Corona Virus and Effect on Fertility and Reproductive Outcome: Literature Review

Download Article

DOI: 10.21522/TIJMD.2013.08.02.Art003

Authors : Asmaa Abdulrazaq Al-Sanjary

Abstract:

Human Corona viruses are coronaviridae virus belongs to enveloped single stranded RNA virus. It is a group of viruses that cross species barrier and transmitted from their animal reservoirs to become responsible for human infection with wide genetic diversity. Many of Corona viruses have been responsible for infection in human, which is usually mild in healthy adult, and do not have any concern with treatment or vaccination, like other endemic viruses as infleunza virus, respiratory syncytial virus and rhinoviruses. Until outbreaks of infection with acute respiratory distress syndrome, caused by highly pathogenic strains with severe acute respiratory syndrome coronavirus (SARS CoV). The last outbreaks was at 2019 with the novel SARS-CoV-2 infection, when 91000 people infected and 3120 people dies and by 3rd of march 2020 and it was the start of world pandemic in Wuhan (china), with medical and scientific challenges for china and the world started with many social limitation. The SARS-CoV-2 responsible for the pandemic has 96% similarity to the bat SARS like corona virus and to cause human infection the virus has several adaptation and minor changes in its sequence to improve its fitness to infect the cells of the new host. SARS-Co-2 has high spread rate in human and for each human infected patient there will be 2-3 individuals are infected and the virus remains infectious as aerosols up to three hours and few days on the surrounding surfaces. This review highlighted the impact of coronavirus on fertility.

References:

[1].   Fehr, A. R., Perlman, S., 2015, Coronaviruses: an overview of their replication and pathogenesis. Coronaviruses: methods and protocols, 1-23, doi:10.1007/978-1-4939-2438-7_1.

[2].   Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Wang, X., 2020, Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215-220, doi:10.1038/s41586-020-2180-5.

[3].   Hamming, I., Timens, W., Bulthuis, M. L. C., Lely, A. T., Navis, G. V., van Goor, H., 2004, Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 203(2), 631-637, doi:10.1002/path.1570.

[4].   Yu, X., Sun, S., Shi, Y., Wang, H., Zhao, R., Sheng, J., 2020, SARS-CoV-2 viral load in sputum correlates with risk of COVID-19 progression. Critical care, 24, 1-4, doi:10.1186/s13054-020-02893-8.

[5].   Li, C., He, Q., Qian, H., Liu, J., 2021, Overview of the pathogenesis of COVID-19. Experimental and therapeutic medicine, 22(3), 1011, doi:10.3892/etm.2021.10444.

[6].   Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Cao, B., 2020, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet, 395(10223), 497-506, doi:10.1016/S0140-6736(20)30183-5.

[7].   Essahib, W., Verheyen, G., Tournaye, H., Van de Velde, H., 2020, SARS-CoV-2 host receptors ACE2 and CD147 (BSG) are present on human oocytes and blastocysts. Journal of assisted reproduction and genetics, 37, 2657-2660, doi:10.1007/s10815-020-01952-x.

[8].   Vaz-Silva, J., Carneiro, M. M., Ferreira, M. C., Pinheiro, S. V. B., Silva, D. A., Silva, A. L., Reis, F. M., 2009, The vasoactive peptide angiotensin-(1–7), its receptor Mas and the angiotensin-converting enzyme type 2 are expressed in the human endometrium. Reproductive sciences, 16, 247-256, doi:10.1177/1933719108327593.

[9].   Vilella, F., Wang, W., Moreno, I., Roson, B., Quake, S. R., Simon, C., 2021, Single-cell RNA sequencing of SARS–CoV-2 cell entry factors in the preconceptional human endometrium. Human Reproduction, 36(10), 2709-2719, doi:10.1093/humrep/deab183.

[10].  Cavallo, I. K., Dela Cruz, C., Oliveira, M. L., Del Puerto, H. L., Dias, J. A., Lobach, V. N., Reis, F. M., 2017, Angiotensin-(1–7) in human follicular fluid correlates with oocyte maturation. Human Reproduction, 32(6), 1318-1324, doi:10.1093/humrep/dex072.

[11].  Herr, D., Bekes, I., Wulff, C., 2013, Local renin-angiotensin system in the reproductive system. Frontiers in endocrinology, 4, 150, doi:10.3389/fendo.2013.00150.

[12].  Chadchan, S. B., Popli, P., Maurya, V. K., Kommagani, R., 2021, The SARS-CoV-2 receptor, angiotensin-converting enzyme 2, is required for human endometrial stromal cell decidualization. Biology of reproduction, 104(2), 336-343, doi:10.1093/biolre/ioaa211.

[13].  Rehman, U., Shahnawaz, M. G., Khan, N. H., Kharshiing, K. D., Khursheed, M., Gupta, K., Uniyal, R., 2021, Depression, anxiety and stress among Indians in times of Covid-19 lockdown. Community mental health journal, 57, 42-48, doi:10.1007/s10597-020-00664-x.

