Corona Virus and Effect on Fertility and Reproductive Outcome: Literature Review
Abstract:
Human Corona
viruses are coronaviridae virus belongs to enveloped single stranded RNA virus.
It is a group of viruses that cross species barrier and transmitted from their
animal reservoirs to become responsible for human infection with wide genetic
diversity. Many of Corona viruses have been responsible for infection in human,
which is usually mild in healthy adult, and do not have any concern with treatment
or vaccination, like other endemic viruses as infleunza virus, respiratory
syncytial virus and rhinoviruses. Until outbreaks of infection with acute
respiratory distress syndrome, caused by highly pathogenic strains with severe
acute respiratory syndrome coronavirus (SARS CoV). The last outbreaks was at 2019
with the novel SARS-CoV-2 infection, when 91000 people infected and 3120 people
dies and by 3rd of march 2020 and it was the start of world pandemic
in Wuhan (china), with medical and scientific challenges for china and the
world started with many social limitation. The SARS-CoV-2 responsible for the
pandemic has 96% similarity to the bat SARS like corona virus and to cause
human infection the virus has several adaptation and minor changes in its
sequence to improve its fitness to infect the cells of the new host. SARS-Co-2
has high spread rate in human and for each human infected patient there will be
2-3 individuals are infected and the virus remains infectious as aerosols up to
three hours and few days on the surrounding surfaces. This review highlighted
the impact of coronavirus on fertility.
References:
[1].
Fehr,
A. R., Perlman, S., 2015, Coronaviruses: an overview of their replication and
pathogenesis. Coronaviruses: methods and protocols, 1-23, doi:10.1007/978-1-4939-2438-7_1.
[2].
Lan,
J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Wang, X., 2020, Structure of
the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature,
581(7807), 215-220, doi:10.1038/s41586-020-2180-5.
[3].
Hamming,
I., Timens, W., Bulthuis, M. L. C., Lely, A. T., Navis, G. V., van Goor, H.,
2004, Tissue distribution of ACE2 protein, the functional receptor for SARS
coronavirus. A first step in understanding SARS pathogenesis. The Journal of
Pathology: A Journal of the Pathological Society of Great Britain and Ireland,
203(2), 631-637, doi:10.1002/path.1570.
[4].
Yu,
X., Sun, S., Shi, Y., Wang, H., Zhao, R., Sheng, J., 2020, SARS-CoV-2 viral
load in sputum correlates with risk of COVID-19 progression. Critical care,
24, 1-4, doi:10.1186/s13054-020-02893-8.
[5].
Li,
C., He, Q., Qian, H., Liu, J., 2021, Overview of the pathogenesis of COVID-19. Experimental
and therapeutic medicine, 22(3), 1011, doi:10.3892/etm.2021.10444.
[6].
Huang,
C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Cao, B., 2020, Clinical
features of patients infected with 2019 novel coronavirus in Wuhan, China. The
lancet, 395(10223), 497-506, doi:10.1016/S0140-6736(20)30183-5.
[7].
Essahib,
W., Verheyen, G., Tournaye, H., Van de Velde, H., 2020, SARS-CoV-2 host
receptors ACE2 and CD147 (BSG) are present on human oocytes and blastocysts.
Journal of assisted reproduction and genetics, 37, 2657-2660, doi:10.1007/s10815-020-01952-x.
[8].
Vaz-Silva,
J., Carneiro, M. M., Ferreira, M. C., Pinheiro, S. V. B., Silva, D. A., Silva,
A. L., Reis, F. M., 2009, The vasoactive peptide angiotensin-(1–7), its
receptor Mas and the angiotensin-converting enzyme type 2 are expressed in the
human endometrium. Reproductive sciences, 16, 247-256, doi:10.1177/1933719108327593.
[9].
