Leptospirosis Diagnostic Capacity in Public Health Facilities within Nairobi County, Kenya

Download Article

DOI: 10.21522/TIJPH.2013.10.01.Art019

Authors : Niala Isaiah Orodi, John Gachohi, Violet Wanjihia

Abstract:

The presence of biotic and abiotic reservoirs is a possible indicator of leptospirosis occurrence in Nairobi County, which has a large proportion of informal settlements. Despite these epidemiological risk factors, little or no attention is accorded to leptospirosis. The study assessed the degree of leptospirosis diagnostic capacity in public health facilities within Nairobi County, Kenya. A descriptive cross-sectional study involving 133 clinicians and 15 laboratory personnel across 15 public health facilities was conducted between August and December 2019. The perception of zoonotic management was high as 95% (126) had a strong score while 5% (7) had a weak score. Healthcare facility level (χ2 (3) = 14.09, p < 0.05), professional designation (χ2 (1) = 4.26, p < 0.05) had a significant association with suspecting zoonosis. The length of service as a clinician was a significant predictor of suspecting zoonosis, Wald = 11.11, p < 0.05. Inter-agency collaboration was low as 89% (119) reported a lack of sharing zoonosis information, and only 8% (10) indicated that there was information sharing. The clinical suspicion index was low, 3.8% of the participants suspected the disease in practice, and 2.3% would consider leptospirosis in the differential diagnosis of FUO. All 15 public health facilities lacked leptospirosis laboratory diagnostic capacity. The probable diagnosis of leptospirosis is low due to a low clinical suspicion index and lack of awareness. There is a lack of laboratory diagnostic capacity. Sensitisation of clinicians and laboratory personnel is critical in increasing the diagnostic capacity of leptospirosis.

References:

[1] Haake, D. A., & Levett, P. N. (2014). Leptospirosis in humans. Current Topics in Microbiology and Immunology, 65-97. https://doi.org/10.1007/978-3-662-45059-8_5.

[2] Costa, F., Hagan, J. E., Calcagno, J., Kane, M., Torgerson, P., Martinez-Silveira, M. S., Stein, C., Abela-Ridder, B., & Ko, A. I. (2015). Global morbidity and mortality of leptospirosis: A systematic review. PLOS Neglected Tropical Diseases, 9(9), e0003898. https://doi.org/10.1371/journal.pntd.0003898.

[3] Wuthiekanun, V., Sirisukkarn, N., Daengsupa, P., Sakaraserane, P., Sangkakam, A., Chierakul, W., Smythe, L. D., Symonds, M. L., Dohnt, M. F., Slack, A. T., Day, N. P., & Peacock, S. J. (2007). Clinical diagnosis and geographic distribution of leptospirosis, Thailand. Emerging Infectious Diseases, 13(1), 124-126. https://doi.org/10.3201/eid1301.060718.

[4] Mgode, G. F., Machang’u, R. S., Mhamphi, G. G., Katakweba, A., Mulungu, L. S., Durnez, L., Leirs, H., Hartskeerl, R. A., & Belmain, S. R. (2015). Leptospira Serovars for diagnosis of leptospirosis in humans and animals in Africa: Common leptospira isolates and reservoir hosts. PLOS Neglected Tropical Diseases, 9(12), e0004251. https://doi.org/10.1371/journal.pntd.0004251.

[5] Halliday, J. E., Allan, K. J., Ekwem, D., Cleaveland, S., Kazwala, R. R., & Crump, J. A. (2015). Endemic zoonoses in the tropics: A public health problem hiding in plain sight. Veterinary Record, 176(9), 220-225. https://doi.org/10.1136/vr.h798.

[6] Gebreyes, W. A., Dupouy-Camet, J., Newport, M. J., Oliveira, C. J., Schlesinger, L. S., Saif, Y. M., Kariuki, S., Saif, L. J., Saville, W., Wittum, T., Hoet, A., Quessy, S., Kazwala, R., Tekola, B., Shryock, T., Bisesi, M., Patchanee, P., Boonmar, S., & King, L. J. (2014). The global one health paradigm: Challenges and opportunities for tackling infectious diseases at the human, animal, and environment interface in low-resource settings. Plos Neglected Tropical Diseases, 8(11), e3257. https://doi.org/10.1371/journal.pntd.0003257.

[7] Halliday, J., Daborn, C., Auty, H., Mtema, Z., Lembo, T., Bronsvoort, B. M., Handel, I., Knobel, D., Hampson, K., & Cleaveland, S. (2012). Bringing together emerging and endemic zoonoses surveillance: Shared challenges and a common solution. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1604), 2872-2880. https://doi.org/10.1098/rstb.2011.0362.

[8] Adler, B., & de la Peña Moctezuma, A. (2010). Leptospira and leptospirosis. Veterinary Microbiology, 140(3-4), 287-296. https://doi.org/10.1016/j.vetmic.2009.03.012.

[9] De Brito, T., Silva, A. M., & Abreu, P. A. (2018). Pathology and pathogenesis of human leptospirosis: A commented review. Revista do Instituto de Medicina Tropical de São Paulo, 60(0). https://doi.org/10.1590/s1678-9946201860023.

