissible infectious pathogen agents. Therefore, controlling of water quality is one of the essential issues of drinking water management (Sehar et al, 2011, Udousoro, I. and Umor en, 2014). Therefore, the objective of this study was to assess water, sanitation and hygiene practice among rural community of Gulu, Kano, Nigeria.

Methods and materials

Study area

The study was conducted in Gulu which is one of the Villages found in Rimin Gado local government Kano state. Gulu is bordered on the east by Dawakin Gulu, on the north by Dawakin Gulu, on the west by Kazode, and on the south by Gora. According to national housing and population census the projected estimated population of the Gulu was 40,000. Agriculture is the main livelihood of the population, with potato, maize, bean, are the main crops cultivated in the Gulu. There are only 2 health posts providing health service for the Gulu population. According to report of Gulu health office, the Gulu had 38.4% and 35.2% health service and latrine utilization coverage respectively. The report of Gulu water resource office showed that the Gulu had 105 functional improved drinking water sources which include 25 protected springs, 30 protected hand pumps dug well and 50 hands dug well. All these contribute 45.7% of improved water supply access in the Gulu.

Study design

A community based cross- sectional study was conducted using interviewer-administered questionnaire from January, 2019 to February, 2019.

Inclusion and exclusion criteria

Respondents lived at least for 6 month in the study area were included and respondents who were critically ill and other mental problems that prevents to get the required information were excluded from the study.
Study variables

Household water, Sanitation and hygiene practice, age, education, occupation and marital status of the respondent, ownership and availability of latrine, hand washing facility of latrine, water source, distance from house to water source, daily water consumption, ways of refuse disposal, types of floor and roof construction material and number of rooms, Latrine utilization, hand washing practice were variables included in the study.

Sample size determination

In this study, manual calculation of the sample size using Morgan and Krejcie (1970) formula was used for sample size determination as stated below:

\[S = \frac{X^2NP(1-P)}{d^2(N-1)+X^2P(1-P)} \]

Where:
- \(S \) = Required sample size
- \(X^2 \) = The table value of the chi-square at desired confidence (3.841)
- \(N \) = Study Population size (1367)
- \(P \) = Population proportion assumed to be 0.50 since this would provide maximum sample size
- \(d^2 \) = Degree of accuracy of the result expressed as proportion 0.050

\[\begin{align*}
3.841\times1367\times0.5\times0.5 \\
0.0025\times1366+3.841\times0.5\times0.5 \\
1312.66175 = 300 \\
4.37525
\end{align*} \]

Hence 300 respondents

Data collection tools and procedures

Data was collected using pretested structured questionnaire and observational check list. The questionnaire had three parts that was designed to cover socio-economic and demographic status, home and environmental health conditions and behavioral aspects of respondents. The questions were developed after reviewing of relevant literature and in addition to literature questions regarding to environmental factors were adapted from WHO core questions for drinking water and sanitation facilities. Respondents for the administered questionnaire were females that had lived in the household for the preceding six months. The interviewers physically observed the condition of house hold water, Sanitation and hygiene practices and utilization of sanitation facilities. The supervisors were fully responsible to lead and handle the whole session of data collection process along with the principal investigator.

Data analysis

Data were analyzed using SPSS software version 16.0 at that time with the help of the Statistician. The descriptive statistical method was used to analyze frequencies and percentages.

Ethical considerations

This study was conducted only after obtaining approval from Gulu District Head.

