Bionic Eye – A Review

Download Article

DOI: 10.21522/TIJMD.2013.04.01.Art016

Authors : Usha Nandini M


The darkness of the night is broken by the brightness of the sun and people worship sun for this. Similarly, providing even a flicker of light to a person who has lost his/her sight is one of the greatest miracles a doctor can perform. Bionic Eye- visual prosthetic devices serve this purpose and helps to restore some kind of visual perception in patients with retinal pathologies like retinitis pigmentosa and age related macular degeneration. The inception of this idea dates back to the 18th century but the recent advances in electronics, robotics and other technologies has helped in materializing the idea. The basic function of the device is to receive the images using a camera, convert it to electric signals and eventually stimulate the left-over healthier parts of the visual pathway. There are various kinds of devices based on the position of implants. Each of them have varied advantages. Understanding the existing systems would help in improvising them or in finding better systems to serve the same purpose.


[1]. BBC (2015). Bionic Eye improves macular degeneration patient’s sight [News Article]. Retrieved from

[2]. Visual Prosthesis. (n.d.). In Wikipedia. Retrieved from Visual Prosthesis.

[3]. Galvani, L. (1762) De ossibus. Theses physic-medical chirurgicae. Bononiae, St. Thomas Aquinatis. Repr. :(1996) Pantaleoni M. (Ed.) De ossibus. Lectiones quattuor. Bologna, Composers. Repr .:(1998) Bologna, Arnaldo Forni publisher.

[4]. Dobelle, W.H. (2000). Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO journal, 46(1), 3-9.

[5]. LeRoy C. (1755). Ou L’on rend compte de quelques tentative sue l’on a faites pour guerir plusieurs malaides par l’electricite. Hist Acad Roy Sciences (Paris). Memoire MathPhys 60:87-95

[6]. Cavallo, T. (1781). An essay on the theory and practice of medical electricity. The author.

[7]. Foerster O.(1929). Beitriige zur Pathophysiologie der Sehbahn und der Sehsphare. J Psychol Neuro, Lpz. 39: 463–85

[8]. Krause F, Schum H. (1931). Die epileptischen Erkrankungen. In: Kuttner H, ed. Neue Deutsche Chirurgie. Vol. 49a. Stuttgart: Enke. 482–6.

[9]. Tassicker GE. (1956). Preliminary report on a retinal stimulator. Br J Physiol Opt. 13: 102–5.

[10]. Joao Lobo Antunes.(n.d). Retreived from

[11]. Wyatt, Jr., J.L. (1998). The Retinal Implant Project. [PDF]. Research Laboratory of Electronics at MIT.

[12]. Zrenner E, Stett A, Weiss S et al. (1999) Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vision Res. 39: 2555–67.

[13]. Rizzo JF, Miller S, Denison T, Herndon T, Wyatt JL. (1996). Electrically evoked cortical potentials from stimulation of rabbit retina with a microfabricated electrode array. Invest Ophthalmol Vis Sci [ARVO Abstr] 37:5707

[14]. Grumet AE, Wyall JL Jr., Rizzo JF. (2000). Multi electrode stimulation and recording in the isolated retina. J neuroscimethods 101:31-42

[15]. Stett A, Barth W, Weiss S, Haemmerle h, Zrenner E. (2000). Electrical multisite stimulation of the isolated chicken retina. Vision Res 40:1785-1795

[16]. Veraart C, Raftopoulos C, Mortimer JT et al. Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res 1998; 813: 181–6.

[17]. Delbeke J, Oozeer M, Veraart C. Position, size and luminosity of phosphenes generated by direct optic nerve stimulation. Vision Res 2003; 43: 1091–102.

[18]. Duret FC, Delbeke J, Gerard B, Veraart C. (2004). Strategies of object recognition performed using a chronically implanted optic nerve prosthesis (Abstract). Annual Meeting of the Association for Research in Vision and Ophthalmology. Fort Lauderdale FL.

[19]. Duret F, Brelén ME, Lambert V, Gérard B, Delbeke J, Veraart C. (2006). Object localization, discrimination, and grasping with the optic nerve visual prosthesis. Restor Neurol Neurosci. 24: 31–40.

