Impacts of Climatic Changes on Vector Borne Diseases - A Recent Perspective

Download Article

DOI: 10.21522/TIJPH.2013.SE.25.02.Art001

Authors : Senbagam Duraisamy, M. Bhuvaneswari, Geeta Kesavaraj, Ajay Ramesh, Selvankumar T, Srilatha M, Kamalanathan D, Prince Clarance D, Tharun Arumugam S

Abstract:

The relationship between infections, vectors, and hosts influences vector-borne diseases (VBDs), which are increasingly linked to climate change. The physiological and ecological dynamics of vectors, particularly mosquitoes and ticks, are changed by rising global temperatures, which promotes the spread of these organisms into new geographical areas. As tropical species move into temperate zones and higher elevations, where they establish populations in formerly non-endemic locations, this expansion is especially visible. For example, the elevation range of malaria vectors has increased significantly, and diseases such as dengue and West Nile virus are spreading throughout Europe and North America as a result of favorable climate circumstances. The association between climate factors and the transmission of VBD is complicated; higher temperatures can increase the rates at which vectors bite, leading to an increase in the incidence of the disease. Furthermore, variations in precipitation patterns add to the amount of standing water that is available, which provides mosquitoes with the perfect environment for breeding. However, because of the interaction of several factors including changes in land use and human migration, it is still difficult to precisely attribute specific outbreaks to climate change. There are grave consequences for public health. If current trends continue, projections suggest that by 2070, an additional 4.7 billion people may be vulnerable to illnesses like dengue and malaria5. To reduce these risks, we urgently need effective intervention techniques such as improved surveillance systems, vector control measures, and public health preparation programs. Inaction will probably cause the burden of VBDs to increase, worsening global health inequities and placing a strain on healthcare systems all over the world. The continual adaptation of vectors to climate change emphasizes the need for adaptive management approaches to protect public health from this impending threat.

References:

[1].   National Institute of Allergy and Infectious Diseases, 2024. https://www.niaid.nih.gov/

[2].   World Health organization, 2020 vector borne disease. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases

[3].   Chala, B., Hamde, F., 2021, Emerging and Re-emerging Vector-Borne Infectious Diseases and the Challenges for Control: A Review. Front Public Health.

[4].   Centres For Disease Control and Prevention, 2020, Vector Borne Disease. https://www.cdc.gov/vector-borne-diseases/index.html

[5].   De Souza, W. M., Weaver, S. C., 2024, Effects of climate change and human activities on vector-borne diseases. Nat Rev Microbial, 2024 Aug24.

[6].   Rocklöv, J., Dubrow, R., 2020, Climate change: an enduring challenge for vector-borne disease prevention and control. Nat Immunol, 21, 479–483.

[7].   National Oceanic and Atmospheric Administration (NOAA). https://www.noaa.gov/

[8].   Sathishkumar, P., Ganesan, A. R., Hadibarata, T., & Palanisami, T. 2024. Editorial overview: Eco-friendly and advanced technologies for pollutant remediation and management. Current Opinion in Environmental Science & Health, 40, 100560.

[9].   Shimu, S. S., Rathinavel, T., Ghazwani, M., Hani, U., Khalekuzzaman, Md., Islam, Md. A., Acharjee, U. K., 2024. Unveiling the antimicrobial potentials of Sphagneticola trilobata: an integrated experimental and computer aided investigation. J Biomol Str Dyn, 1–21. https://doi.org/10.1080/07391102.2024.2435639

[10].  Christina, K., Subbiah, K., Arulraj, P., Krishnan, S. K., & Sathishkumar, P. 2024. A sustainable and eco-friendly approach for environmental and energy management using biopolymers chitosan, lignin and cellulose: A review. International Journal of Biological Macromolecules, 257(2), 128550.

