Intersection of Precision Medicine and Cancer Therapy

Abstract:
Customizing treatments according to
each patient's distinct genetic, molecular, and clinical traits, precision
medicine holds the potential to completely transform the way cancer is treated.
Advances in immunotherapy, liquid biopsy technology, multi-omics, and gene
editing methods like CRISPR are all contributing to this strategy. By combining
these advancements, it will be possible to develop tailored medicines that
focus on the underlying genetic causes of cancer, increasing the precision and
efficacy of cancer treatments. Furthermore, machine learning and artificial
intelligence provide strong instruments for forecasting therapy outcomes and
refining therapeutic approaches. Widespread adoption is still hampered by
issues like the intricacy of cancer genetics, the high expense of sophisticated
therapies, restricted access in environments with limited resources, and the
requirement for uniform clinical data. In order to alter global cancer
treatment and improve patient outcomes, it will be imperative to address these
issues and guarantee that all patients may benefit from precision medicine.
References:
[1].
Collins,
F. S., and Varmus, H., 2015, A new initiative on precision medicine, New
England Journal of Medicine, 372(9), 793-795.
[2].
National
Research Council, 2011, Toward precision medicine: Building a knowledge network
for biomedical research and a new taxonomy of disease, National Academies
Press.
[3].
Ashley,
E. A., 2015, The precision medicine initiative: a new national effort, JAMA,
313(21), 2119-2120.
[4].
Szalai,
R., Hadzsiev, K., and Melegh, B., 2016, Cytochrome P450 drug metabolizing
enzymes in Roma population samples: systematic review of the literature, Current
Medicinal Chemistry, 23(31), 3632-3652.
[5].
Advani,
D., Sharma, S., Kumari, S., Ambasta, R. K., and Kumar, P., 2022, Precision
oncology, signaling, and anticancer agents in cancer therapeutics, Anti-Cancer
Agents in Medicinal Chemistry, 22(3), 433-468.
[6].
Ross,
D. T., Scherf, U., Eisen, M. B., Perou, C. M., Rees, C., Spellman, P., and
Brown, P. O., 2000, Systematic variation in gene expression patterns in human
cancer cell lines, Nature Genetics, 24(3), 227-235.
[7].
Bashor,
C. J., Hilton, I. B., Bandukwala, H., Smith, D. M., and Veiseh, O., 2022,
Engineering the next generation of cell-based therapeutics, Nature Reviews
Drug Discovery, 21(9), 655-675.
[8].
Stratton,
M. R., Campbell, P. J., and Futreal, P. A., 2009, The cancer genome, Nature,
458(7239), 719-724.
[9].
Hurley,
J., Doliny, P., Reis, I., Silva, O., Gomez-Fernandez, C., Velez, P., and
Slamon, D. J., 2006, Docetaxel, cisplatin, and trastuzumab as primary systemic
therapy for human epidermal growth factor receptor 2–positive locally advanced
breast cancer, Journal of Clinical Oncology, 24(12), 1831-1838.
[10].
Abdel-Aziz,
A. K., Abdel-Naim, A. B., Shouman, S., Minucci, S., and Elgendy, M., 2017, From
resistance to sensitivity: insights and implications of biphasic modulation of
autophagy by sunitinib, Frontiers in Pharmacology, 8, 718.
[11].
Zhang,
L. J., Gan, Y. M., and Yu, L., 2015, Occurrence of BCR/ABL fusion gene in a
patient with acute promyelocytic leukemia, Medical Oncology, 32, 1-3.
[12].
Mardis,
E. R., 2008, Next-generation DNA sequencing methods, Annual Review of
Genomics and Human Genetics, 9(1), 387-402.
[13].
Sabour,
L., Sabour, M., and Ghorbian, S., 2017, Clinical applications of
next-generation sequencing in cancer diagnosis, Pathology & Oncology
Research, 23, 225-234.
[14].
Kyrochristos,
I. D., Glantzounis, G. K., Ziogas, D. E., Gizas, I., Schizas, D., Lykoudis, E.
G., and Roukos, D. H., 2017, From clinical standards to translating
next-generation sequencing research into patient care improvement for
hepatobiliary and pancreatic cancers, International Journal of Molecular
Sciences, 18(1), 180.
[15].