Vilella,
F., Wang, W., Moreno, I., Roson, B., Quake, S. R., Simon, C., 2021, Single-cell
RNA sequencing of SARS–CoV-2 cell entry factors in the preconceptional human
endometrium. Human Reproduction, 36(10), 2709-2719, doi:10.1093/humrep/deab183.
[10].
Cavallo,
I. K., Dela Cruz, C., Oliveira, M. L., Del Puerto, H. L., Dias, J. A., Lobach,
V. N., Reis, F. M., 2017, Angiotensin-(1–7) in human follicular fluid
correlates with oocyte maturation. Human Reproduction, 32(6), 1318-1324,
doi:10.1093/humrep/dex072.
[11].
Herr,
D., Bekes, I., Wulff, C., 2013, Local renin-angiotensin system in the
reproductive system. Frontiers in endocrinology, 4, 150, doi:10.3389/fendo.2013.00150.
[12].
Chadchan,
S. B., Popli, P., Maurya, V. K., Kommagani, R., 2021, The SARS-CoV-2 receptor,
angiotensin-converting enzyme 2, is required for human endometrial stromal cell
decidualization. Biology of reproduction, 104(2), 336-343, doi:10.1093/biolre/ioaa211.
[13].
Rehman,
U., Shahnawaz, M. G., Khan, N. H., Kharshiing, K. D., Khursheed, M., Gupta, K.,
Uniyal, R., 2021, Depression, anxiety and stress among Indians in times of
Covid-19 lockdown. Community mental health journal, 57, 42-48, doi:10.1007/s10597-020-00664-x.
[14].
Durcan,
E., Hacioglu, A., Karaca, Z., Unluhizarci, K., Gonen, M. S., Kelestimur, F.,
2023, Hypothalamic-pituitary axis function and adrenal insufficiency in
COVID-19 patients. Neuroimmunomodulation, 30(1), 215-225, doi:10.1159/000534025.
[15].
Mauvais-Jarvis,
F., Merz, N. B., Barnes, P. J., Brinton, R. D., Carrero, J. J., DeMeo, D. L., Suzuki,
A., 2020, Sex and gender: modifiers of health, disease, and medicine. The
Lancet, 396(10250), 565-582, doi: 10.1016/S0140-6736(20)31561-0.
[16].
Orisaka,
M., Mizutani, T., Miyazaki, Y., Shirafuji, A., Tamamura, C., Fujita, M.,
Yoshida, Y., 2023, Chronic low-grade inflammation and ovarian dysfunction in
women with polycystic ovarian syndrome, endometriosis, and aging. Frontiers
in endocrinology, 14, 1324429, doi:10.3389/fendo.2023.1324429.
[17].
Gullo,
G., Lopez, A., Loreto, C., Cucinella, G., La Verde, M., Andrisani, A.,
Marinelli, S., 2024, COVID-19 and Female Fertility: An Observational
Prospective Multicenter Cohort Study: Upholding Reproductive Rights in
Emergency Circumstances. Diagnostics, 14(19), 2118, doi:10.3390/diagnostics14192118.
[18].
Dong,
S., Liu, X., Wang, Y., 2024, The impact of COVID-19 on women’s reproductive
system. Frontiers in Medicine, 11, 1485022, doi:10.3389/fmed.2024.1485022.
[19].
Li,
R., Yin, T., Fang, F., Li, Q., Chen, J., Wang, Y., Qiao, J., 2020, Potential
risks of SARS-CoV-2 infection on reproductive health. Reproductive
biomedicine online, 41(1), 89-95, doi:10.1016/j.rbmo.2020.04.018.
[20].
Khoiwal,
K., Kalita, D., Kumari, R., Dhundi, D., Shankar, R., Kumari, R., Chaturvedi, J.,
2022, Presence of SARS‐COV‐2 in the lower genital tract of women with active
COVID‐19 infection: a prospective study. International Journal of
Gynaecology and Obstetrics, 157(3), 744, doi:10.1002/ijgo.14153.
[21].
