Assessing Median Nerve Regeneration in Rodent Models– A Systematic Review

Abstract:
Peripheral nerve
injuries (PNI), particularly median nerve injuries, lead to significant motor
and sensory impairments, affecting daily function and quality of life. Rodent
models are extensively used for studying nerve regeneration due to their physiological
similarity to humans. Accurate assessment of nerve regeneration is critical for
evaluating therapeutic approaches, yet existing methods lack standardization
and comprehensive analysis. A systematic review was conducted following PRISMA
guidelines, searching databases including PubMed, Google scholar and science
direct from 2013 to 2024. Inclusion criteria focused on studies using rodent
models to investigate median nerve regeneration with surgical interventions and
reporting functional, physiological, histomorphometry, or molecular outcomes. Out
of 110 studies, 13 studies were selected and reviewed. The review identified
various assessment techniques includes, Functional test evaluates motor and
sensory recovery. Electrophysiological test measure nerve conduction velocity
and muscle action potentials. Histological analyses examine nerve morphology,
myelination, and axonal regeneration. Molecular methods assess gene expression
and protein markers. A multimodal approach combining these methods provides the
most comprehensive evaluation of nerve regeneration. This systematic review
highlights the current state of median nerve regeneration in rodent models. The
results suggest that rodent models are a valuable tool for studying nerve
regeneration and evaluating potential therapeutic interventions. However, there
is a need for standardization in the methods used to assess nerve regeneration,
as well as the reporting of study results.
References:
[1]. Lopes, B., Sousa, P., Alvites, R., Branquinho, M., Sousa, A. C., Mendonça, C., Atayde, L. M., Luís, A. L., Varejão, A. S., and Maurício, A. C., 2022, Peripheral nerve injury treatments and advances: One health perspective. International Journal of Molecular Sciences, 23(2), pp.918. https://doi.org/10.3390/ijms23020918
[2]. Modrak, M., Talukder, M. A. H., Gurgenashvili, K., Noble, M., and Elfar, J. C., 2020, Peripheral nerve injury and myelination: Potential therapeutic strategies. Journal of Neuroscience Research, 98(5), pp.780-795. https://doi.org/10.1002/jnr.24538
[3]. Kraus, G. E., 2024, 14 Peripheral neuropathies. In Handbook of Medical Aspects of Disability and Rehabilitation for Life Care Planning (pp. 1-XX).
[4]. Novak, C. B., Anastakis, D. J., Beaton, D. E., Mackinnon, S. E., and Katz, J., 2011, Biomedical and psychosocial factors associated with disability after peripheral nerve injury. The Journal of Bone and Joint Surgery, 93(10), pp.929-936. https://doi.org/10.2106/JBJS.J.00110
[5]. Ciaramitaro, P., Mondelli, M., Logullo, F., Grimaldi, S., Battiston, B., Sard, A., Scarinzi, C., Migliaretti, G., Faccani, G., Cocito, D., and Italian Network for Traumatic Neuropathies, 2010, Traumatic peripheral nerve injuries: Epidemiological findings, neuropathic pain, and quality of life in 158 patients. Journal of the Peripheral Nervous System, 15(2), pp.120-127. https://doi.org/10.1111/j.1529-8027.2010.00260.x
[6]. Dun, S., Kaufmann, R. A., and Li, Z. M., 2007, Lower median nerve block impairs precision grip. Journal of Electromyography and Kinesiology, 17(3), pp.348-354. https://doi.org/10.1016/j.jelekin.2006.02.002
[7]. Kuo, L. C., Hsu, H. M., Wu, P. T., Lin, S. C., Hsu, H. Y., and Jou, I. M., 2014, Impact of distal median neuropathy on handwriting performance for patients with carpal tunnel syndrome in office and administrative support occupations. Journal of Occupational Rehabilitation, 24, pp.332-343. https://doi.org/10.1007/s10926-013-9471-8
[8]. Kim, H. J., and Park, S. H., 2014, Median nerve injuries caused by carpal tunnel injections. The Korean Journal of Pain, 27(2), pp.112-117. https://doi.org/10.3344/kjp.2014.27.2.112
[9]. Pederson, W. C., 2014, Median nerve injury and repair. The Journal of Hand Surgery, 39(6), pp.1216-1222. https://doi.org/10.1016/j.jhsa.2014.01.025
[10]. Dydyk, A. M., Negrete, G., and Cascella, M., 2021, Median nerve injury. StatPearls Publishing. Available at: https://pubmed.ncbi.nlm.nih.gov/31971749/
[11]. Ronchi, G., Morano, M., Fregnan, F., Pugliese, P., Crosio, A., Tos, P., Geuna, S., Haastert-Talini, K., and Gambarotta, G., 2019, The median nerve injury model in pre-clinical research–a critical review on benefits and limitations. Frontiers in Cellular Neuroscience, 13, p.288. https://doi.org/10.3389/fncel.2019.00288
[12]. Heinzel, J., Längle, G., Oberhauser, V., Hausner, T., Kolbenschlag, J., Prahm, C., Grillari, J., and Hercher, D., 2021, Corrigendum to "Use of the CatWalk gait analysis system to assess functional recovery in rodent models of peripheral nerve injury-a systematic review". Journal of Neuroscience Methods, 348, p.108996. https://doi.org/10.1016/j.jneumeth.2020.108889
[13]. Rajesh Kumar, K. S., Veeraraghavan, V. P., and Jayaraman, S., Sativoside Mitigates High-Fat Diet-Induced Inflammation and Type-2 Diabetes in Adipose Tissue of Wistar Rats.
