Different Modalities to Assess Right Ventricular Function in Post-COVID Taking ST-Elevation as a Gold Standard and Arrhythmias in Post-COVID

Download Article

DOI: 10.21522/TIJPH.2013.09.04.Art007

Authors : Ritesh Khandelwal, Preeti Gupta, Sandeep Bansal, Anunay Gupta


The COVID-19 caused by novel single-stranded RNA enveloped severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) first appeared in Wuhan, China. A lot of focus has been given to pulmonary complications. According to several case reports, cardiovascular associated clinical manifestations include myocarditis, arrhythmias, veno-thromboembolic events, acute coronary syndrome (ACS), and pericarditis. Different modalities in diagnosis like 2D, doppler can help in the early diagnosis of right ventricular function. This study evaluates the cardiac changes in recovered COVID-19 positive patients by 2D echocardiogram and other modalities. In this prospective observational study, 139 participants recently recovered from COVID-19 illness were identified and recruited after obtaining the Informed concerned form (ICF). The patients once enrolled were subjected to 2D echo and ECG as part of routine clinical practice. Out of 139 patients, 89 (64.03%) were males, and the rest were females. Based on the severity scale, 13 (9.35%) participants had suffered a severe form of COVID-19 infection. Right ventricular functional assessment, right ventricular global strain (RVGLS) was abnormal in 72 (51.80%) participants. Arrhythmias were reported in 31 (22.30%) participants; among them, 30 participants had sinus bradycardia. Our study demonstrates the association between COVID-19 and cardiac changes/ incidence of cardiovascular complications in recovered COVID-19 patients. This study provides first-hand evidence of the incidence of abnormal LVGLS and RVGLS in COVID-19 recovered patients. In addition, there was a higher incidence of arrythmias.

Keywords: Cardiovascular outcomes, Post-COVID, Right ventricular function, ST elevation, 2D echocardiography.


[1] CDC. (2020, March 28). Covid data tracker. Centers for Disease Control and Prevention. https://covid.cdc.gov/covid-data-tracker.

[2] WHO coronavirus (COVID-19) dashboard. (n.d.). Retrieved 27 July 2021, from https://covid19.who.int.

[3] Luetkens, J. A., Isaak, A., Zimmer, S., Nattermann, J., Sprinkart, A. M., Boesecke, C., Rieke, G. J., Zachoval, C., Heine, A., Velten, M., &Duerr, G. D., 2020, Diffuse myocardial inflammation in covid-19 associated myocarditis detected by multiparametric cardiac magnetic resonance imaging. Circulation: Cardiovascular Imaging, 13(5).


[4] Rajpal, S., Tong, M. S., Borchers, J., Zareba, K. M., Obarski, T. P., Simonetti, O. P., & Daniels, C. J., 2021, Cardiovascular Magnetic Resonance Findings in Competitive Athletes Recovering From COVID-19 Infection. JAMA cardiology, 6(1), 116–118. https://doi.org/10.1001/jamacardio.2020.4916.

[5] Bangalore, S., Sharma, A., Slotwiner, A., Yatskar, L., Harari, R., Shah, B., Ibrahim, H., Friedman, G. H., Thompson, C., Alviar, C. L., Chadow, H. L., Fishman, G. I., Reynolds, H. R., Keller, N., & Hochman, J. S. (2020). ST-Segment Elevation in Patients with Covid-19 - A Case Series. The New England Journal of Medicine, 382(25), 2478–2480. https://doi.org/10.1056/NEJMc2009020.

[6] Sauer, F., Dagrenat, C., Couppie, P., Jochum, G., Leddet, P., D’Amario, D., Asher, E., Rudzínski, P. N., Camm, C. F., & Thomson, R., 2020, Pericardial effusion in patients with COVID-19: Case series. European Heart Journal - Case Reports, 4(FI1). https://doi.org/10.1093/ehjcr/ytaa287.

[7] Zheng, Y. Y., Ma, Y. T., Zhang, J. Y., & Xie, X, 2020, COVID-19 and the cardiovascular system. Nature reviews. Cardiology, 17(5), 259–260. https://doi.org/10.1038/s41569-020-0360-5.

[8] Wu, L., O’Kane, A. M., Peng, H., Bi, Y., Motriuk-Smith, D., & Ren, 2020, SARS-CoV-2 and cardiovascular complications: From molecular mechanisms to pharmaceutical management. Biochemical pharmacology, 178, 114114. https://doi.org/10.1016/j.bcp.2020.114114.

[9] Nishiga, M., Wang, D. W., Han, Y., Lewis, D. B., & Wu, J. C, 2020, COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nature reviews. Cardiology, 17(9), 543–558. https://doi.org/10.1038/s41569-020-0413-9.

[10] Oudit, G. Y., Kassiri, Z., Jiang, C., Liu, P. P., Poutanen, S. M., Penninger, J. M., & Butany, J, 2009, SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. European Journal of Clinical Investigation, 39(7), 618–625. https://doi.org/10.1111/j.1365-2362.2009.02153.x.

[11] Lindner, D., Fitzek, A., Bräuninger, H., Aleshcheva, G., Edler, C., Meissner, K., Scherschel, K., Kirchhof, P., Escher, F., Schultheiss, H. P., Blankenberg, S., Püschel, K., & Westermann, D, 2020, Association of Cardiac Infection With SARS-CoV-2 in Confirmed COVID-19 Autopsy Cases. JAMA cardiology, 5(11), 1281–1285. https://doi.org/10.1001/jamacardio.2020.3551.

