Design, Synthesis, and Biological Evaluation of Benzofuran Derivatives as Inhibitors of Inflammatory Enzymes in Kidney Cancer Therapy
Abstract:
The present study employed Ultra
sound technique to prepare three novel organic compounds. These compounds share
a structural similarity with curcumin (A). Specifically, the compounds included
the unsubstituted form (B), a 6-OMe-substituted derivative (C), and a 5-Br-substituted
derivative (D). The study examined the potential
efficacy of selected compounds against kidney cancer in mice through molecular
docking approaches. Docking studies revealed that these compounds exhibited
strong interactions with four key enzymes involved in inflammation: TNF-alpha,
COX-2, IL-6, and LOX-2. Notably, these compounds demonstrated the lowest (most
negative) ΔG values, indicating effective inhibition of these enzymes. The
results confirmed that the synthesized compounds displayed substantial binding
affinity and inhibitory effects on these enzymes. Following molecular docking
analysis, an in vivo study was carried out using 90 male mice, randomly
assigned to six groups (5 per group). The control group received a standard
diet and distilled water, while groups 2 through 6 were administered intraperitoneal
injections of N-Nitrosodimethylamine (NDMA) at a dose of 60 mg/kg for two
months to induce renal carcinogenesis. Subsequently, groups 3 to 6 received
additional intraperitoneal treatments with compounds A, B, C, and D at doses of
(0.5, 1.0, and 1.5) mg/kg for 21 consecutive days. Biochemical assessments
indicated that compound C exerted significant anticancer activity, demonstrated
by a marked reduction in TNF-α levels and inhibition of COX-2, IL-6, and LOX-2
enzymes. These molecular changes were associated with amelioration of renal
cancer-induced damage. Histopathological examination further confirmed the
therapeutic efficacy of compound C, revealing complete regression of renal
tumors.
References:
1.
Al-Sabawi, A. H., Younis,
S. A., 2022, Synthesis of some new curcumin derivatives. In AIP Conference
Proceedings (Vol. 2394, No. 1). AIP Publishing. doi:10.1063/5.0121197.
2. Tomeh, M. A., Hadianamrei, R., Zhao, X., 2019, A
review of curcumin and its derivatives as anticancer agents. International
journal of molecular sciences, 20(5), 1033. doi:10.3390/ijms20051033.
3. Khalaf, K. A., Omar, A. O., 2023, Green Synthesis and
Spectroscopic Study of New Heterocyclic Compounds Derived from Ethyl
Coumarilate. African Journal of Advanced Pure and Applied Sciences (AJAPAS),
281-289.
4.
D’arcy, M. S., 2019,
Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell
biology international, 43(6), 582-592. doi:10.1002/cbin.11137.
5. Ma, J., Waxman, D. J., 2008, Combination of
antiangiogenesis with chemotherapy for more effective cancer treatment. Molecular
cancer therapeutics, 7(12), 3670-3684. doi:
10.1158/1535-7163.MCT-08-0715.
6.
Makovec, T., 2019,
Cisplatin and beyond: molecular mechanisms of action and drug resistance
development in cancer chemotherapy. Radiology and oncology, 53(2), 148. doi: 10.2478/raon-2019-0018. doi:10.2478/raon-2019-0018.
7. Thoeny, H. C., Ross, B. D., 2010, Predicting and
monitoring cancer treatment response with diffusion‐weighted MRI. Journal of
Magnetic Resonance Imaging, 32(1), 2-16. doi:10.1002/jmri.22167.
8.
Zaahkouk, S. M.,
Aboul-Ela, E. I., Ramadan, M. A., Bakry, S., Mhany, B. M., 2015,
Anti-carcinogenic activity of methanolic extract of fennel seeds (Foeniculum
vulgare) against breast, colon, and liver cancer cells. Int. J. Adv. Res,
3(5), 1525-1537.
9.
Bray, F., Ferlay,
J., Soerjomataram, I., Siegel, R. L., Torre, L. A., Jemal, A., 2018, Global
cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide
for 36 cancers in 185 countries. CA: a cancer journal for clinicians,
68(6), 394-424. doi:10.3322/caac.21492.
10.
Sung, H., Ferlay,
J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F., 2021,
Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA: a cancer journal for
clinicians, 71(3), 209-249. doi:10.3322/caac.21660.
11. Napiórkowska, M., Cieślak, M., Kaźmierczak-Barańska,
J., Królewska-Golińska, K., Nawrot, B., 2019, Synthesis of new derivatives of
benzofuran as potential anticancer agents. Molecules, 24(8), 1529. doi:10.3390/molecules24081529.
12. Abedinifar, F., Farnia, S. M. F., Mahdavi, M., Nadri,
H., Moradi, A., Ghasemi, J. B., Foroumadi, A., 2018, Synthesis and
cholinesterase inhibitory activity of new 2-benzofuran
carboxamide-benzylpyridinum salts. Bioorganic chemistry, 80, 180-188. doi:10.1016/j.bioorg.2018.06.006.
13. Kossakowski, J., Krawiecka, M., Kuran, B., Stefańska,
J., Wolska, I., 2010, Synthesis and preliminary evaluation of the antimicrobial
activity of selected 3-benzofurancarboxylic acid derivatives. Molecules,
15(7), 4737-4749. doi:10.3390/molecules15074737.
14.
Sehgal, S. A., 2017,
Pharmacoinformatics and molecular docking studies reveal potential novel
Proline Dehydrogenase (PRODH) compounds for Schizophrenia inhibition.
