Evaluation The Correlation between Bmal1 and Clock Genes Expression with miRNA In kids With Bipolar Disorder

Download Article

DOI: 10.21522/TIJPH.2013.13.04.Art017

Authors : Owayes M. Hamed, Zahra J. Ramadan, Elham kh. Abdullah

Abstract:

The study aimed to explore the influence of methylation levels of two clock genes, Bmal1 and Clock, and the association between gene expression and miRNA molecules (miRNA155 and miRNA211) in bipolar disorder. The study sample contains 40 kids whose ages ranged from 2 to 12 years with bipolar disorders, and 20 healthy kids as a control group. The study axes were divided into three parts. The first part involved determining the levels of gene expression for the Bmal1 and Clock genes using qRT-PCR. The second part is the determination of the levels of miRNA and snoRNA molecules that regulate Bmal1 and Clock genes using qRT-PCR. Third part: measuring methylation levels in the promoters of Bmal1 and clock genes using PCR. The results showed a significant decrease in the Bmal1 gene expression; it was the value of folding expression Bmal1 gene = 0.73, and a significant increase in the Clock gene; it was the value of folding expression Clock gene = 1.23. and the results showed a significant increase in miRNA gene expression; the value of folding expression for miRNA155/Bmal1 = 1.76, and a significant decrease in miRNA gene expression; the value of folding expression for miRNA211/Clock = 0.26. while the gene expression level for snoRNA molecule = 1.76 compared with control = 1. Conclusion: The results of this study demonstrate increases in the gene expression folding of the Clock gene and a significant decrease in miRNA211 gene expression which regulates the Clock gene.

References:

[1].   Parlak, G. C., Baris, I., Gul, S., & Kavakli, I. H., 2023, Functional characterization of the CRY2 circadian clock component variant p. Ser420Phe revealed a new degradation pathway for CRY2: Journal of Biological Chemistry, 299(12).

[2].   Chen, S. T., Choo, K. B., Hou, M. F., Yeh, K. T., Kuo, S. J., & Chang, J. G., 2005, Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers: Carcinogenesis, 26(7), 1241-1246.

[3].   Gršković, P., & Korać, P., 2023, Circadian gene variants in diseases: Genes, 14(9), 1703.

[4].   Ramadan, Z. J., Hamed, O. M., & Khalaf, I. H., 2020, Detection of genetic variation for some genes that related with recurrent spontaneous abortion in Nineveh province: Biochemical & Cellular Archives, 20(2).

[5].   Barragán, R., Sorlí, J. V., Coltell, O., Gonzalez-Monje, I., Fernández-Carrión, R., Villamil, L. V., ... & Asensio, E. M., 2022, Influence of DNA-polymorphisms in selected circadian clock genes on clock gene expression in subjects from the general population and their association with sleep duration: Medicina, 58(9), 1294.

[6].   Samblas, M., Milagro, F. I., Gómez-Abellán, P., Martínez, J. A., & Garaulet, M., 2016, Methylation on the circadian gene BMAL1 is associated with the effects of a weight loss intervention on serum lipid levels: Journal of biological rhythms, 31(3), 308-317.

[7].   Alachkar, A., Lee, J., Asthana, K., Vakil Monfared, R., Chen, J., Alhassen, S., ... & Baldi, P., 2022, The hidden link between circadian entropy and mental health disorders: Translational psychiatry, 12(1), 281.

[8].   Merrill, R. M., 2022, Mental health conditions according to stress and sleep disorders: International journal of environmental research and public health, 19(13), 7957.

[9].   Liu, C., Tang, X., Gong, Z., Zeng, W., Hou, Q., & Lu, R., 2022, Circadian rhythm sleep disorders: genetics, mechanisms, and adverse effects on health: Frontiers in Genetics, 13, 875342.

[10].  Hameed, M. A., Hamed, O. M., 2023, Detection of P53 suppressor gene mutation in women with breast cancer in Mosul city: AIP Conference ProceedingsThis link is disabled. 2834(1), 020007.

[11].  Hamed, O. M., Al-Taii, R. A., Jankeer, M. H., 2021, Biochemical and genetic study in blood of β- thalassaemia children in mosul city, Iraq: Iraqi Journal of ScienceThis link is disabled. 62(8), pp. 2501–2508.

[12].  Al-Hassani, O. M. H., 2020, Role of MTHFR C667T and MTRR A66G genes polymorphism with thyroid disorders. In Journal of Physics: Conference Series (Vol. 1660, No. 1, p. 012007). IOP Publishing.

[13].  BaHammam, A. S., & Pirzada, A., 2023, Timing matters: the interplay between early mealtime, circadian rhythms, gene expression, circadian hormones, and metabolism—a narrative review: Clocks & Sleep, 5(3), 507-535.

[14].  Baris, I., Ozcan, O., & Kavakli, I. H., 2023, Single nucleotide polymorphisms (SNPs) in circadian genes: Impact on gene function and phenotype: Advances in protein chemistry and structural biology, 137, 17-37.

[15].  Du, N. H., Arpat, A. B., De Matos, M., Gatfield, D., 2014, MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale., 3, e02510.

[16].  Mosig, R. A., & Kojima, S., 2022, Timing without coding: How do long non-coding RNAs regulate circadian rhythms?: In Seminars in cell & developmental biology Academic Press. (Vol. 126, pp. 79-86).

[17].  Pavithra, S., Aich, A., Chanda, A., Zohra, I. F., Gawade, P., & Das, R. K., 2024, PER2 gene and its association with sleep-related disorders: A review: Physiology & Behavior, 273, 114411.

[18].  Dück, A., Reis, O., Wagner, H., Wunsch, K., Häßler, F., Kölch, M., ... & Oster, H., 2022, Clock genes profiles as diagnostic tool in (childhood) ADHD—A pilot study: Brain Sciences, 12(9), 1198.

[19].  Hamed, Owayes. M., 2022, Analysis of Common Mutation of P53 Gene in Male with Lung Cancer in Mosul City: Bionatura, 7(3), 52.

[20].  Na,Y. J., Sung, J. H., Lee, S. C., Lee, Y. J., Choi, Y. J., Park, W. Y., Shin, H.S., Kim, J.H., 2009, Comprehensive analysis of microRNA-mRNA co-expression in circadian rhythm: Exp. Mol. Med. 41, 638–647.

[21].  Faltraco, F., Palm, D., Uzoni, A., Borchert, L., Simon, F., Tucha, O., & Thome, J., 2021, Dopamine adjusts the circadian gene expression of Per2 and Per3 in human dermal fibroblasts from ADHD patients: Journal of Neural Transmission, 128, 1135-1145.

[22].  Kinoshita, C., Okamoto, Y., Aoyama, K., & Nakaki, T., 2020, MicroRNA: a key player for the interplay of circadian rhythm abnormalities, sleep disorders and neurodegenerative diseases: Clocks & sleep, 2(3), 282-307.

[23].  Haimes, J., Kelley, M., & Dharmacon, Now Part of GE Healthcare, Lafayette, CO, USA., 2013, Demonstration of a ΔΔCq Calculation Method to Compute Thermo Scientific Relative Gene Expression from qPCR Data. Lafayette, CO: Thermo Scientific.