Intersection of Precision Medicine and Cancer Therapy

Download Article

DOI: 10.21522/TIJPH.2013.SE.25.02.Art003

Authors : A. Ganesh Kumar, G. Manivannan, S. Nimithap, R. Rathika

Abstract:

Customizing treatments according to each patient's distinct genetic, molecular, and clinical traits, precision medicine holds the potential to completely transform the way cancer is treated. Advances in immunotherapy, liquid biopsy technology, multi-omics, and gene editing methods like CRISPR are all contributing to this strategy. By combining these advancements, it will be possible to develop tailored medicines that focus on the underlying genetic causes of cancer, increasing the precision and efficacy of cancer treatments. Furthermore, machine learning and artificial intelligence provide strong instruments for forecasting therapy outcomes and refining therapeutic approaches. Widespread adoption is still hampered by issues like the intricacy of cancer genetics, the high expense of sophisticated therapies, restricted access in environments with limited resources, and the requirement for uniform clinical data. In order to alter global cancer treatment and improve patient outcomes, it will be imperative to address these issues and guarantee that all patients may benefit from precision medicine.

References:

[1].   Collins, F. S., and Varmus, H., 2015, A new initiative on precision medicine, New England Journal of Medicine, 372(9), 793-795.

[2].   National Research Council, 2011, Toward precision medicine: Building a knowledge network for biomedical research and a new taxonomy of disease, National Academies Press.

[3].   Ashley, E. A., 2015, The precision medicine initiative: a new national effort, JAMA, 313(21), 2119-2120.

[4].   Szalai, R., Hadzsiev, K., and Melegh, B., 2016, Cytochrome P450 drug metabolizing enzymes in Roma population samples: systematic review of the literature, Current Medicinal Chemistry, 23(31), 3632-3652.

[5].   Advani, D., Sharma, S., Kumari, S., Ambasta, R. K., and Kumar, P., 2022, Precision oncology, signaling, and anticancer agents in cancer therapeutics, Anti-Cancer Agents in Medicinal Chemistry, 22(3), 433-468.

[6].   Ross, D. T., Scherf, U., Eisen, M. B., Perou, C. M., Rees, C., Spellman, P., and Brown, P. O., 2000, Systematic variation in gene expression patterns in human cancer cell lines, Nature Genetics, 24(3), 227-235.

[7].   Bashor, C. J., Hilton, I. B., Bandukwala, H., Smith, D. M., and Veiseh, O., 2022, Engineering the next generation of cell-based therapeutics, Nature Reviews Drug Discovery, 21(9), 655-675.

[8].   Stratton, M. R., Campbell, P. J., and Futreal, P. A., 2009, The cancer genome, Nature, 458(7239), 719-724.

[9].   Hurley, J., Doliny, P., Reis, I., Silva, O., Gomez-Fernandez, C., Velez, P., and Slamon, D. J., 2006, Docetaxel, cisplatin, and trastuzumab as primary systemic therapy for human epidermal growth factor receptor 2–positive locally advanced breast cancer, Journal of Clinical Oncology, 24(12), 1831-1838.

[10].  Abdel-Aziz, A. K., Abdel-Naim, A. B., Shouman, S., Minucci, S., and Elgendy, M., 2017, From resistance to sensitivity: insights and implications of biphasic modulation of autophagy by sunitinib, Frontiers in Pharmacology, 8, 718.

[11].  Zhang, L. J., Gan, Y. M., and Yu, L., 2015, Occurrence of BCR/ABL fusion gene in a patient with acute promyelocytic leukemia, Medical Oncology, 32, 1-3.

[12].  Mardis, E. R., 2008, Next-generation DNA sequencing methods, Annual Review of Genomics and Human Genetics, 9(1), 387-402.

[13].  Sabour, L., Sabour, M., and Ghorbian, S., 2017, Clinical applications of next-generation sequencing in cancer diagnosis, Pathology & Oncology Research, 23, 225-234.