Barber,
E., Kovo, M., Leytes, S., Sagiv, R., Weiner, E., Schwartz, O., Ginath, S., 2021,
Evaluation of SARS-CoV-2 in the vaginal secretions of women with COVID-19: a
prospective study. Journal of Clinical Medicine, 10(12), 2735, doi:10.3390/jcm10122735.
[22].
Fenizia,
C., Saulle, I., Di Giminiani, M., Vanetti, C., Trabattoni, D., Parisi, F., Savasi,
V., 2021, Unlikely SARS-CoV-2 transmission during vaginal delivery.
Reproductive Sciences, 28, 2939-2941, doi:10.1007/s43032-021-00681-5.
[23].
Bi,
J., Li, Y., Sun, F., Saalbach, A., Klein, C., Miller, D. J., Nowak, R. A., 2013,
Basigin null mutant male mice are sterile and exhibit impaired interactions
between germ cells and Sertoli cells. Developmental biology, 380(2),
145-156, doi:10.1016/j.ydbio.2013.05.023.
[24].
Machado,
B., Barcelos Barra, G., Scherzer, N., Massey, J., dos Santos Luz, H., Henrique
Jacomo, R., Davis, R., 2021, Presence of SARS-CoV-2 RNA in semen—cohort study
in the United States COVID-19 positive patients. Infectious Disease Reports,
13(1), 96-101, doi:10.3390/idr13010012.
[25].
Ma,
X., Guan, C., Chen, R., Wang, Y., Feng, S., Wang, R., Yuan, S., 2021,
Pathological and molecular examinations of postmortem testis biopsies reveal
SARS-CoV-2 infection in the testis and spermatogenesis damage in COVID-19
patients. Cellular & molecular immunology, 18(2), 487-489, doi:10.1038/s41423-020-00604-5.
[26].
Xu,
J., Qi, L., Chi, X., Yang, J., Wei, X., Gong, E., Gu, J., 2006, Orchitis: a
complication of severe acute respiratory syndrome (SARS). Biology of
reproduction, 74(2), 410-416, doi:10.1095/biolreprod.105.044776.
[27].
Li,
H., Xiao, X., Zhang, J., Zafar, M. I., Wu, C., Long, Y., Xiong, C., 2020, Impaired
spermatogenesis in COVID-19 patients. EClinicalMedicine, 28, doi:10.1016/j.eclinm.2020.100604.
[28].
Zhang,
Q. F., Zhang, Y. J., Wang, S., Wei, Y., Zhang, H., Li, F., Deng, Y. Q., 2024,
Does COVID-19 affect sperm quality in males? the answer may be yes, but only
temporarily. Virology Journal, 21(1), 24. doi:10.1186/s12985-024-02290-5.
[29].
Hu,
B., Liu, K., Ruan, Y., Wei, X., Wu, Y., Feng, H., Wang, T., 2022, Evaluation of
mid-and long-term impact of COVID-19 on male fertility through evaluating semen
parameters. Translational andrology and urology, 11(2), 159, doi:10.21037/tau-21-922.
[30].
Hallak,
J., Caldini, E. G., Teixeira, T. A., Correa, M. C. M., Duarte‐Neto, A. N.,
Zambrano, F., Saldiva, P. H., 2024, Transmission electron microscopy reveals
the presence of SARS‐CoV‐2 in human spermatozoa associated with an ETosis‐like
response. Andrology, 12(8), 1799-1807, doi:10.1111/andr.13612.
[31].
Kaur,
H., Chauhan, A., Mascarenhas, M., 2024, Does SARS Cov-2 infection affect the
IVF outcome–A systematic review and meta-analysis. European Journal of
Obstetrics & Gynecology and Reproductive Biology, 292, 147-157,
doi:10.1016/j.ejogrb.2023.11.027.
[32].