[14]. Ganesh, A., Gayathri, R., Selvaraj, J., and Priya, V. V., Study on Polychlorinated Biphenyls-Induced Changes in the Expression of Pro Inflammatory Markers and the Therapeutic Role of Vitamin C And E.
[15]. Prenetha, R., Kavitha, S., Vishnupriya, V., Selvaraj, J., and Gayathri, R., Glyphosate Caused Detrimental Changes in Enzymatic Antioxidants in Rats.
[16]. Vandamme, T. F., 2015, Rodent models for human diseases. European Journal of Pharmacology, 759, pp.84-89. https://doi.org/10.1016/j.ejphar.2015.03.046
[17]. Clark, B. D., Barr, A. E., Safadi, F. F., Beitman, L., Al-Shatti, T., Amin, M., Gaughan, J. P., and Barbe, M. F., 2003, Median nerve trauma in a rat model of work-related musculoskeletal disorder. Journal of Neurotrauma, 20(7), pp.681-695. https://doi.org/10.1089/089771503322144590
[18]. Shi, X., Bai, H., Wang, J., Wang, J., Huang, L., He, M., Zheng, X., Duan, Z., Chen, D., Zhang, J., and Chen, X., 2021, Behavioral assessment of sensory, motor, emotion, and cognition in rodent models of intracerebral hemorrhage. Frontiers in Neurology, 12, p.667511. https://doi.org/10.3389/fneur.2021.667511
[19]. Han, D., Lu, J., Xu, L., and Xu, J., 2015, Comparison of two electrophysiological methods for the assessment of progress in a rat model of nerve repair. International Journal of Clinical and Experimental Medicine, 8(2), pp.2392-2399.
[20]. Wolthers, M., Moldovan, M., Binderup, T., Schmalbruch, H., and Krarup, C., 2005, Comparative electrophysiological, functional, and histological studies of nerve lesions in rats. Microsurgery, 25(6), pp.508-519. https://doi.org/10.1002/micr.20156
[21]. Navarro, X., 2016, Functional evaluation of peripheral nerve regeneration and target reinnervation in animal models: A critical overview. European Journal of Neuroscience, 43(3), pp.271-286. https://doi.org/10.1111/ejn.13033
[22]. Casal, D., Mota-Silva, E., Iria, I., Alves, S., Farinho, A., Pen, C., Lourenco-Silva, N., Mascarenhas-Lemos, L., Silva-Ferreira, J., Ferraz-Oliveira, M., and Vassilenko, V., 2018, Reconstruction of a 10-mm-long median nerve gap in an ischemic environment using autologous conduits with different patterns of blood supply: A comparative study in the rat. PLOS ONE, 13(4), p.e0195692. https://doi.org/10.1371/journal.pone.0195692
[23]. Hooijmans, C. R., Rovers, M. M., De Vries, R. B., Leenaars, M., Ritskes-Hoitinga, M., and Langendam, M. W., 2014, SYRCLE's risk of bias tool for animal studies. BMC Medical Research Methodology, 14, p.43. https://doi.org/10.1186/1471-2288-14-43
[24]. Daley, P., Pomares, G., Gross, R., Menu, P., Dauty, M., and Fouasson-Chailloux, A., 2022, Use of electroneuromyography in the diagnosis of neurogenic thoracic outlet syndrome: A systematic review and meta-analysis. Journal of Clinical Medicine, 11(17), p.5206. https://doi.org/10.3390/jcm11175206
[25]. Ni, Z., Vial, F., Avram, A.V., Leodori, G., Pajevic, S., Basser, P. J., and Hallett, M., 2020, Measuring conduction velocity distributions in peripheral nerves using neurophysiological techniques. Clinical Neurophysiology, 131(7), pp.1581-1588. https://doi.org/10.1016/j.clinph.2020.04.008
[26]. Chato-Astrain, J., García-García, O. D., Campos, F., Sánchez-Porras, D., and Carriel, V., 2022, Basic nerve histology and histological analyses following peripheral nerve repair and regeneration. In Peripheral Nerve Tissue Engineering and Regeneration (pp. 151-187). Springer International Publishing. https://doi.org/10.1007/978-3-030-21052-6_14
[27]. Muzio, M. R., and Cascella, M., 2021, Histology, axon. StatPearls Publishing. Available at: https://pubmed.ncbi.nlm.nih.gov/32119275/
[28]. Panagopoulos, G. N., Megaloikonomos, P. D., and Mavrogenis, A. F., 2017, The present and future for peripheral nerve regeneration. Orthopedics, 40(1), pp.e141-e156. https://doi.org/10.3928/01477447-20161019-01
[29]. Casal, D., Mota-Silva, E., Iria, I., Pais, D., Farinho, A., Alves, S., Pen, C., Mascarenhas-Lemos, L., Ferreira-Silva, J., Ferraz-Oliveira, M., and Vassilenko, V., 2020, Functional and physiological methods of evaluating median nerve regeneration in the rat. Journal of Visualized Experiments, 158, p.e59767. https://doi.org/10.3791/59767
[30]. Schaar, K. L., Brenneman, M. M., and Savitz, S. I., 2010, Functional assessments in the rodent stroke model. Experimental & Translational Stroke Medicine, 2, p.13. https://doi.org/10.1186/2040-7378-2-13
[31]. Maghimaa, M., Bharath, S. and Kandasamy, S., 2025. Carbon-Based Nanoparticles for Neural Regeneration. In Nanoparticles in Modern Neurological Treatment (pp. 263-282). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-80185-3_10