[14].  Kyrochristos, I. D., Glantzounis, G. K., Ziogas, D. E., Gizas, I., Schizas, D., Lykoudis, E. G., and Roukos, D. H., 2017, From clinical standards to translating next-generation sequencing research into patient care improvement for hepatobiliary and pancreatic cancers, International Journal of Molecular Sciences, 18(1), 180.

[15].  Lazaro, T., and Brastianos, P. K., 2017, Immunotherapy and targeted therapy in brain metastases: emerging options in precision medicine, CNS Oncology, 6(2), 139-151.

[16].  Ferreira-Gonzalez, A., Ko, G., Fusco, N., Stewart, F., Kistler, K., Appukkuttan, S., and Babajanyan, S., 2024, Barriers and facilitators to next-generation sequencing use in United States oncology settings: a systematic review, Future Oncology, 20(35), 2765-2777.

[17].  Chen, M., and Zhao, H., 2019, Next-generation sequencing in liquid biopsy: cancer screening and early detection, Human Genomics, 13(1), 34.

[18].  Chalmers, Z. R., Connelly, C. F., Fabrizio, D., Gay, L., Ali, S. M., Ennis, R., and Frampton, G. M., 2017, Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden, Genome Medicine, 9, 1-14.

[19].  Druker, B. J., Guilhot, F., O'Brien, S. G., Gathmann, I., Kantarjian, H., Gattermann, N., and Larson, R. A., 2006, Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia, New England Journal of Medicine, 355(23), 2408-2417.

[20].  Nahta, R., 2012, Molecular mechanisms of trastuzumab‐based treatment in HER2‐overexpressing breast cancer, International Scholarly Research Notices, 2012(1), 428062.

[21].  Shaw, A. T., Ou, S. H. I., Bang, Y. J., Camidge, D. R., Solomon, B. J., Salgia, R., and Iafrate, A. J., 2014, Crizotinib in ROS1-rearranged non–small-cell lung cancer, New England Journal of Medicine, 371(21), 1963-1971.

[22].  Krzyszczyk, P., Acevedo, A., Davidoff, E. J., Timmins, L. M., Marrero-Berrios, I., Patel, M., and Yarmush, M. L., 2018, The growing role of precision and personalized medicine for cancer treatment, Technology, 6(03n04), 79-100.

[23].  Hauschild, A., Grob, J. J., Demidov, L. V., Jouary, T., Gutzmer, R., Millward, M., and Chapman, P. B., 2012, Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial, The Lancet, 380(9839), 358-365.

[24].  Saltz, L. B., Lenz, H. J., Kindler, H. L., Hochster, H. S., Wadler, S., Hoff, P. M., and Chen, H. X., 2007, Randomized phase II trial of cetuximab, bevacizumab, and irinotecan compared with cetuximab and bevacizumab alone in irinotecan-refractory colorectal cancer: the BOND-2 study, Journal of Clinical Oncology, 25(29), 4557-4561.

[25].  Malani, P. N., 2012, Harrison’s principles of internal medicine, JAMA, 308(17), 1813-1814.

[26].  Ribas, A., and Wolchok, J. D., 2018, Cancer immunotherapy using checkpoint blockade, Science, 359(6382), 1350-1355.

[27].  Zhang, Q., Huo, G. W., Zhang, H. Z., and Song, Y., 2020, Efficacy of pembrolizumab for advanced/metastatic melanoma: a meta-analysis, Open Medicine, 15(1), 447-456.

[28].  Si, Y., Melkonian, A. L., Curry, K. C., Xu, Y., Tidwell, M., Liu, M., and Liu, X. M., 2021, Monoclonal antibody-based cancer therapies, Chinese Journal of Chemical Engineering, 30, 301-307.

[29].  Ayodele, O., and Razak, A. A., 2020, Immunotherapy in soft-tissue sarcoma, Current Oncology, 27(Suppl 1), 17.

[30].  Kimiz-Gebologlu, I., Gulce-Iz, S., and Biray-Avci, C., 2018, Monoclonal antibodies in cancer immunotherapy, Molecular Biology Reports, 45(6), 2935-2940.

[31].  Malani, P. N., 2012, Harrison’s principles of internal medicine, JAMA, 308(17), 1813-1814.