[10] Faisal, S. M., McDonough, S. P., & Chang, Y. (2012). Leptospira: Invasion, pathogenesis and persistence. The Pathogenic Spirochetes: strategies for evasion of host immunity and persistence, 143-172. https://doi.org/10.1007/978-1-4614-5404-5_88.

[11] Crump, J. A., Morrissey, A. B., Nicholson, W. L., Massung, R. F., Stoddard, R. A., Galloway, R. L., Ooi, E. E., Maro, V. P., Saganda, W., Kinabo, G. D., Muiruri, C., & Bartlett, J. A. (2013). Etiology of severe non-malaria febrile illness in northern Tanzania: A prospective cohort study. PLoS Neglected Tropical Diseases, 7(7), e2324. https://doi.org/10.1371/journal.pntd.0002324.

[12] Biggs, H. M., Hertz, J. T., Munishi, O. M., Galloway, R. L., Marks, F., Saganda, W., Maro, V. P., & Crump, J. A. (2013). Estimating leptospirosis incidence using hospital-based surveillance and a population-based health care utilization survey in Tanzania. PLoS Neglected Tropical Diseases, 7(12), e2589. https://doi.org/10.1371/journal.pntd.0002589.

[13] Fischer, R. S., & Flores Somarriba, B. (2017). Challenges to diagnosing leptospirosis in endemic regions require urgent attention. Current Tropical Medicine Reports, 4(2), 57-61. https://doi.org/10.1007/s40475-017-0110-x.

[14] Destoumieux-Garzón, D., Mavingui, P., Boetsch, G., Boissier, J., Darriet, F., Duboz, P., Fritsch, C., Giraudoux, P., Le Roux, F., Morand, S., Paillard, C., Pontier, D., Sueur, C., & Voituron, Y. (2018). The one health concept: 10 Years old and a long road ahead. Frontiers in Veterinary Science, 5. https://doi.org/10.3389/fvets.2018.00014.

[15] llan, K. J., Biggs, H. M., Halliday, J. E., Kazwala, R. R., Maro, V. P., Cleaveland, S., & Crump, J. A. (2015). Epidemiology of leptospirosis in Africa: A systematic review of a neglected zoonosis and a paradigm for ‘One health’ in Africa. PLOS Neglected Tropical Diseases, 9(9), e0003899. https://doi.org/10.1371/journal.pntd.0003899.

[16] Lau, C. L., Smythe, L. D., Craig, S. B., & Weinstein, P. (2010). Climate change, flooding, urbanisation and leptospirosis: Fuelling the fire? Transactions of the Royal Society of Tropical Medicine and Hygiene, 104(10), 631-638. https://doi.org/10.1016/j.trstmh.2010.07.002.

[17] Torgerson, P. R., Hagan, J. E., Costa, F., Calcagno, J., Kane, M., Martinez-Silveira, M. S., Goris, M. G., Stein, C., Ko, A. I., & Abela-Ridder, B. (2015). Global burden of leptospirosis: Estimated in terms of disability adjusted life years. PLOS Neglected Tropical Diseases, 9(10), e0004122. https://doi.org/10.1371/journal.pntd.0004122.

[18] Musso, D., & La Scola, B. (2013). Laboratory diagnosis of leptospirosis: A challenge. Journal of Microbiology, Immunology and Infection, 46(4), 245-252. https://doi.org/10.1016/j.jmii.2013.03.001.

[19] Durski, K., Jancloes, M., Chowdhary, T., & Bertherat, E. (2014). A global, multi-disciplinary, multi-sectorial initiative to combat leptospirosis: Global leptospirosis environmental action network (GLEAN). International Journal of Environmental Research and Public Health, 11(6), 6000-6008. https://doi.org/10.3390/ijerph110606000.

[20] De Vries, S. G., Visser, B. J., Nagel, I. M., Goris, M. G., Hartskeerl, R. A., & Grobusch, M. P. (2014). Leptospirosis in sub-Saharan Africa: A systematic review. International Journal of Infectious Diseases, 28, 47-64. https://doi.org/10.1016/j.ijid.2014.06.013.

[21] Baer, R., Turnberg, W., Yu, D., & Wohrle, R. (2009). Leptospirosis in a small animal veterinarian: Reminder to follow standardized infection control procedures. Zoonoses and Public Health, 57(4), 281-284. https://doi.org/10.1111/j.1863-2378.2009.01240.x.

[22] Bett, B., Said, M. Y., Sang, R., Bukachi, S., Wanyoike, S., Kifugo, S. C., Otieno, F., Ontiri, E., Njeru, I., Lindahl, J., & Grace, D. (2017). Effects of flood irrigation on the risk of selected zoonotic pathogens in an arid and semi-arid area in the eastern Kenya. Plos One, 12(5), e0172626. https://doi.org/10.1371/journal.pone.0172626.

[23] Cook, E. A., De Glanville, W. A., Thomas, L. F., Kariuki, S., Bronsvoort, B. M., & Fèvre, E. M. (2016). Risk factors for leptospirosis seropositivity in slaughterhouse workers in western Kenya. Occupational and Environmental Medicine, 74(5), 357-365. https://doi.org/10.1136/oemed-2016-103895.