[20]. Veraart C, Wanet-Defalque MC, Gérard B, Vanlierde A, Delbeke J. (2003). Pattern recognition with the optic nerve visual prosthesis. Artif Organs. 27: 996–1004.

[21]. Chow AY, Chow VY, Packo KH, Pollack JS, Peyman GA, Schuchard R. (2004). The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol. 122: 460–9.

[22]. Humayun MS, Weiland JD, Fujii GY et al. (2003). Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res. 43: 2573–81.

[23]. Weiland JD, Yanai D, Mahadevappa M et al. (2004) Visual task performance in blind humans with retinal prosthetic implants. Conf Proc IEEE Eng Med Biol Soc. 6: 4172–3.

[24]. Wilms M, Eger M, Schanze T, Eckhorn R (2003). Visual resolution with epi-retinal electrical stimulation estimated from activation profiles in cat visual cortex. Vis neurosci 20:543-555

[25]. Humayun MS, Dorn JD, Ahuja AK et al. (2009). Preliminary 6 month results from the Argus II epiretinal prosthesis feasibility study. Conf Proc IEEE Eng Med Biol Soc. 4566–8.

[26]. Sifferlin, A (2013). FDA approves first bionic eye (News Article). CNN-TIME

[27]. Javaheri M, Hahn DS, Lakhanpal RR, Weiland JD, Humayun MS. (2006). Retinal prostheses for the blind. Ann Acad Med Singapore. 35: 137–44.

[28]. Eckmiller R. (1997) Learning retina implants with epiretinal contacts [Review]. Ophthalmic Res. 29: 281–9.

[29]. Hornig R, Zehnder T, Velikay-Parel M, Laube T, Feucht M, Richard G. (2007). The IMI retinal implant system. In: Humayun MS, Chader G, Weiland JD, eds. Artificial Sight: Basic Reaserch, Biomedical Engineering, and Clinical Advances. New York: Springer-Verlag. 111–28.

[30]. Roessler G, Laube T, Brockmann C et al. (2009). Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 prospective clinical trial. Invest Ophthalmol Vis Sci. 50: 3003–8.

[31]. Rizzo JF 3rd,Wyatt J, Loewenstein J, Kelly S, Shire D. (2003). Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. Invest Ophthalmol Vis Sci. 44: 5355–61.

[32]. Rizzo JF 3rd,Wyatt J, Loewenstein J, Kelly S, Shire D. (2003). Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest Ophthalmol Vis Sci. 44: 5362–9.

[33]. Bionic Vision Australia. Retrieved from:

[34]. Bionic Vision Australia. Our Approach. Retrieved from:

[35]. Lee SW, Seo JM, Ha S, Kim ET, Chung H, Kim SJ. (2009). Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers. Invest Ophthalmol Vis Sci. 50: 5859–66.

[36]. Ong, J. M., Cruz, L., (2012). The bionic eye: a review. Clinical & Experimental Ophthalmology. 40: 6-17.

[37]. Chow AY, Chow VY, Packo KH, Pollack JS, Peyman GA, Schuchard R. (2004). The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol. 122: 460–9.

[38]. Pardue MT, Phillips MJ, Hanzlicek B, Yin H, Chow AY, Ball SL. (2006). Neuroprotection of photoreceptors in the RCS rat after implantation of a subretinal implant in the superior or inferior retina. Adv Exp Med Biol. 572: 321–6.

[39]. Sachs HG, Gabel VP. (2004). Retinal replacement – the development of microelectronic retinal prostheses – experience with subretinal implants and new aspects. Graefes Arch Clin Exp Ophthalmol. 242: 717–23.

[40]. Sachs HG, Schanze T, Wilms M et al. (2005). Subretinal implantation and testing of polyimide film electrodes in cats. Graefes Arch Clin Exp Ophthalmol. 243: 464–8.