Results and discussion

A total of 300 respondents were interviewed, giving 100% response rate. The majority, 165 (55%) of the respondents were females. Among all, 75(25%) of respondents were 31-35 years of age. Of the study subjects, 195 (65%), were married. The socio-economic characteristics of the study showed that, among all respondents, 180(60%) of respondents attended formal education, among this 145(48.3%) of respondents were primary school completed, 35(11.7%) of respondents were secondary school completed, while 120(40%) of respondents reported that they were took informal education (were illiterate and only read and write). Similarly, results of occupational status of respondents indicated, 200(66.7%) of respondents were farmers, 5 (1.7%) were Government employee, 70(23.3%) were Merchants and 25(8.3%) were House wives (Table 1).
Table 1. Socio demographic characteristics of the respondents (n=300)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Frequencies</th>
<th>Percentages %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender N=3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>135</td>
<td>45</td>
</tr>
<tr>
<td>Females</td>
<td>165</td>
<td>55</td>
</tr>
<tr>
<td>Ages N= 300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-25</td>
<td>40</td>
<td>13.3</td>
</tr>
<tr>
<td>26-30</td>
<td>65</td>
<td>21.7</td>
</tr>
<tr>
<td>31-35</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>36-40</td>
<td>72</td>
<td>24</td>
</tr>
<tr>
<td>41+</td>
<td>48</td>
<td>16</td>
</tr>
<tr>
<td>Marital Status N=300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>195</td>
<td>65</td>
</tr>
<tr>
<td>Single</td>
<td>85</td>
<td>28.3</td>
</tr>
<tr>
<td>Divorce</td>
<td>8</td>
<td>2.7</td>
</tr>
<tr>
<td>Widowed</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>Education N=300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illiterate</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>Can read and write</td>
<td>45</td>
<td>15</td>
</tr>
<tr>
<td>Primary</td>
<td>145</td>
<td>48.3</td>
</tr>
<tr>
<td>Secondary and above</td>
<td>35</td>
<td>11.7</td>
</tr>
<tr>
<td>Occupation N=300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>House wife</td>
<td>25</td>
<td>8.3</td>
</tr>
<tr>
<td>Farmers</td>
<td>200</td>
<td>66.7</td>
</tr>
<tr>
<td>Government employee</td>
<td>5</td>
<td>1.7</td>
</tr>
<tr>
<td>Merchants</td>
<td>70</td>
<td>23.3</td>
</tr>
</tbody>
</table>

The major source of water supply for the study household were Unprotected spring 70 (23.3%) followed by Protected hand dug well 65 (21.7%) and contributes 135 (45%) improved water supply access of study households. This is consistent with a study conducted in rural Dire Dawa communities, Ethiopia (Amenu et al, 2013).

Adult women 160 (53.3%) followed by 60 (20%) female child (under 15 years) were responsible for the collection of water for domestic use. The study revealed that the most 189 (63%) commonly preferred type of water collection container was Jerri can. This finding is in agreement with similar study done in Dire Dawa rural communities and Kolladiba Town (Amenu et al, 2013, Sharma et al, 2013). From the total respondents, the majority 178 (59.3%) and 185 (61.7%) were clean their container and wash their hands before collection of water respectively. In addition, majority 195 (65%) of the respondents were cover the collection container during transportation (Table 2).

Table 2. Water source and water collection practice among households (n=300)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Frequencies (n=300)</th>
<th>Percentages (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sources of Drinking Water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public tap/standpipe</td>
<td>35</td>
<td>11.7</td>
</tr>
<tr>
<td>Protected hand dug well</td>
<td>65</td>
<td>21.7</td>
</tr>
<tr>
<td>Protected Spring</td>
<td>40</td>
<td>13.3</td>
</tr>
<tr>
<td>Unprotected dug well</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Unprotected Spring</td>
<td>70</td>
<td>23.3</td>
</tr>
<tr>
<td>Surface Water (River, Lake, Dam)</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>Time taken to obtain drinking water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(round trip)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><30min</td>
<td>204</td>
<td>68</td>
</tr>
<tr>
<td>>=30min</td>
<td>96</td>
<td>32</td>
</tr>
</tbody>
</table>
One hundred and eighty-four (61.3%) of the households used Jerri can have followed by clay pot 98 (32.7%) to store water at household and About 112 (37.3%) of the respondents used separate containers to store water for drinking purposes. This is used in many African countries storing water using Jerri can (CDC, 2010). Similarly, majority 205 (68.3%) of the households covered the storage containers during data collection time but the sanitation near to the storage containers was poor and only 68 (22.7%) drinking water storage containers kept as WHO recommendation (40 cm above the floor) (Howard, 2002). Pouring method for drawing water from storage containers was used commonly by 189 (63%) of the respondents and separate cane for taking drinking water from the storage container used by 122 (40.7%) respondents. After use, drinking utensils were mostly kept on table by 169 (56.3%) followed by floor 105 (35%) respondents. This finding is in line with a study done in Bahirdar city and Adama town (Milkiyas et al, 2011, Temsgen and Hameed, 2015).