[32].  Ribas, A., and Wolchok, J. D., 2018, Cancer immunotherapy using checkpoint blockade, Science, 359(6382), 1350-1355.

[33].  Zhang, Q., Huo, G. W., Zhang, H. Z., and Song, Y., 2020, Efficacy of pembrolizumab for advanced/metastatic melanoma: a meta-analysis, Open Medicine, 15(1), 447-456.

[34].  Si, Y., Melkonian, A. L., Curry, K. C., Xu, Y., Tidwell, M., Liu, M., and Liu, X. M., 2021, Monoclonal antibody-based cancer therapies, Chinese Journal of Chemical Engineering, 30, 301-307.

[35].  In, G. K., Hu, J. S., and Tseng, W. W., 2017, Treatment of advanced, metastatic soft tissue sarcoma: latest evidence and clinical considerations, Therapeutic Advances in Medical Oncology, 9(8), 533-550.

[36].  Kimiz-Gebologlu, I., Gulce-Iz, S., and Biray-Avci, C., 2018, Monoclonal antibodies in cancer immunotherapy, Molecular Biology Reports, 45(6), 2935-2940.

[37].  Janne, P. A., Engelman, J. A., and Johnson, B. E., 2005, Epidermal growth factor receptor mutations in non–small-cell lung cancer: implications for treatment and tumor biology, Journal of Clinical Oncology, 23(14), 3227-3234.

[38].  Hudis, C. A., and Gianni, L., 2011, Triple‐negative breast cancer: an unmet medical need, The Oncologist, 16(S1), 1-11.

[39].  Jain, R. K., Duda, D. G., Willett, C. G., Sahani, D. V., Zhu, A. X., Loeffler, J. S., and Sorensen, A. G., 2009, Biomarkers of response and resistance to antiangiogenic therapy, Nature Reviews Clinical Oncology, 6(6), 327-338.

[40].  Le, D. T., Uram, J. N., Wang, H., Bartlett, B. R., Kemberling, H., Eyring, A. D., and Diaz Jr, L. A., 2015, PD-1 blockade in tumors with mismatch-repair deficiency, New England Journal of Medicine, 372(26), 2509-2520.

[41].  McGranahan, N., and Swanton, C., 2015, Biological and therapeutic impact of intratumor heterogeneity in cancer evolution, Cancer Cell, 27(1), 15-26.

[42].  Grigg, C., and Rizvi, N. A., 2016, PD-L1 biomarker testing for non-small cell lung cancer: truth or fiction?, Journal for Immunotherapy of Cancer, 4(1), 48.

[43].  Lim, S. M., Syn, N. L., Cho, B. C., and Soo, R. A., 2018, Acquired resistance to EGFR targeted therapy in non-small cell lung cancer: mechanisms and therapeutic strategies, Cancer Treatment Reviews, 65, 1-10.

[44].  McCarthy, J. J., McLeod, H. L., and Ginsburg, G. S., 2013, Genomic medicine: a decade of successes, challenges, and opportunities, Science Translational Medicine, 5(189), 189sr4-189sr4.

[45].  Choi, H. Y., and Chang, J. E., 2023, Targeted therapy for cancers: from ongoing clinical trials to FDA-approved drugs, International Journal of Molecular Sciences, 24(17), 13618.

[46].  Tesi, B., Boileau, C., Boycott, K. M., Canaud, G., Caulfield, M., Choukair, D., and Lindstrand, A., 2023, Precision medicine in rare diseases: what is next?, Journal of Internal Medicine, 294(4), 397-412.

[47].  Sharma, S. V., Bell, D. W., Settleman, J., and Haber, D. A., 2007, Epidermal growth factor receptor mutations in lung cancer, Nature Reviews Cancer, 7(3), 169-181.

[48].  Islam, A., Shaukat, Z., Hussain, R., and Gregory, S. L., 2022, One-carbon and polyamine metabolism as cancer therapy targets, Biomolecules, 12(12), 1902.

[49].  Zhang, Z., Stiegler, A. L., Boggon, T. J., Kobayashi, S., and Halmos, B., 2010, EGFR-mutated lung cancer: a paradigm of molecular oncology, Oncotarget, 1(7), 497.

