Systemic Biochemical Disruptions from Chronic Generator Exhaust Exposure: Oxidative, Hematologic, and Heavy Metal Biomarkers in Urban Nineveh, Iraq

Download Article

DOI: 10.21522/TIJPH.2013.13.04.Art012

Authors : Liqaa Saeed Alkhalidy, Shahla Mohammed Farhan, Yusra M.S. Al-Shaker

Abstract:

In urban regions with chronic power instability—such as Mosul, Iraq—diesel generators are essential yet environmentally hazardous. Prolonged exposure to generator exhaust introduces a spectrum of toxicants, including carbon monoxide, nitrogen oxides, and heavy metals, raising significant concerns for long-term systemic health effects. This research aimed to explore changes in body systems and blood composition resulting from long-term exposure to diesel generator fumes among community members. The study used a cross-sectional comparative design with 260 participants, divided into exposed (150) and control (110). The analysis included blood gases; oxidative stress indicators like MDA and GSH; inflammatory markers such as CRP and CA; hematological parameters like HgB, and PCVs; and serum levels of trace metals including Zink, Zn, Cadmium, Nickel. The significance is at p≤0.05. Exposed Individuals showed decreases in oxygen (lower Pa02 and Sa02, and higher COHa levels), an increase in red blood cell production and hemoglobin, and a significant increase in MDA and a decrease in GSH. Also, C protein (CRP) levels increased significantly at p < 0·001). Trace metal analysis following exposure showed a buildup of lead (Pb) alongside cadmium (Cd), Copper (Cu), and Nickel (Ni), with a simultaneous decrease in zinc content, further weakening the body's antioxidant defenses. The results show that long-term exposure to generator fumes leads to health issues, including breathing problems, imbalances in the body's oxidation processes, and the accumulation of harmful metals in the system.

References:

[1].   Mathew, N., Tirpude, A., Pillai, A. M., Mondal, P., & Arfin, T., 2023, Emerging contaminants in air pollution and their sources, consequences, and future challenges. Bioremediation Technologies: For Wastewater and Sustainable Circular Bioeconomy, pp. 235–274. https://doi.org/10.1515/9783110773848-009

[2].   Odubo, T. C., & Kosoe, E. A., 2024, Sources of air pollutants: impacts and solutions. Air Pollutants in the Context of One Health: Fundamentals, Sources, and Impacts, pp. 75–121. https://doi.org/10.1007/978-3-031-36213-2_4

[3].   Priyadarshanee, M., Mahto, U., & Das, S., 2022, Mechanism of toxicity and adverse health effects of environmental pollutants. Microbial Biodegradation and Bioremediation, pp. 33–53. https://doi.org/10.1016/B978-0-323-85347-6.00003-8

[4].   Sierra-Vargas, M. P., Montero-Vargas, J. M., Debray-García, Y., Vizuet-de-Rueda, J. C., Loaeza-Román, A., & Terán, L. M., 2023, Oxidative stress and air pollution: its impact on chronic respiratory diseases. International Journal of Molecular Sciences, 24(1), 853. https://doi.org/10.3390/ijms24010853

[5].   Al-Mallah, K. H., Al-Iraqi, O. M., & Saeed, M. G., 2022, Detection of urinary tract lesions of buffalos at Mosul city. Indian Veterinary Journal, 99(08), 43–49.

[6].   Wang, T., & Zhang, Y., 2024, Mechanisms and therapeutic targets of carbon monoxide poisoning: a focus on reactive oxygen species. Chemico-Biological Interactions, 111223. https://doi.org/10.1016/j.cbi.2024.111223

[7].   Otterbein, G. E., Tift, M. S., & Lee, G. R., 2022, Carbon Monoxide, Oxygen, and Pseudohypoxia. In: Carbon Monoxide in Drug Discovery: Basics, Pharmacology, and Therapeutic Potential, pp. 118–135.

[8].   Udeigwe, E. J., 2021, Biological Activities of Nonenzymatically Oxidized Lipids in RPE and Microglial Cells: HOHA Lactone and Pseudo Leukotriene C. Case Western Reserve University.

[9].   Mahmoud, O., Mammdoh, J., & Saeed, M. G., 2022, Histopathological and Scores Assessment of Using Omega-3 for Improvement Gingival Wound Healing Process in Rabbit Model. Egyptian Journal of Veterinary Sciences, 53(4), 517–527.