[14].  Durcan, E., Hacioglu, A., Karaca, Z., Unluhizarci, K., Gonen, M. S., Kelestimur, F., 2023, Hypothalamic-pituitary axis function and adrenal insufficiency in COVID-19 patients. Neuroimmunomodulation, 30(1), 215-225, doi:10.1159/000534025.

[15].  Mauvais-Jarvis, F., Merz, N. B., Barnes, P. J., Brinton, R. D., Carrero, J. J., DeMeo, D. L., Suzuki, A., 2020, Sex and gender: modifiers of health, disease, and medicine. The Lancet, 396(10250), 565-582, doi: 10.1016/S0140-6736(20)31561-0.

[16].  Orisaka, M., Mizutani, T., Miyazaki, Y., Shirafuji, A., Tamamura, C., Fujita, M., Yoshida, Y., 2023, Chronic low-grade inflammation and ovarian dysfunction in women with polycystic ovarian syndrome, endometriosis, and aging. Frontiers in endocrinology, 14, 1324429, doi:10.3389/fendo.2023.1324429.

[17].  Gullo, G., Lopez, A., Loreto, C., Cucinella, G., La Verde, M., Andrisani, A., Marinelli, S., 2024, COVID-19 and Female Fertility: An Observational Prospective Multicenter Cohort Study: Upholding Reproductive Rights in Emergency Circumstances. Diagnostics, 14(19), 2118, doi:10.3390/diagnostics14192118.

[18].  Dong, S., Liu, X., Wang, Y., 2024, The impact of COVID-19 on women’s reproductive system. Frontiers in Medicine, 11, 1485022, doi:10.3389/fmed.2024.1485022.

[19].  Li, R., Yin, T., Fang, F., Li, Q., Chen, J., Wang, Y., Qiao, J., 2020, Potential risks of SARS-CoV-2 infection on reproductive health. Reproductive biomedicine online, 41(1), 89-95, doi:10.1016/j.rbmo.2020.04.018.

[20].  Khoiwal, K., Kalita, D., Kumari, R., Dhundi, D., Shankar, R., Kumari, R., Chaturvedi, J., 2022, Presence of SARS‐COV‐2 in the lower genital tract of women with active COVID‐19 infection: a prospective study. International Journal of Gynaecology and Obstetrics, 157(3), 744, doi:10.1002/ijgo.14153.

[21].  Barber, E., Kovo, M., Leytes, S., Sagiv, R., Weiner, E., Schwartz, O., Ginath, S., 2021, Evaluation of SARS-CoV-2 in the vaginal secretions of women with COVID-19: a prospective study. Journal of Clinical Medicine, 10(12), 2735, doi:10.3390/jcm10122735.

[22].  Fenizia, C., Saulle, I., Di Giminiani, M., Vanetti, C., Trabattoni, D., Parisi, F., Savasi, V., 2021, Unlikely SARS-CoV-2 transmission during vaginal delivery. Reproductive Sciences, 28, 2939-2941, doi:10.1007/s43032-021-00681-5.

[23].  Bi, J., Li, Y., Sun, F., Saalbach, A., Klein, C., Miller, D. J., Nowak, R. A., 2013, Basigin null mutant male mice are sterile and exhibit impaired interactions between germ cells and Sertoli cells. Developmental biology, 380(2), 145-156, doi:10.1016/j.ydbio.2013.05.023.

[24].  Machado, B., Barcelos Barra, G., Scherzer, N., Massey, J., dos Santos Luz, H., Henrique Jacomo, R., Davis, R., 2021, Presence of SARS-CoV-2 RNA in semen—cohort study in the United States COVID-19 positive patients. Infectious Disease Reports, 13(1), 96-101, doi:10.3390/idr13010012.

[25].  Ma, X., Guan, C., Chen, R., Wang, Y., Feng, S., Wang, R., Yuan, S., 2021, Pathological and molecular examinations of postmortem testis biopsies reveal SARS-CoV-2 infection in the testis and spermatogenesis damage in COVID-19 patients. Cellular & molecular immunology, 18(2), 487-489, doi:10.1038/s41423-020-00604-5.

[26].  Xu, J., Qi, L., Chi, X., Yang, J., Wei, X., Gong, E., Gu, J., 2006, Orchitis: a complication of severe acute respiratory syndrome (SARS). Biology of reproduction, 74(2), 410-416, doi:10.1095/biolreprod.105.044776.

[27].  Li, H., Xiao, X., Zhang, J., Zafar, M. I., Wu, C., Long, Y., Xiong, C., 2020, Impaired spermatogenesis in COVID-19 patients. EClinicalMedicine, 28, doi:10.1016/j.eclinm.2020.100604.

[28].  Zhang, Q. F., Zhang, Y. J., Wang, S., Wei, Y., Zhang, H., Li, F., Deng, Y. Q., 2024, Does COVID-19 affect sperm quality in males? the answer may be yes, but only temporarily. Virology Journal, 21(1), 24. doi:10.1186/s12985-024-02290-5.