Lazaro,
T., and Brastianos, P. K., 2017, Immunotherapy and targeted therapy in brain
metastases: emerging options in precision medicine, CNS Oncology, 6(2),
139-151.
[16].
Ferreira-Gonzalez,
A., Ko, G., Fusco, N., Stewart, F., Kistler, K., Appukkuttan, S., and
Babajanyan, S., 2024, Barriers and facilitators to next-generation sequencing
use in United States oncology settings: a systematic review, Future Oncology,
20(35), 2765-2777.
[17].
Chen,
M., and Zhao, H., 2019, Next-generation sequencing in liquid biopsy: cancer
screening and early detection, Human Genomics, 13(1), 34.
[18].
Chalmers,
Z. R., Connelly, C. F., Fabrizio, D., Gay, L., Ali, S. M., Ennis, R., and
Frampton, G. M., 2017, Analysis of 100,000 human cancer genomes reveals the
landscape of tumor mutational burden, Genome Medicine, 9, 1-14.
[19].
Druker,
B. J., Guilhot, F., O'Brien, S. G., Gathmann, I., Kantarjian, H., Gattermann,
N., and Larson, R. A., 2006, Five-year follow-up of patients receiving imatinib
for chronic myeloid leukemia, New England Journal of Medicine, 355(23),
2408-2417.
[20].
Nahta,
R., 2012, Molecular mechanisms of trastuzumab‐based treatment in
HER2‐overexpressing breast cancer, International Scholarly Research Notices,
2012(1), 428062.
[21].
Shaw,
A. T., Ou, S. H. I., Bang, Y. J., Camidge, D. R., Solomon, B. J., Salgia, R.,
and Iafrate, A. J., 2014, Crizotinib in ROS1-rearranged non–small-cell lung
cancer, New England Journal of Medicine, 371(21), 1963-1971.
[22].
Krzyszczyk,
P., Acevedo, A., Davidoff, E. J., Timmins, L. M., Marrero-Berrios, I., Patel,
M., and Yarmush, M. L., 2018, The growing role of precision and personalized
medicine for cancer treatment, Technology, 6(03n04), 79-100.
[23].
Hauschild,
A., Grob, J. J., Demidov, L. V., Jouary, T., Gutzmer, R., Millward, M., and
Chapman, P. B., 2012, Dabrafenib in BRAF-mutated metastatic melanoma: a
multicentre, open-label, phase 3 randomised controlled trial, The Lancet,
380(9839), 358-365.
[24].
Saltz,
L. B., Lenz, H. J., Kindler, H. L., Hochster, H. S., Wadler, S., Hoff, P. M.,
and Chen, H. X., 2007, Randomized phase II trial of cetuximab, bevacizumab, and
irinotecan compared with cetuximab and bevacizumab alone in
irinotecan-refractory colorectal cancer: the BOND-2 study, Journal of
Clinical Oncology, 25(29), 4557-4561.
[25].
Malani,
P. N., 2012, Harrison’s principles of internal medicine, JAMA, 308(17),
1813-1814.
[26].
Ribas,
A., and Wolchok, J. D., 2018, Cancer immunotherapy using checkpoint blockade, Science,
359(6382), 1350-1355.
[27].
Zhang,
Q., Huo, G. W., Zhang, H. Z., and Song, Y., 2020, Efficacy of pembrolizumab for
advanced/metastatic melanoma: a meta-analysis, Open Medicine, 15(1),
447-456.
[28].
Si,
Y., Melkonian, A. L., Curry, K. C., Xu, Y., Tidwell, M., Liu, M., and Liu, X.
M., 2021, Monoclonal antibody-based cancer therapies, Chinese Journal of
Chemical Engineering, 30, 301-307.
[29].
Ayodele,
O., and Razak, A. A., 2020, Immunotherapy in soft-tissue sarcoma, Current
Oncology, 27(Suppl 1), 17.
[30].
Kimiz-Gebologlu,
I., Gulce-Iz, S., and Biray-Avci, C., 2018, Monoclonal antibodies in cancer
immunotherapy, Molecular Biology Reports, 45(6), 2935-2940.
[31].
Malani,
P. N., 2012, Harrison’s principles of internal medicine, JAMA, 308(17),
1813-1814.
[32].
Ribas,
A., and Wolchok, J. D., 2018, Cancer immunotherapy using checkpoint blockade, Science,
359(6382), 1350-1355.
[33].