[24] Munyua, P., Bitek, A., Osoro, E., Pieracci, E. G., Muema, J., Mwatondo, A., Kungu, M., Nanyingi, M., Gharpure, R., Njenga, K., & Thumbi, S. M. (2016). Prioritization of zoonotic diseases in Kenya, 2015. Plos One, 11(8), e0161576. https://doi.org/10.1371/journal.pone.0161576.

[25] De Geus, A., Wolff, J. W., & Timmer, V. E. A. (1977). Clinical leptospirosis in Kenya, II. A field study in Nyanza Province. East African medical journal, 54(3), 125-132. https://www.cabdirect.org/cabdirect/abstract/19792903083.

[26] Wachira, B. W., & Smith, W. (2013). Major incidents in Kenya: The case for emergency services development and training. Prehospital and Disaster Medicine, 28(2), 170-173. https://doi.org/10.1017/s1049023x13000010

[27] Halliday, J. E., Knobel, D. L., Allan, K. J., De C. Bronsvoort, B. M., Handel, I., Agwanda, B., Cutler, S. J., Olack, B., Ahmed, A., Hartskeerl, R. A., Njenga, M. K., Cleaveland, S., & Breiman, R. F. (2013). Urban leptospirosis in Africa: A cross-sectional survey of leptospira infection in rodents in the Kibera urban settlement, Nairobi, Kenya. The American Journal of Tropical Medicine and Hygiene, 89(6), 1095-1102. https://doi.org/10.4269/ajtmh.13-0415.

[28] Harris, P. A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., & Conde, J. G. (2009). Research electronic data capture (Redcap)—A metadata-driven methodology and workflow process for providing translational research informatics support. Journal of Biomedical Informatics, 42(2), 377-381. https://doi.org/10.1016/j.jbi.2008.08.010.

[29] Slotved, H., Yatich, K. K., Sam, S. O., & Ndhine, E. O. (2017). The capacity of diagnostic laboratories in Kenya for detecting infectious diseases. Tropical Medicine and Health, 45(1). https://doi.org/10.1186/s41182-017-0049-6.

[30] Bandara, K. K., Gunasekara, C. P., Weerasekera, M. M., Ranasinghe, N., Hapugoda, M., Marasinghe, C., & Fernando, N. (2016). Comparison of three rapid diagnostic assays for diagnosis of leptospirosis in a resource-poor setting. https://doi.org/10.20959/wjpr20167-6634.

[31] Kumar, S. S. (2013). Indian guidelines for the diagnosis and management of human leptospirosis. Medicine Update, 2013.

[32] Ahmad, S. N., Shah, S., & Ahmad, F. H. (2005). Laboratory diagnosis of leptospirosis. Journal of postgraduate medicine, 51(3), 195. https://www.jpgmonline.com/article.asp?issn=0022-3859;year=2005;volume=51;issue=3;spage=195;epage=200;aulast=Ahmad.

[33] Gunasekara, C. P., Sumaiha, M. H. F., Damayanthi, M. K. S., Weerasekara, M. M., & Fernando, S. S. N. (2017). Utility of a modified silver staining technique for detection of Leptospira. https://sljid.sljol.info/articles/abstract/10.4038/sljid.v7i2.8142/.

[34] Mohamad Safiee, A. W., Mohd Ali, M. R., Fauzi, M. H., Muhd Besari, A., Yean Yean, C., Neela, V. K., & Ismail, N. (2020). Leptospiral Culture without 5’-Fluorouracil Revealed Improved Leptospira Isolation from Febrile Patients in North-Eastern Malaysia. International journal of environmental research and public health, 17(4), 1307. https://doi.org/10.3390/ijerph17041307

[35] Rao, M., Amran, F., & Aqilla, N. (2019). Evaluation of a rapid kit for detection of IgM against Leptospira in human. Canadian Journal of Infectious Diseases and Medical Microbiology, 2019. https://doi.org/10.1155/2019/5763595.

[36] Odhiambo, F., Galgalo, T., Wences, A., Muchemi, O. M., Kanyina, E. W., Tonui, J. C., ... & Boru, W. (2014). Antimicrobial resistance: capacity and practices among clinical laboratories in Kenya, 2013. The Pan African Medical Journal, 19. https://doi.org/10.11604/pamj.2014.19.332.5159.

[37] Kariuki, S., & Dougan, G. (2014). Antibacterial resistance in sub-Saharan Africa: an underestimated emergency. Annals of the New York Academy of Sciences, 1323(1), 43. https://doi.org/10.1111/nyas.12380.

[38] Onsare, R. S., Micoli, F., Lanzilao, L., Alfini, R., Okoro, C. K., Muigai, A. W., ... & Rondini, S. (2015). Relationship between antibody susceptibility and lipopolysaccharide O-antigen characteristics of invasive and gastrointestinal nontyphoidal Salmonellae isolates from Kenya. Plos neglected tropical diseases, 9(3), e0003573. https://doi.org/10.1371/journal.pntd.0003573.