[11].  Vasuki Sasikanth, Bhuvaneswari Meganathan, Thirumalaisamy Rathinavel, Sindhu Seshachalam, Harini Nallappa and Brindha Gopi, 2023, General overview of biopolymers: structure and properties, Phy Sci Rev. 9(4) https://doi.org/10.1515/psr-2022-0214

[12].  Thirumalaisamy, R., Suriyaprabha, R., Prabhu, M., Thesai, A. S., 2022, Role of Nanomaterials in Environmental Remediation: Recent Advances—A Review. In: Aravind, J., Kamaraj, M., Karthikeyan, S., (eds) Strategies and Tools for Pollutant Mitigation. Springer, Cham. https://doi.org/10.1007/978-3-030-98241-6_3

[13].  Suriyaprabha Rangaraj, Vasuki Sasikanth, Subramanian Ammashi, Thirumalaisamy Rathinavel, 2023, Chapter 4 - Nutraceuticals and cosmeceuticals: An overview, Editor(s): Inamuddin, Tariq Altalhi, Jorddy Neves Cruz, Nutraceuticals, Academic Press, 99-125, https://doi.org/10.1016/B978-0-443-19193-0.00004-6

[14].  De Souza, W. M., Weaver, S. C., 2024, Effects of climate change and human activities on vector-borne diseases. Nat Rev Microbiol.  22, 476–491.

[15].  Talapko, J., Škrlec, I., Alebić, T., Jukić, M., Včev, A.,2019, Malaria: The Past and the Present. Microorganisms. 2019 Jun 21.

[16].  Nicoletti, M., 2020, Three scenarios in insect-borne diseases. Insect-Borne Diseases in the 21st Century. 99–251.

[17].  Akanda, A. S., Johnson, K., Ginsberg, H, S., Couret, J., 2020, Prioritizing Water Security in the Management of Vector-Borne Diseases: Lessons From Oaxaca, Mexico. Geohealth, 2020 Mar 1.

[18].  Müller, R., Reuss, F., Kendrovski, V., Montag, D., 2019, Vector-Borne Diseases. In: Marselle, M., Stadler, J., Korn, H., Irvine, K., Bonn, A. (eds) Biodiversity and Health in the Face of Climate Change. Springer, Cham.

[19].  Ivan, E., Crowther, N. J., Rucogoza, A. T., Osuwat, L. O., Munyazesa, E., Mutimura, E., Njunwa, K. J., Zambezi, K. J., Grobusch, M. P., 2012 Dec, Malaria and helminthic co-infection among HIV-positive pregnant women: prevalence and effects of antiretroviral therapy.

[20].  Da Fonseca, B. A., Fonseca, S. N., 2002, Dengue virus infections. Curr Opin Pediatr. 2002 Feb;14.

[21].  Chan, D. P., Teoh, S. C., Tan, C. S., Nah, G. K., Rajagopalan, R., Prabhakaragupta, M. K., Chee, C. K., Lim, T. H., Goh, K. Y., 2006, Eye Institute Dengue-Related Ophthalmic Complications Workgroup. Ophthalmic complications of dengue. Emerg Infect Dis. 12(2): 285-9

[22].  Yang, X., Quam, M. B. M., Zhang, T., Sang, S., 2021, Global burden for dengue and the evolving pattern in the past 30 years, J Travel Med, 2021 Dec 29.

[23].  Teixeira Mda, G., Barreto, M. L., Costa Mda, C., Ferreira, L. D., Vasconcelos, P. F., Cairncross, S., 2002 Sep;7, Dynamics of dengue virus circulation: a silent epidemic in a complex urban area. Trop Med Int Health. 757-62.

[24].  Cunha, R. V. D., Trinta, K. S., 2017, Chikungunya virus: clinical aspects and treatment - A Review. Mem Inst Oswaldo Cruz. 2017 Aug; 523-531.

[25].  Pialoux, G., Gaüzère, B. A., Jauréguiberry, S., Strobel, M.,2007, Chikungunya, an epidemic arbovirosis. Lancet Infect Dis. 2007 May; 7319-27.

[26].  Lo Presti, A., Lai, A., Cella, E., Zehender, G., Ciccozzi, M.,2014, Chikungunya virus, epidemiology, clinics and phylogenesis: A review. Asian Pac J Trop Med. 7(12): 925-32.

[27].  Wimalasiri-Yapa, B. M. C. R., Stassen, L., Huang, X., Hafner, L. M., Hu, W., Devine, G. J., Yakob, L., Jansen, C. C., Faddy, H. M., Viennet. E., Frentiu. FD., 2019 Chikungunya virus in Asia - Pacific: a systematic review. Emerg Microbes Infect. 70-79.

[28].  Translational Research Consortia, 2021.https://birac.nic.in/nbm/cms/page/translational-research-consortia

[29].  Powers, A. M., Brault, A. C., Tesh, R. B., Weaver, S. C.,2000, Re-emergence of Chikungunya and O'nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. J Gen Virol. 2000 Feb, 471-9.

