Targeted Physiotherapy Program for a Patient with Sellar- Space Occupying Lesion and Sensory Ganglionopathy

Abstract:
Complex neurological conditions
challenge the rehabilitation process. Sellar space-occupying lesions, mainly
pituitary adenomas, may affect neurovascular structures, causing visual
disturbances, hormonal imbalance, and neurological deficits. Sensory
ganglionopathy is a rare peripheral nervous system disorder which causes
proprioceptive deficits and impaired coordination. A 25-year-old male was
diagnosed with Sellar space occupying lesion and sensory ganglionopathy,
experienced impaired balance and coordination due to sensory deficits. These
impairments led to limitations in the functional independence of the patient. A
targeted physiotherapy program was implemented to address the multifaceted
needs of the patient, incorporating strategies such as proprioceptive training,
balance training, coordination exercises, strength training, sensory
re-education, and patient education. The session was conducted for 45–50
minutes, five times a week for a total duration of 6 weeks. Pre-and post-test
assessments was taken using the Berg Balance Scale, the Scale for the
Assessment Rating of Ataxia, Romberg's test and the Functional Independence
Measure. The patient demonstrated notable improvement in the outcome measures.
The study concluded that the targeted physiotherapy approach significantly
improved balance, coordination, proprioception and functional independence in a
patient with a seller space-occupying lesion and sensory ganglionopathy.
References:
[1]. Emanuelli, E., Zanotti, C., Munari, S., Baldovin, M., Schiavo, G., and Denaro, L., 2021. Sellar and parasellar lesions: multidisciplinary management. Acta Otorhinolaryngologica Italica, 41(2 Suppl 1), p.S30. https://doi.org/10.14639/0392-100X-suppl.1-41-2021-03
[2]. Ugga, L., Franca, R. A., Scaravilli, A., Solari, D., Cocozza, S., Tortora, F., Cavallo, L. M., De Caro, M. D. B., and Elefante, A., 2023. Neoplasms and tumor-like lesions of the sellar region: imaging findings with correlation to pathology and 2021 WHO classification. Neuroradiology, 65(4), pp.675-699.https://doi.org/10.1007/s00234-023-03120-1
[3]. Fong, R., Conger, A. R., 2023. Tumors of the Pituitary Gland, in: Neuro-Oncology Compendium for the Boards and Clinical Practice. Oxford University PressNew York, pp. 110-C7. P166. https://doi.org/10.1093/med/9780197573778.003.0007
[4]. Bhimani, A. D., Schupper, A. J., Arnone, G. D., Chada, D., Chaker, A. N., Mohammadi, N., Hadjipanayis, C. G., and Mehta, A. I., 2022. Size matters: rethinking of the sizing classification of pituitary adenomas based on the rates of surgery: a multi-institutional retrospective study of 29,651 patients. Journal of Neurological Surgery Part B: Skull Base, 83(01), pp.066-075. https://doi.org/10.1055/s-0040-1716673
[5]. Skiba, J., Skiba, Z., Tylczyńska, K., Tylczyńska, N., Kowalik, K., Michalska, M., Zielińska, A., Szypulski, S., Iwaniuk, S., and Maciejewski, I., 2024. Pituitary Neuroendocrine Tumors (PitNETs)–a literature review. Quality in Sport, 33, pp.55879-55879. https://doi.org/10.12775/QS.2024.33.55879
[6]. Appavu, N., 2025.Enhanced MRI-Based Brain Tumor Detection Using Deep Learning Architectures and Optimized Machine Learning Techniques,” in 2025 Eleventh International Conference on Bio Signals, Images, and Instrumentation (ICBSII), Chennai, India: IEEE, pp. 1–6. https://doi.org/10.1109/ICBSII65145.2025.11013258
[7]. Amato, A. A., and Ropper, A. H., 2020. Sensory ganglionopathy. New England Journal of Medicine, 383(17), pp.1657-1662. https://doi.org/10.1056/NEJMra2023935
[8]. Gwathmey, K. G., 2016. Sensory neuronopathies. Muscle & Nerve, 53(1), pp.8-19.https://doi.org/10.1002/mus.24943
[9]. Zis, P., Sarrigiannis, P. G., Rao, D. G., Hoggard, N., Sanders, D. S., and Hadjivassiliou, M., 2017. Cerebellar ataxia with sensory ganglionopathy; does autoimmunity have a role to play? Cerebellum & Ataxias, 4, pp.1-9. https://doi.org/10.1186/s40673-017-0079-1
[10]. Pereira, P. R., Viala, K., Maisonobe, T., Haroche, J., Mathian, A., Hié, M., Amoura, Z., and Aubart, F.C., 2016. Sjögren sensory neuronopathy (Sjögren ganglionopathy): long-term outcome and treatment response in a series of 13 cases. Medicine, 95(19), p.e3632. https://doi.org/10.1097/MD.0000000000003632