Two hundred and eighty-seven (95.7%) respondents wash water storage container before storing water, of which 148 (49.3%) washed every day followed by 96 (32%) every other day and the majority 180 (60%) of households stored water for one day. Treating water was not common in the study area; only 25 (8.3%) households practiced water treatment method of which around 7 households used chlorine to treat drinking water (Table 3). This is finding is similar with a study done in Sidama zone, southern Ethiopia (Abebe and Dejene, 2015).

Table 3. Household water storage practice among households in rural Communities of Gulu, Kano, Nigeria (n=300)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Frequencies (n=300)</th>
<th>Percentages (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water storage container</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay pot</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>Plastic bucket</td>
<td>21</td>
<td>7</td>
</tr>
<tr>
<td>Iron bucket</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Jerry can</td>
<td>189</td>
<td>63</td>
</tr>
<tr>
<td>Separated drinking water container</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>112</td>
<td>37.3</td>
</tr>
<tr>
<td>No</td>
<td>188</td>
<td>62.7</td>
</tr>
<tr>
<td>Drinking water kept above floor level (40cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Yes</td>
<td>68</td>
<td>22.7</td>
</tr>
<tr>
<td>No</td>
<td>232</td>
<td>77.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drinking water storage container have a narrow mouth</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>194</td>
<td>64.7</td>
</tr>
<tr>
<td>No</td>
<td>106</td>
<td>35.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drinking water storage container have a cover</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>205</td>
<td>68.3</td>
</tr>
<tr>
<td>No</td>
<td>95</td>
<td>31.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water drawing technique from storage container</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pouring</td>
<td>189</td>
<td>63</td>
</tr>
<tr>
<td>Dipping</td>
<td>111</td>
<td>37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Separate cane for taking drinking water from storage container</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>122</td>
<td>40.7</td>
</tr>
<tr>
<td>No</td>
<td>178</td>
<td>59.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Placement of drinking utensils</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table or shelves</td>
<td>169</td>
<td>56.3</td>
</tr>
<tr>
<td>Inside the container</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Storage covers</td>
<td>20</td>
<td>6.7</td>
</tr>
<tr>
<td>Floors</td>
<td>105</td>
<td>35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wash water storage container before storing water</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>287</td>
<td>95.7</td>
</tr>
<tr>
<td>No</td>
<td>13</td>
<td>4.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency of washing</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Every day</td>
<td>148</td>
<td>49.3</td>
</tr>
<tr>
<td>Every other day</td>
<td>96</td>
<td>32</td>
</tr>
<tr>
<td>Every week</td>
<td>51</td>
<td>17</td>
</tr>
<tr>
<td>Every month</td>
<td>5</td>
<td>1.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration of water stored in the container</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than one day</td>
<td>23</td>
<td>7.7</td>
</tr>
<tr>
<td>One day</td>
<td>180</td>
<td>60</td>
</tr>
<tr>
<td>Greater than day</td>
<td>97</td>
<td>32.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treat water to make it safer to drink</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>25</td>
<td>8.3</td>
</tr>
<tr>
<td>No</td>
<td>275</td>
<td>91.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment methods</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiling</td>
<td>95</td>
<td>31.7</td>
</tr>
<tr>
<td>Chlorination</td>
<td>7</td>
<td>2.3</td>
</tr>
<tr>
<td>Let it stand and settle</td>
<td>198</td>
<td>66</td>
</tr>
</tbody>
</table>

From the total households, 285 (95%), 225 (75%) and 279 (93%) had dwelling with mud floor,
corrugated roof, Timber and mud wall respectively. Two hundred and thirty (76.7%) dwelling houses had three and more living rooms and 136 (45.3%) households shared their living rooms with animals.

About one hundred and ninety-nine (66.3%) households had latrine facility, of which 208 (69.3%) pit latrine without slab followed by 81 (27%) open pit latrine and 231 (77%) had privately owned. The extent of the latrine utilization habit of households in the study area was improper, only 135 (45%) of the households used latrine properly. Of the households having latrine 259 (86.3%) used latrine for disposal of child feces.

In addition of those households having latrine, only 111 (37%) of households had hand washing facility, of which water and soap were available only in 145 and 140 households respectively. Regarding to hand washing practice habit at five critical times, 210 (70%) were claimed to poor hand washing practice. From those practicing hand washing, above half of 138 (46%) the respondent used only water to wash their hands. Open field 105 (35%) followed by private pit 85 (28.3) were the common methods for the disposal of solid waste in the study area (Table 4).