[30].  World Health Organization, 2020, Japanese Encephalitis. https://www.who.int/news-room/fact-sheets/detail/japanese-encephalitis

[31].  Center For Disease Control and Prevention (CDS), 2020 Japanese Encephalitis. https://www.cdc.gov/japanese-encephalitis/index.html

[32].  National Institute of Virology (NIV), 2020, Japanese Encephalitis. https://niv.icmr.org.in/form/root/research-divisions/2021-08-05-05-21-19

[33].  National Institute of Allergy and Infectious Disease, 2020, Zika Virus. https://www.niaid.nih.gov/diseases-conditions/zika-virus-researchers

[34].  World Health Organization, 2020, Zika Virus. https://www.who.int/news-room/fact-sheets/detail/zika-virus

[35].  World Health Organization, 2020, Yellow fever. https://www.who.int/news-room/fact-sheets/detail/yellow-fever

[36].  Bockarie, M. J., Molyneux, D. H., 2009 May, The end of lymphatic filariasis?, BMJ.

[37].  Fang, Y., Zhang, Y., 2019, Lessons from lymphatic filariasis elimination and the challenges of post-elimination surveillance in China. Infect Dis Poverty, 8, 66.

[38].  Rabaan, A. A., Al-Ahmed, S. H., Sah, R., Al-Tawfiq, J. A., Haque, S., Harapan, H., Arteaga-Livias, K., Aldana, D. K, B., Kumar, P., Dhama, K., Rodriguez-Morales, A. J., 2020, Genomic Epidemiology and Recent Update on Nucleic Acid-Based Diagnostics for COVID-19. Curr Trop Med Rep. 113-119.

[39].  Basha, N. A., Rathinavel, T., Sridharan, H., 2023, Activated Carbon from Coconut Shell: Synthesis and Its Commercial Applications- A Recent Review. App Sci Engi Prog16(2), 6152. https://doi.org/10.14416/j.asep.2022.07.001

[40].  Thirumalaisamy, R., Aroulmoji, V., Riaz Khan, Sivasankar, C., Deepa, M., 2021, Hyaluronic Acid - 2-Deoxy-D-Glucose Conjugate Act as a Promising Targeted Drug Delivery Option for the Treatment of COVID-19. Int j adv Sci Engi. 7(4),  https://doi.org/10.29294/IJASE.7.4.2021. 1995-2005.

[41].  Subha, T., Srilatha, M., Naveen, P., Thirumalaisamy, R., 2024,Green synthesis, characterization and optimization of silver nanoparticles from Carica papaya using Box Behnken design and its activity against dental caries causing Streptococcus sp, Chem Data Collect, 51:101139, https://doi.org/10.1016/j.cdc.2024.101139

[42].  Rathinavel Thirumalaisamy, Subramanian Ammashi, Govarthanan Muthusamy, 2018, Screening of anti-inflammatory phytocompounds from Crateva adansonii leaf extracts and its validation by in silico modeling, J Gen Engi and Biotech, 16 (2), 711-719, https://doi.org/10.1016/j.jgeb.2018.03.004

[43].  Sathishkumar, P., Elumalai, P., Saravanakumar, K., & Ganesan, A. R. 2024. Prevalence and impact of herbicides/insecticides on non-target ecosystem and its mitigation strategy. Environmental Research, 260, 119677.

[44].  Sindhu, M. S., Poonkothai, M., Thirumalaisamy, R., 2022, Phenolic and terpene compounds from Plectranthus amboinicus (Lour.) Spreng. Act as promising hepatic anticancer agents screened through in silico and in vitro approaches, South Afr J Bot, 149:145-159, https://doi.org/10.1016/j.sajb.2022.06.001

[45].  Weaver, S. C., 2008, Arbovirus evolution. In: Domingo, E., Parrish, C. R., Holland, J. J., eds. Origin and Evolution of Viruses. Academic Press, Cambridge, MA, 351–391.

[46].  Wilson, A. J., Morgan, E. R., Booth, M., Norman, R., Perkins, S. E., Hauffe, H. C., Mideo, N., Antonovics, J., McCallum, H., Fenton, A., 2017, What is a vector?, Philos Trans R Soc Lond B Biol Sci, 2017 May 5, 372.