[10].  Pena, A. C., & Pamplona, A., 2022, Heme oxygenase-1, carbon monoxide, and malaria–the interplay of chemistry and biology. Coordination Chemistry Reviews, 453, 214285. https://doi.org/10.1016/j.ccr.2021.214285

[11].  Bauer, N., Mao, Q., Vashistha, A., Seshadri, A., Du, N. Y. C., Otterbein, L., Tan, C., de Caestecker, M. P., & Wang, B., 2025, A Critical Update on the Therapeutic Potential of Carbon Monoxide. Medicinal Research Reviews, 45(4), 1275–1301.

[12].  Devalla, L., Ghewade, B., Jadhav, U., Annareddy, S., & others, 2024, A comprehensive review on carbon monoxide diffusion capacity in COPD patients. Cureus, 16(2).

[13].  Yook, J. S., You, M., Kim, J., Toney, A. M., et al., 2021, Systemic iron mobilization and redistribution for adaptive thermogenesis through HIF2-α/hepcidin axis. Proceedings of the National Academy of Sciences, 118(40), e2109186118.

[14].  Locatelli, F., Minutolo, R., De Nicola, L., & Del Vecchio, L., 2022, Strategies in the treatment of anaemia in chronic kidney disease: the HIF-prolyl hydroxylase inhibitors. Drugs, 82(16), 1565–1589.

[15].  Napolitano, G., Fasciolo, G., & Venditti, P., 2021, Mitochondrial management of reactive oxygen species. Antioxidants, 10(11), 1824.

[16].  Al-Abdaly, Y. Z., 2023, Neurobehavioral evaluation of quail treated with omega-3 and chlorpyrifos. Iraqi Journal of Veterinary Sciences, 37(5 Suppl I–IV).

[17].  Zayani, Z., Matinahmadi, A., Tavakolpournegari, A., & Bidooki, S. H., 2025, Exploring Stressors: Impact on Cellular Organelles and Implications for Cellular Functions. Stresses, 5(2), 26.

[18].  Swenson, E. R., Kumar, A., Kumar, N., & Alvarez, B. V., 2021, Targeting Carbonic Anhydrases in Cardiovascular and Pulmonary Disease. In: The Carbonic Anhydrases: Current and Emerging Therapeutic Targets, pp. 37–77.

[19].  Stevens, R. P., 2024, Carbonic Anhydrase IX Promotes Acute Lung Injury and Mortality During Metabolic Acidosis and Pneumonia. Doctoral dissertation, University of South Alabama.

[20].  Teissier, T., Boulanger, E., & Cox, L. S., 2022, Interconnections between inflammageing and immunosenescence during ageing. Cells, 11(3), 359.

[21].  Camps, J., Iftimie, S., Jiménez-Franco, A., Castro, A., & Joven, J., 2025, Metabolic Reprogramming in Respiratory Viral Infections: A Focus on SARS-CoV-2, Influenza, and RSV. (Journal name not provided—please specify if known).

[22].  Parui, R., Nongthombam, G. S., Hossain, M., Adil, L. R., et al., 2024, Impact of heavy metals on human health. In: Remediation of Heavy Metals: Sustainable Technologies and Recent Advances, pp. 47–81.

[23].  Liu, N., Du, J., Ge, J., & Liu, S. B., 2024, DNA damage-inducing endogenous and exogenous factors and research progress. Nucleosides, Nucleotides and Nucleic Acids, pp. 1–33.

[24].  Munteanu, C., Galaction, A. I., Onose, G., Turnea, M., & Rotariu, M., 2025, The Janus Face of Oxidative Stress and Hydrogen Sulfide. Antioxidants, 14(3), 360.

[25].  Egede, L. E., Walker, R. J., & Williams, J. S., 2024, Addressing structural inequalities and social determinants of health. Journal of General Internal Medicine, 39(3), 487–491.

[26].  Alfathi, M., Alabdaly, Y., & Al-Hayyali, F., 2023, Spirulina against gentamicin toxicity in rat liver and kidney. Egyptian Journal of Histology, 46(4), 1666–1675.

[27].  Alabdaly, Y. Z., 2021, Effect of diclofenac on the pharmacokinetics of ciprofloxacin in quail. Iraqi Journal of Veterinary Sciences, 35(4), 777–781.