[29].  Hu, B., Liu, K., Ruan, Y., Wei, X., Wu, Y., Feng, H., Wang, T., 2022, Evaluation of mid-and long-term impact of COVID-19 on male fertility through evaluating semen parameters. Translational andrology and urology, 11(2), 159, doi:10.21037/tau-21-922.

[30].  Hallak, J., Caldini, E. G., Teixeira, T. A., Correa, M. C. M., Duarte‐Neto, A. N., Zambrano, F., Saldiva, P. H., 2024, Transmission electron microscopy reveals the presence of SARS‐CoV‐2 in human spermatozoa associated with an ETosis‐like response. Andrology, 12(8), 1799-1807, doi:10.1111/andr.13612.

[31].  Kaur, H., Chauhan, A., Mascarenhas, M., 2024, Does SARS Cov-2 infection affect the IVF outcome–A systematic review and meta-analysis. European Journal of Obstetrics & Gynecology and Reproductive Biology, 292, 147-157, doi:10.1016/j.ejogrb.2023.11.027.

[32].  Yang, T., Wu, L., Peng, J., Wang, C., Li, G., Zhang, J., Song, B., 2024, Effects of SARS-CoV-2 infection during ovarian stimulation on ART outcomes. Reproductive BioMedicine Online, 48(2), 103422, doi:10.1016/j.rbmo.2023.103422.

[33].  Tian, L., Sun, Y., Jia, M., 2025, Effect of SARS-CoV-2 infection on human embryonic development and clinical outcomes: a retrospective cohort study. BMC Pregnancy and Childbirth, 25(1), 251, doi:10.1186/s12884-025-07205-y.

[34].  Eckstein, V., Glaß, K., Leßmann, M. E., Schaar, J., Klimova, A., Wimberger, P., Goeckenjan, M., 2024, Assisted reproduction after SARS-CoV-2-infection: results of a single-center cohort-study. Archives of Gynecology and Obstetrics, 309(1), 305-313, doi:10.1007/s00404-023-07228-w.

[35].  Abdoli, A., Falahi, S., Kenarkoohi, A., Shams, M., Mir, H., Jahromi, M. A. M., 2020, The COVID-19 pandemic, psychological stress during pregnancy, and risk of neurodevelopmental disorders in offspring: a neglected consequence. Journal of Psychosomatic Obstetrics & Gynecology, 41(3), 247-248, doi:10.1080/0167482X.2020.1761321.

[36].  Falahi, S., Abdoli, A., Kenarkoohi, A., 2023. Maternal COVID-19 infection and the fetus: Immunological and neurological perspectives. New Microbes and New Infections, 53, 101135. doi:10.1016/j.nmni.2023.101135.

[37].  Abdollahpour, S., Badiee Aval, S., Khadivzadeh, T., 2021, Do not neglect the COVID-19 transmission through sexual intercourse. Journal of Sex & Marital Therapy, 47(7), 731-737, doi:10.1080/0092623X.2021.1938765.

[38].  Cannarella, R., Marino, M., Crafa, A., Bagnara, V., La Vignera, S., Condorelli, R. A., Calogero, A. E., 2024, Impact of COVID-19 on testicular function: a systematic review and meta-analysis. Endocrine, 85(1), 44-66, doi:10.1007/s12020-024-03705-7.

[39].  Rodrigues, C., Baía, I., Domingues, R., Barros, H., 2020, Pregnancy and breastfeeding during COVID-19 pandemic: a systematic review of published pregnancy cases. Frontiers in public health, 8, 558144, doi:10.3389/fpubh.2020.558144.

[40].  Ciapponi, A., Bardach, A., Comandé, D., Berrueta, M., Argento, F. J., Rodriguez Cairoli, F., Buekens, P., 2021, COVID-19 and pregnancy: an umbrella review of clinical presentation, vertical transmission, and maternal and perinatal outcomes. PloS one, 16(6), e0253974, doi:10.1371/journal.pone.0253974.

[41].  Singh, H. O., Jakhar, K., Nema, V., Krishnaraj, A., Choudhari, R., 2021, Effect of miRNAs, proinflammatory cytokines and ACE2 in COVID-19 pathophysiology. Coronaviruses, 2(9), 7-14, doi:10.2174/2666796702666210303114330.

[42].  Zhu, S., Luan, C., Zhang, S., Wang, X., Long, F., Zhang, Q., Yan, J., 2024, Effect of SARS-CoV-2 infection and vaccine on ovarian reserve: a systematic review. European Journal of Obstetrics & Gynecology and Reproductive Biology, 292, 63-70, doi:10.1016/j.ejogrb.2023.10.029.

[43].  Ciapponi, A., Berrueta, M., Parker, E. P., Bardach, A., Mazzoni, A., Anderson, S. A., Buekens, P. M., 2023, Safety of COVID-19 vaccines during pregnancy: a systematic review and meta-analysis. Vaccine, 41(25), 3688-3700, doi:10.1016/j.vaccine.2023.03.038.