Medicinal Chemistry Research, 26, 314-326. doi:10.1007/s00044-016-1752-2.
15. Jiang, Q., Matsuzaki, Y., Li, K., Uitto, J., 2006, Transcriptional
regulation and characterization of the promoter region of the human ABCC6 gene.
Journal of investigative dermatology, 126(2), 325-335. doi:10.1038/sj.jid.5700065.
16.
Khalaf, A. K.,
Omar, O. A., 2023, Synthesis, Pharmacological Evaluation, and Docking Studies
of Ethyl Coumarilate Derivatives as Potential Anti-bladder Cancer in a Mouse
Model. International Journal of Drug Delivery Technology, 13(4),
1548-1556.
doi:10.9734/irjpac/2022/v23i6791.
17. Ladokun, O. A., Abiola, A., Okikiola, D., Ayodeji, F.,
2018, GC-MS and molecular docking studies of Hunteria umbellata methanolic
extract as a potent anti-diabetic. Informatics in Medicine Unlocked, 13,
1-8. doi:10.1016/j.imu.2018.08.001.
18. Odhar, H. A., Hashim, A. F., Ahjel, S. W., Humadi, S.
S., 2023, Molecular docking and dynamics simulation analysis of the human FXIIa
with compounds from the Mcule database. Bioinformation, 19(2), 160. doi:10.6026/97320630019160.
19.
Hassan, H. A.,
2015, Synthesis of Some Benzofuran-based Pyrazoline, Isoxazoline, Pyrmidine,
Cyclohexenone and Indazole Derivatives. Iraqi National Journal of Chemistry,
15(1), 12-26.
20. Gold, S. A., Margulis, V., 2023, Carcinogenic effects
of nitrosodimethylamine (NDMA) contamination in ranitidine: defining the
relationship with renal malignancies. JU Open Plus, 1(10), e00053. doi:10.1097/JU9.0000000000000058.
21.
Hard, G. C., 1986,
Experimental models for the sequential analysis of chemically-induced renal
carcinogenesis. Toxicologic pathology, 14(1), 112-122. doi:10.1177/019262338601400114.
22.
Erhirhie, E. O.,
Ekene, N. E., Ajaghaku, D. L., 2014, Guidelines on dosage calculation and stock
solution preparation in experimental animals' studies. Journal of Natural Sciences Research, 4(18): 100-106.
23.
Brown, A. M., 2005,
A new software for carrying out one-way ANOVA post hoc tests. Computer
methods and programs in biomedicine, 79(1), 89-95. doi:10.1016/j.cmpb.2005.02.007.
24. Ho, M. Y., Tang, S. J., Chuang, M. J., Cha, T. L., Li,
J. Y., Sun, G. H., Sun, K. H., 2012, TNF-α induces epithelial–mesenchymal
transition of renal cell carcinoma cells via a GSK3β-dependent mechanism. Molecular
cancer research, 10(8), 1109-1119. doi:10.1158/1541-7786.MCR-12-0160.
25. Ronca, R., Van Ginderachter, J. A., Turtoi, A., 2018,
Paracrine interactions of cancer-associated fibroblasts, macrophages and
endothelial cells: tumor allies and foes. Current Opinion in Oncology, 30(1),
45-53. doi:10.1097/CCO.0000000000000420.
26.
Keibel, A., Singh,
V., Sharma, M. C., 2009, Inflammation, microenvironment, and the immune system
in cancer progression. Current pharmaceutical design, 15(17), 1949-1955.
h
doi:10.2174/138161209788453167.
27.
He, X., Gao, Y.,
Hui, Z., Shen, G., Wang, S., Xie, T., Ye, X. Y., 2020,
4-Hydroxy-3-methylbenzofuran-2-carbohydrazones as novel LSD1 inhibitors. Bioorganic
& Medicinal Chemistry Letters, 30(10), 127109. doi:10.1016/j.bmcl.2020.127109
28. Tabriz, H. M., Mirzaalizadeh, M., Gooran, S., Niki,
F., Jabri, M., 2016, COX-2 expression in renal cell carcinoma and correlations
with tumor grade, stage and patient prognosis. Asian Pacific Journal of
Cancer Prevention, 17(2), 535-538. doi:10.7314/APJCP.2016.17.2.535.
29. Ishibashi, K., Koguchi, T., Matsuoka, K., Onagi, A.,
Tanji, R., Takinami-Honda, R., Kojima, Y., 2018, Interleukin-6 induces drug
resistance in renal cell carcinoma. Fukushima journal of medical science,
64(3), 103-110. doi:10.5387/fms.2018-15.
30.
Sang, Y. B., Yang,
H., Lee, W. S., Lee, S. J., Kim, S. G., Cheon, J., Kim, C., 2022, High serum
levels of IL-6 predict poor responses in patients treated with pembrolizumab
plus axitinib for advanced renal cell carcinoma. Cancers, 14(23), 5985. doi:10.3390/cancers14235985.
31.
Chakraborty, S.,
Balan, M., Sabarwal, A., Choueiri, T. K., Pal, S., 2021, Metabolic
reprogramming in renal cancer: events of a metabolic disease. Biochimica et
Biophysica Acta (BBA)-Reviews on Cancer, 1876(1), 188559. doi:10.1016/j.bbcan.2021.188559.
32. Wang, Z., Jin, D., Zhou, S., Dong, N., Ji, Y., An, P., Luo, J., 2023, Regulatory roles of copper metabolism and cuproptosis in human cancers. Frontiers in oncology, 13, 1123420. doi:10.3389/fonc.2023.1123420.