Zhang,
Q., Huo, G. W., Zhang, H. Z., and Song, Y., 2020, Efficacy of pembrolizumab for
advanced/metastatic melanoma: a meta-analysis, Open Medicine, 15(1),
447-456.
[34].
Si,
Y., Melkonian, A. L., Curry, K. C., Xu, Y., Tidwell, M., Liu, M., and Liu, X.
M., 2021, Monoclonal antibody-based cancer therapies, Chinese Journal of
Chemical Engineering, 30, 301-307.
[35].
In,
G. K., Hu, J. S., and Tseng, W. W., 2017, Treatment of advanced, metastatic
soft tissue sarcoma: latest evidence and clinical considerations, Therapeutic
Advances in Medical Oncology, 9(8), 533-550.
[36].
Kimiz-Gebologlu,
I., Gulce-Iz, S., and Biray-Avci, C., 2018, Monoclonal antibodies in cancer
immunotherapy, Molecular Biology Reports, 45(6), 2935-2940.
[37].
Janne,
P. A., Engelman, J. A., and Johnson, B. E., 2005, Epidermal growth factor
receptor mutations in non–small-cell lung cancer: implications for treatment
and tumor biology, Journal of Clinical Oncology, 23(14), 3227-3234.
[38].
Hudis,
C. A., and Gianni, L., 2011, Triple‐negative breast cancer: an unmet medical
need, The Oncologist, 16(S1), 1-11.
[39].
Jain,
R. K., Duda, D. G., Willett, C. G., Sahani, D. V., Zhu, A. X., Loeffler, J. S.,
and Sorensen, A. G., 2009, Biomarkers of response and resistance to
antiangiogenic therapy, Nature Reviews Clinical Oncology, 6(6), 327-338.
[40].
Le,
D. T., Uram, J. N., Wang, H., Bartlett, B. R., Kemberling, H., Eyring, A. D.,
and Diaz Jr, L. A., 2015, PD-1 blockade in tumors with mismatch-repair
deficiency, New England Journal of Medicine, 372(26), 2509-2520.
[41].
McGranahan,
N., and Swanton, C., 2015, Biological and therapeutic impact of intratumor
heterogeneity in cancer evolution, Cancer Cell, 27(1), 15-26.
[42].
Grigg,
C., and Rizvi, N. A., 2016, PD-L1 biomarker testing for non-small cell lung
cancer: truth or fiction?, Journal for Immunotherapy of Cancer, 4(1),
48.
[43].
Lim,
S. M., Syn, N. L., Cho, B. C., and Soo, R. A., 2018, Acquired resistance to
EGFR targeted therapy in non-small cell lung cancer: mechanisms and therapeutic
strategies, Cancer Treatment Reviews, 65, 1-10.
[44].
McCarthy,
J. J., McLeod, H. L., and Ginsburg, G. S., 2013, Genomic medicine: a decade of
successes, challenges, and opportunities, Science Translational Medicine,
5(189), 189sr4-189sr4.
[45].
Choi,
H. Y., and Chang, J. E., 2023, Targeted therapy for cancers: from ongoing
clinical trials to FDA-approved drugs, International Journal of Molecular
Sciences, 24(17), 13618.
[46].
Tesi,
B., Boileau, C., Boycott, K. M., Canaud, G., Caulfield, M., Choukair, D., and
Lindstrand, A., 2023, Precision medicine in rare diseases: what is next?, Journal
of Internal Medicine, 294(4), 397-412.
[47].
Sharma,
S. V., Bell, D. W., Settleman, J., and Haber, D. A., 2007, Epidermal growth
factor receptor mutations in lung cancer, Nature Reviews Cancer, 7(3),
169-181.
[48].
Islam,
A., Shaukat, Z., Hussain, R., and Gregory, S. L., 2022, One-carbon and
polyamine metabolism as cancer therapy targets, Biomolecules, 12(12),
1902.
[49].
Zhang,
Z., Stiegler, A. L., Boggon, T. J., Kobayashi, S., and Halmos, B., 2010,
EGFR-mutated lung cancer: a paradigm of molecular oncology, Oncotarget, 1(7),
497.
[50].
Mosele,
F., Remon, J., Mateo, J., Westphalen, C. B., Barlesi, F., Lolkema, M. P., and
André, F., 2020, Recommendations for the use of next-generation sequencing
(NGS) for patients with metastatic cancers: a report from the ESMO Precision
Medicine Working Group, Annals of Oncology, 31(11), 1491-1505.