[11]. Sheikh, S. I., and Amato, A. A., 2010. The dorsal root ganglion under attack: the acquired sensory ganglionopathies. Practical neurology, 10(6), pp.326-334.https://doi.org/10.1136/jnnp.2010.230532
[12]. Grobe-Einsler, M., Amin, A. T., Faber, J., Völkel, H., Synofzik, M., and Klockgether, T., 2024. Scale for the assessment and rating of ataxia (SARA): development of a training tool and certification program. The Cerebellum, 23(3), pp.877-880. https://doi.org/10.1007/s12311-023-01543-3
[13]. Vadassery, S. J., Kong, K. H., Ho, W. M. L., and Seneviratna, A., 2019. Interview Functional Independence Measure score: self-reporting as a simpler alternative to multidisciplinary functional assessment. Singapore medical journal, 60(4), p.199.https://doi.org/10.11622/smedj.2018048
[14]. Anagnostou, E., Kouvli, M., Karagianni, E., Gamvroula, A., Kalamatianos, T., Stranjalis, G., and Skoularidou, M., 2024. Romberg's test revisited: Changes in classical and advanced sway metrics in patients with pure sensory neuropathy. Neurophysiologie Clinique, 54(5), p.102999. https://doi.org/10.1016/j.neucli.2024.102999
[15]. Sri Lekha, M., Vishnuram, S., K., R., Abathsagayam, K., Suganthirababu, P., 2025. Efficacy of Dynamic Neuromuscular Stabilization Exercises on Balance and Fall Risk in Subjects with Diabetic Peripheral Neuropathy among Geriatrics—A Pilot Study. Physical & Occupational Therapy In Geriatrics 1–15. https://doi.org/10.1080/02703181.2025.2467803
[16]. Milne, S. C., Corben, L. A., Roberts, M., Szmulewicz, D., Burns, J., Grobler, A.C., et al., 2020. Rehabilitation for ataxia study: protocol for a randomised controlled trial of an outpatient and supported home-based physiotherapy programme for people with hereditary cerebellar ataxia. BMJ open, 10(12), p.e040230. https://doi.org/10.1136/bmjopen-2020-040230
[17]. Missaoui, B., and Thoumie, P., 2009. How far do patients with sensory ataxia benefit from so-called “proprioceptive rehabilitation”?. Neurophysiologie Clinique/Clinical Neurophysiology, 39(4-5), pp.229-233. https://doi.org/10.1016/j.neucli.2009.07.002
[18]. Thote, D., Yadav, V., Bhusari, N., Daf, R., Agrawal, I., Bhoyar, S., et al., 2024. Physiotherapy Rehabilitation Approach for Enhancing Stability and Gait in a Patient with Cerebellar Ataxia: A Case Report. Cureus, 16(10). https://doi.org/10.7759/cureus.70967
[19]. Milne, S. C., Corben, L. A., Georgiou-Karistianis, N., Delatycki, M. B., and Yiu, E. M., 2017. Rehabilitation for individuals with genetic degenerative ataxia: a systematic review. Neurorehabilitation and Neural Repair, 31(7), pp.609-622. https://doi.org/10.1177/1545968317712469
[20]. Apriliyasari, R. W., Van Truong, P., and Tsai, P. S., 2022. Effects of proprioceptive training for people with stroke: a meta-analysis of randomized controlled trials. Clinical Rehabilitation, 36(4), pp.431-448. https://doi.org/10.1177/02692155211057656
[21]. Warutkar, V. B., Samal, S., Koul, P., and Warutkar, V., 2023. Impact of vestibular and balance rehabilitation therapy along with conventional physiotherapy in a case of vestibular schwannoma with CP angle tumor: a case report. Cureus, 15(9). https://doi.org/10.7759/cureus.45224
[22]. Vishnuram, S., Abathsagayam, K., and Suganthirababu, P., 2022. Physiotherapy management of a rare variant of Guillain Barre Syndrome, acute motor and sensory axonal neuropathy (AMSAN) along with COVID-19 in a 35-year-old male–a case report. African Health Sciences, 22(3), pp.520-526. https://doi.org/10.4314/ahs.v22i3.56
[23]. Iram, H., Kashif, M., Hassan, H. M. J., Bunyad, S. and Asghar, S., 2021. Effects of proprioception training programme on balance among patients with diabetic neuropathy: A quasi-experimental trial. J Pak Med Assoc, 71(7), pp.1818-1821.https://doi.org/10.47391/JPMA.286
[24]. Winter, L., Huang, Q., Sertic, J. V., and Konczak, J., 2022. The effectiveness of proprioceptive training for improving motor performance and motor dysfunction: a systematic review. Frontiers in rehabilitation sciences, 3, p.830166.https://doi.org/10.3389/fresc.2022.830166
[25]. Sekar, M., Suganthirababu, P., Subramanian, S.S., Vishnuram, S., Ramalingam, V., Arul, A., Anbarason, A., 2024. The effectiveness of virtual reality (VR) therapy on balance and mobility in elderly patients: a randomized controlled trial. Fizjoterapia Polska 24, 191–194. https://doi.org/10.56984/8ZG020C8UWP