Table 4. Housing condition and sanitation practice among household in rural communities of Gulu, Kano, Nigeria (n=300)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Frequencies (n=300)</th>
<th>Percentages (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Types of floor material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mud</td>
<td>285</td>
<td>95</td>
</tr>
<tr>
<td>Others</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Types of roof material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrugated iron sheet</td>
<td>225</td>
<td>75</td>
</tr>
<tr>
<td>Thatched</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>Types of wall material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timber and mood</td>
<td>279</td>
<td>93</td>
</tr>
<tr>
<td>Others</td>
<td>21</td>
<td>7</td>
</tr>
<tr>
<td>Number of living room for humans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>8.3</td>
</tr>
<tr>
<td>2</td>
<td>45</td>
<td>15</td>
</tr>
<tr>
<td>≥3</td>
<td>230</td>
<td>76.7</td>
</tr>
<tr>
<td>Separate kitchen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>250</td>
<td>83.3</td>
</tr>
<tr>
<td>No</td>
<td>50</td>
<td>16.7</td>
</tr>
<tr>
<td>Animal live with human</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>136</td>
<td>45.3</td>
</tr>
<tr>
<td>No</td>
<td>164</td>
<td>54.7</td>
</tr>
<tr>
<td>Latrine facility available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>199</td>
<td>66.3</td>
</tr>
<tr>
<td>No</td>
<td>101</td>
<td>33.7</td>
</tr>
<tr>
<td>Type of latrine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pit latrine with slab</td>
<td>11</td>
<td>3.7</td>
</tr>
<tr>
<td>Pit latrine without slab</td>
<td>208</td>
<td>69.3</td>
</tr>
<tr>
<td>Open latrine</td>
<td>81</td>
<td>27</td>
</tr>
<tr>
<td>Ownership of latrine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>231</td>
<td>77</td>
</tr>
<tr>
<td>Shared</td>
<td>69</td>
<td>23</td>
</tr>
<tr>
<td>Latrine utilization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proper</td>
<td>135</td>
<td>45</td>
</tr>
<tr>
<td>Improper</td>
<td>165</td>
<td>55</td>
</tr>
<tr>
<td>Disposal system of feces of</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

The present study revealed that the water, Sanitation and hygiene practice of the community was very poor, which showed that supply of safe water alone cannot guarantee that the water in the household for drinking purpose is safe as well. Sanitation practice in rural household is still very far from the recommended level. So efforts will be required to increase awareness regarding the components of household water, Sanitation and hygiene (WASH) practice.

Acknowledgments

I am grateful to thank the study participants and acknowledge the team of research assistants.

References

[7]. Howard, G. Water quality surveillance a practical guide (2002).

<table>
<thead>
<tr>
<th>Children</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Proper</td>
<td>259</td>
<td>86.3</td>
</tr>
<tr>
<td>Improper</td>
<td>41</td>
<td>13.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hand washing facility</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>111</td>
<td>37</td>
</tr>
<tr>
<td>No</td>
<td>189</td>
<td>63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soap near to hand washing facility</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>145</td>
<td>48.3</td>
</tr>
<tr>
<td>No</td>
<td>155</td>
<td>51.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water inside the hand washing facility</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>140</td>
<td>46.7</td>
</tr>
<tr>
<td>No</td>
<td>160</td>
<td>53.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hand washing practice</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>Poor</td>
<td>210</td>
<td>70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hand washing material</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Only water</td>
<td>138</td>
<td>46</td>
</tr>
<tr>
<td>Soap & water</td>
<td>125</td>
<td>41.7</td>
</tr>
<tr>
<td>Ash & water</td>
<td>37</td>
<td>12.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method of refuse disposal</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Pit</td>
<td>85</td>
<td>28.3</td>
</tr>
<tr>
<td>Communal Pit</td>
<td>40</td>
<td>13.3</td>
</tr>
<tr>
<td>Composting</td>
<td>50</td>
<td>16.7</td>
</tr>
<tr>
<td>Burning</td>
<td>20</td>
<td>6.7</td>
</tr>
<tr>
<td>Open Field</td>
<td>105</td>
<td>35</td>
</tr>
</tbody>
</table>