[41]. Gekeler F, Szurman P, Grisanti S et al. (2007) Compound subretinal prostheses with extra-ocular parts designed for human trials: successful long-term implantation in pigs. Graefes Arch Clin Exp Ophthalmol. 245: 230–41.

[42]. Sachs HG, Bartz-Schmidt KU, Gekeler F et al. (2010) Subretinal visual prosthetic devices in blind patients. Modifications in transchoroidal surgery and long term follow up in the first 12 patients. Annual Meeting of the Association for Research in Vision and Ophthalmology. Fort Lauderdale FL 2010 (Abstract).

[43]. Wilke R, Greppmaier U, Harscher A, Benav H, Zrenner E. (2010) Factors affecting perceptual thresholds of subretinal electric stimulation in blind volunteers. Annual Meeting of the Association for Research in Vision and Ophthalmology. Fort Lauderdale FL 2010 (Abstract).

[44]. Zrenner E. (2010). Recent developments in subretinal electronic implants: chances and limitations. Annual Meeting of the Association for Research in Vision and Ophthalmology. Fort Lauderdale FL 2010 (Abstract).

[45]. Zrenner E, Bartz-Schmidt KU, Benav H et al. (2011). Subretinal electronic chips allow blind patients to read letters and combine them to words. R.Proc Biol Sci. 278(1711): 1489–97.

[46]. Kelly SK, Shire DB, Chen J et al. (2009). Realization of a 15-channel, hermetically-encased wireless subretinal prosthesis for the blind. Conf Proc IEEE Eng Med Biol Soc 2009. 200–3.

[47]. Shire DB, Kelly SK, Chen J et al. (2009). Development an implantation of a minimally invasive wireless subretinal neurostimulator. IEEE Trans Biomed Eng. 56: 2502–11.

[48]. Mathieson, K., Loudin, J., et al. (2012). Photovoltaic retinal prosthesis with high pixel density. Nature Photonics. 6(6):391-397.

[49]. Loudin, J. D., Simanovskii, D. M., et al. (2007). Optoelectronic retinal prosthesis: system design and performance (PDF). J. Neural Engineering. 4(1):572-584.

[50]. Chowdhury V, Morley JW, Coroneo MT. (2005). Stimulation of the retina with a multielectrode extraocular visual prosthesis. ANZ J Surg. 75: 697–704.

[51]. Normann RA, Greger B, House P, Romero SF, Pelayo F, Fernandez E. (2009). Toward the development of a cortically based visual neuroprosthesis. J Neural Eng. 6: 035001.

[52]. Tehovnik EJ, Slocum WM, Smirnakis SM, Tolias AS. (2009). Microstimulation of visual cortex to restore vision. Prog Brain Res. 175: 347–75.

[53]. Schmidt EM, Bak MJ, Hambrecht FT, Kufta CV, O’Rourke DK, Vallabhanath P. (1996). Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain. 119: 507– 22.

[54]. Deep Brain Stimulation for Parkinson’s Disease Study Group. (2001). Deep-brain stimulation of the subthalamic nucleus or the parts interna of the globus pallidus in Parkinson’s disease. N Engl J Med. 435: 956–63.

[55]. Kumar R, Lozano AM, Kim YJ et al. (1998). Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson’s disease. Neurology. 51: 850–5.

[56]. Limousin P, Pollak P, Benazzouz A et al. (1995). Bilateral subthalamic nucleus stimulation for severe Parkinson’s disease. Mov Disord.10: 672–4.

[57]. Pezaris JS, Reid RC. (2007). Demonstration of artificial visual percepts generated through thalamic microstimulation. Proc Natl Acad Sci U S A.104: 7670–5.

[58]. Pezaris JS, Reid RC. (2009). Simulations of electrode placement for a thalamic visual prosthesis. IEEE Trans Biomed Eng. 56: 172–8.

[59]. Pezaris JS, Eskandar EN. (2009). Getting signals into the brain: visual prosthetics through thalamic microstimulation. Neurosurg Focus. 27: E6.

[60]. Manasa, L., (2015). Obstacle Detection Technologies to Empower Visually Challenged: A Short Notes. International Journal of Science and Research. SUB159017