Yang,
T., Wu, L., Peng, J., Wang, C., Li, G., Zhang, J., Song, B., 2024, Effects of
SARS-CoV-2 infection during ovarian stimulation on ART outcomes. Reproductive
BioMedicine Online, 48(2), 103422, doi:10.1016/j.rbmo.2023.103422.
[33].
Tian,
L., Sun, Y., Jia, M., 2025, Effect of SARS-CoV-2 infection on human embryonic
development and clinical outcomes: a retrospective cohort study. BMC
Pregnancy and Childbirth, 25(1), 251, doi:10.1186/s12884-025-07205-y.
[34].
Eckstein,
V., Glaß, K., Leßmann, M. E., Schaar, J., Klimova, A., Wimberger, P.,
Goeckenjan, M., 2024, Assisted reproduction after SARS-CoV-2-infection: results
of a single-center cohort-study. Archives of Gynecology and Obstetrics,
309(1), 305-313, doi:10.1007/s00404-023-07228-w.
[35].
Abdoli,
A., Falahi, S., Kenarkoohi, A., Shams, M., Mir, H., Jahromi, M. A. M., 2020,
The COVID-19 pandemic, psychological stress during pregnancy, and risk of
neurodevelopmental disorders in offspring: a neglected consequence. Journal
of Psychosomatic Obstetrics & Gynecology, 41(3), 247-248, doi:10.1080/0167482X.2020.1761321.
[36].
Falahi,
S., Abdoli, A., Kenarkoohi, A., 2023. Maternal COVID-19 infection and the
fetus: Immunological and neurological perspectives. New Microbes and New
Infections, 53, 101135. doi:10.1016/j.nmni.2023.101135.
[37].
Abdollahpour,
S., Badiee Aval, S., Khadivzadeh, T., 2021, Do not neglect the COVID-19
transmission through sexual intercourse. Journal of Sex & Marital
Therapy, 47(7), 731-737, doi:10.1080/0092623X.2021.1938765.
[38].
Cannarella,
R., Marino, M., Crafa, A., Bagnara, V., La Vignera, S., Condorelli, R. A.,
Calogero, A. E., 2024, Impact of COVID-19 on testicular function: a systematic
review and meta-analysis. Endocrine, 85(1), 44-66, doi:10.1007/s12020-024-03705-7.
[39].
Rodrigues,
C., Baía, I., Domingues, R., Barros, H., 2020, Pregnancy and breastfeeding
during COVID-19 pandemic: a systematic review of published pregnancy cases.
Frontiers in public health, 8, 558144, doi:10.3389/fpubh.2020.558144.
[40].
Ciapponi,
A., Bardach, A., Comandé, D., Berrueta, M., Argento, F. J., Rodriguez Cairoli,
F., Buekens, P., 2021, COVID-19 and pregnancy: an umbrella review of clinical
presentation, vertical transmission, and maternal and perinatal outcomes. PloS
one, 16(6), e0253974, doi:10.1371/journal.pone.0253974.
[41].
Singh,
H. O., Jakhar, K., Nema, V., Krishnaraj, A., Choudhari, R., 2021, Effect of
miRNAs, proinflammatory cytokines and ACE2 in COVID-19 pathophysiology. Coronaviruses,
2(9), 7-14, doi:10.2174/2666796702666210303114330.
[42].
Zhu,
S., Luan, C., Zhang, S., Wang, X., Long, F., Zhang, Q., Yan, J., 2024, Effect
of SARS-CoV-2 infection and vaccine on ovarian reserve: a systematic review. European
Journal of Obstetrics & Gynecology and Reproductive Biology, 292, 63-70,
doi:10.1016/j.ejogrb.2023.10.029.
[43].
Ciapponi,
A., Berrueta, M., Parker, E. P., Bardach, A., Mazzoni, A., Anderson, S. A.,
Buekens, P. M., 2023, Safety of COVID-19 vaccines during pregnancy: a
systematic review and meta-analysis. Vaccine, 41(25), 3688-3700, doi:10.1016/j.vaccine.2023.03.038.