[50].  Mosele, F., Remon, J., Mateo, J., Westphalen, C. B., Barlesi, F., Lolkema, M. P., and André, F., 2020, Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group, Annals of Oncology, 31(11), 1491-1505.

[51].  Wu, J., and Lin, Z., 2022, Non-small cell lung cancer targeted therapy: drugs and mechanisms of drug resistance, International Journal of Molecular Sciences, 23(23), 15056.

[52].  Bahar, M. E., Kim, H. J., and Kim, D. R., 2023, Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies, Signal Transduction and Targeted Therapy, 8(1), 455.

[53].  Ke, X., and Shen, L., 2017, Molecular targeted therapy of cancer: The progress and future prospect, Frontiers in Laboratory Medicine, 1(2), 69-75.

[54].  Bai, R., Chen, N., Li, L., Du, N., Bai, L., Lv, Z., and Cui, J., 2020, Mechanisms of cancer resistance to immunotherapy, Frontiers in Oncology, 10, 1290.

[55].  Le, D. T., Uram, J. N., Wang, H., Bartlett, B. R., Kemberling, H., Eyring, A. D., and Diaz Jr, L. A., 2015, PD-1 blockade in tumors with mismatch-repair deficiency, New England Journal of Medicine, 372(26), 2509-2520.

[56].  McGranahan, N., and Swanton, C., 2015, Biological and therapeutic impact of intratumor heterogeneity in cancer evolution, Cancer Cell, 27(1), 15-26.

[57].  Breimer, L. H., Nousios, P., Olsson, L., and Brunnström, H., 2020, Immune checkpoint inhibitors of the PD-1/PD-L1-axis in non-small cell lung cancer: promise, controversies and ambiguities in the novel treatment paradigm, Scandinavian Journal of Clinical and Laboratory Investigation, 80(5), 360-369.

[58].  Lim, S. M., Syn, N. L., Cho, B. C., and Soo, R. A., 2018, Acquired resistance to EGFR targeted therapy in non-small cell lung cancer: mechanisms and therapeutic strategies, Cancer Treatment Reviews, 65, 1-10.

[59].  McCarthy, J. J., McLeod, H. L., and Ginsburg, G. S., 2013, Genomic medicine: a decade of successes, challenges, and opportunities, Science Translational Medicine, 5(189), 189sr4-189sr4.

[60].  Cervello, M., McCubrey, J. A., Cusimano, A., Lampiasi, N., Azzolina, A., and Montalto, G., 2012, Targeted therapy for hepatocellular carcinoma: novel agents on the horizon, Oncotarget, 3(3), 236.

[61].  Mosele, F., Remon, J., Mateo, J., Westphalen, C. B., Barlesi, F., Lolkema, M. P., and André, F., 2020, Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group, Annals of Oncology, 31(11), 1491-1505.

[62].  Banerjee, D., Bhattacharya, A., Puri, A., Munde, S., Mukerjee, N., Mohite, P., and Al Shmrany, H., 2024, Innovative approaches in stem cell therapy: revolutionizing cancer treatment and advancing neurobiology–a comprehensive review, International Journal of Surgery, 110(12), 445-461.

[63].  Shanmugarathinam, A., Elamaran, N., Kirubakaran, D., Irulappan, G.B., Baig, A.A. and Vasantharaj, K., 2025, Sustainable Synthesis of Zinc Oxide Nanoparticles from Vicoa indica Leaf Extract: Characterization and Evaluation of Antibacterial, Antioxidant, and Anticancer Properties. Biomedical Materials & Devices, 1-16.

[64].  Malakondaiah, S., Pavithravedhavalli, V., Kayal, L., Ryntathiang, I., and Jothinathan, M. K. D., 2024, Stem cell therapy: A new path in tackling oral cancer. Journal of Stomatology, Oral and Maxillofacial Surgery, 101967.

[65].  Shekar, N. D., Kayal, L., Babu, N. A., Jothinathan, M. K. D., and Ryntathiang, I., 2024, Pioneering the use of micro-biomarkers in oral cancer detection. Oral Oncology Reports, 100412.