[51].
Wu,
J., and Lin, Z., 2022, Non-small cell lung cancer targeted therapy: drugs and
mechanisms of drug resistance, International Journal of Molecular Sciences,
23(23), 15056.
[52].
Bahar,
M. E., Kim, H. J., and Kim, D. R., 2023, Targeting the RAS/RAF/MAPK pathway for
cancer therapy: from mechanism to clinical studies, Signal Transduction and
Targeted Therapy, 8(1), 455.
[53].
Ke,
X., and Shen, L., 2017, Molecular targeted therapy of cancer: The progress and
future prospect, Frontiers in Laboratory Medicine, 1(2), 69-75.
[54].
Bai,
R., Chen, N., Li, L., Du, N., Bai, L., Lv, Z., and Cui, J., 2020, Mechanisms of
cancer resistance to immunotherapy, Frontiers in Oncology, 10, 1290.
[55].
Le,
D. T., Uram, J. N., Wang, H., Bartlett, B. R., Kemberling, H., Eyring, A. D.,
and Diaz Jr, L. A., 2015, PD-1 blockade in tumors with mismatch-repair
deficiency, New England Journal of Medicine, 372(26), 2509-2520.
[56].
McGranahan,
N., and Swanton, C., 2015, Biological and therapeutic impact of intratumor
heterogeneity in cancer evolution, Cancer Cell, 27(1), 15-26.
[57].
Breimer,
L. H., Nousios, P., Olsson, L., and Brunnström, H., 2020, Immune checkpoint
inhibitors of the PD-1/PD-L1-axis in non-small cell lung cancer: promise,
controversies and ambiguities in the novel treatment paradigm, Scandinavian
Journal of Clinical and Laboratory Investigation, 80(5), 360-369.
[58].
Lim,
S. M., Syn, N. L., Cho, B. C., and Soo, R. A., 2018, Acquired resistance to
EGFR targeted therapy in non-small cell lung cancer: mechanisms and therapeutic
strategies, Cancer Treatment Reviews, 65, 1-10.
[59].
McCarthy,
J. J., McLeod, H. L., and Ginsburg, G. S., 2013, Genomic medicine: a decade of
successes, challenges, and opportunities, Science Translational Medicine,
5(189), 189sr4-189sr4.
[60].
Cervello,
M., McCubrey, J. A., Cusimano, A., Lampiasi, N., Azzolina, A., and Montalto,
G., 2012, Targeted therapy for hepatocellular carcinoma: novel agents on the
horizon, Oncotarget, 3(3), 236.
[61].
Mosele,
F., Remon, J., Mateo, J., Westphalen, C. B., Barlesi, F., Lolkema, M. P., and
André, F., 2020, Recommendations for the use of next-generation sequencing
(NGS) for patients with metastatic cancers: a report from the ESMO Precision
Medicine Working Group, Annals of Oncology, 31(11), 1491-1505.
[62].
Banerjee, D., Bhattacharya, A., Puri, A.,
Munde, S., Mukerjee, N., Mohite, P., and Al Shmrany, H., 2024, Innovative
approaches in stem cell therapy: revolutionizing cancer treatment and advancing
neurobiology–a comprehensive review, International Journal of Surgery,
110(12), 445-461.
[63].
Shanmugarathinam, A., Elamaran, N.,
Kirubakaran, D., Irulappan, G.B., Baig, A.A. and Vasantharaj, K., 2025, Sustainable
Synthesis of Zinc Oxide Nanoparticles from Vicoa indica Leaf Extract:
Characterization and Evaluation of Antibacterial, Antioxidant, and Anticancer
Properties. Biomedical Materials & Devices, 1-16.
[64].
Malakondaiah, S., Pavithravedhavalli, V.,
Kayal, L., Ryntathiang, I., and Jothinathan, M. K. D., 2024, Stem cell therapy:
A new path in tackling oral cancer. Journal of Stomatology, Oral and
Maxillofacial Surgery, 101967.
[65].
Shekar, N. D., Kayal, L., Babu, N. A.,
Jothinathan, M. K. D., and Ryntathiang, I., 2024, Pioneering the use of
micro-biomarkers in oral cancer detection. Oral Oncology Reports,
100412.