[12] Li, B., Yang, J., Zhao, F., Zhi, L., Wang, X., Liu, L., Bi, Z., & Zhao, Y, 2020, Prevalence and impact of cardiovascular, metabolic diseases on COVID-19 in China. Clinical research in cardiology: Official Journal of the German Cardiac Society, 109(5), 531–538. https://doi.org/10.1007/s00392-020-01626-9.

[13] Churchill, T. W., Bertrand, P. B., Bernard, S., Namasivayam, M., Churchill, J., Crousillat, D., Davis, E. F., Hung, J., & Picard, M. H, 2020, Echocardiographic Features of COVID-19 Illness and Association with Cardiac Biomarkers. Journal of the American Society of Echocardiography: Official Publication of the American Society of Echocardiography, 33(8), 1053–1054. https://doi.org/10.1016/j.echo.2020.05.028.

[14] Levin, V. A., Rodriguez, L. A., Edwards, M. S., Wara, W., Liu, H. C., Fulton, D., Davis, R. L., Wilson, C. B., & Silver, P, 1988, treatment of medulloblastoma with procarbazine, hydroxyurea, and reduced radiation doses to whole brain and spine. Journal of Neurosurgery, 68(3), 383–387. https://doi.org/10.3171/jns.1988.68.3.0383, 68,383–7.

[15] Lassen, M., Skaarup, K. G., Lind, J. N., Alhakak, A. S., Sengeløv, M., Nielsen, A. B., Espersen, C., Ravnkilde, K., Hauser, R., Schöps, L. B., Holt, E., Johansen, N. D., Modin, D., Djernaes, K., Graff, C., Bundgaard, H., Hassager, C., Jabbari, R., Carlsen, J., Lebech, A. M., … Biering-Sørensen, T, 2020, Echocardiographic abnormalities and predictors of mortality in hospitalized COVID-19 patients: the ECHOVID-19 study. ESC heart failure, 7(6), 4189–4197. Advance Online Publication. https://doi.org/10.1002/ehf2.13044.

[16] Lairez, O., Blanchard, V., Houard, V., Vardon-Bounes, F., Lemasle, M., Cariou, E., Lavie-Badie, Y., Ruiz, S., Cazalbou, S., Delmas, C., Georges, B., Galinier, M., Carrié, D., Conil, J. M., & Minville, V, 2021, Cardiac imaging phenotype in patients with coronavirus disease 2019 (COVID-19): results of the cocarde study. The International Journal of Cardiovascular Imaging, 37(2), 449–457. https://doi.org/10.1007/s10554-020-02010-4.

[17] Goerlich, E., Gilotra, N. A., Minhas, A. S., Bavaro, N., Hays, A. G., & Cingolani, O. H, 2021, Prominent Longitudinal Strain Reduction of Basal Left Ventricular Segments in Patients with Coronavirus Disease-19. Journal of Cardiac Failure, 27(1), 100-104.


[18] Chan, J., Hanekom, L., Wong, C., Leano, R., Cho, G. Y., & Marwick, T. H, 2006, Differentiation of subendocardial and transmural infarction using two-dimensional strain rate imaging to assess short-axis and long-axis myocardial function. Journal of the American College of Cardiology, 48(10), 2026–2033. https://doi.org/10.1016/j.jacc.2006.07.050.

[19] Soulat-Dufour, L., Lang, S., Ederhy, S., Adavane-Scheuble, S., Chauvet-Droit, M., Nhan, P., Jean, M. L., Ben Said, R., Issaurat, P., Boccara, F., & Cohen, A, 2020, Left ventricular ejection fraction: An additional risk marker in COVID-19. Archives of cardiovascular diseases, 113(11), 760–762. https://doi.org/10.1016/j.acvd.2020.08.002.

[20] Li, Y., Li, H., Zhu, S., Xie, Y., Wang, B., He, L., Zhang, D., Zhang, Y., Yuan, H., Wu, C., Sun, W., Zhang, Y., Li, M., Cui, L., Cai, Y., Wang, J., Yang, Y., Lv, Q., Zhang, L., & Xie, M, 2020, Prognostic Value of Right Ventricular Longitudinal Strain in Patients With COVID-19. JACC. Cardiovascular Imaging, 13(11), 2287–2299. https://doi.org/10.1016/j.jcmg.2020.04.014.

[21] Rudski, L. G., Lai, W. W., Afilalo, J., Hua, L., Hand Schumacher, M. D., Chandrasekaran, K., Solomon, S. D., Louie, E. K., & Schiller, N. B, 2010, Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 23(7), 685–788. https://doi.org/10.1016/j.echo.2010.05.010.

[22] Carluccio, E., Biagioli, P., Alunni, G., Murrone, A., Zuchi, C., Coiro, S., Riccini, C., Mengoni, A., D’Antonio, A., & Ambrosio, G, 2018, Prognostic Value of Right Ventricular Dysfunction in Heart Failure with Reduced Ejection Fraction: Superiority of Longitudinal Strain Over Tricuspid Annular Plane Systolic Excursion. Circulation. Cardiovascular Imaging, 11(1), e006894. https://doi.org/10.1161/CIRCIMAGING.117.006894.

[23] Medvedofsky, D., Koifman, E., Jarrett, H., Miyoshi, T., Rogers, T., Ben-Dor, I., Satler, L. F., Torguson, R., Waksman, R., & Asch, F. M, 2020, Association of Right Ventricular Longitudinal Strain with Mortality in Patients Undergoing Transcatheter Aortic Valve Replacement. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 33(4), 452–460. https://doi.org/10.1016/j.echo.2019.11.014.

[24] Mast, T. P., Taha, K., Cramer, M. J., Lumens, J., van der Heijden, J. F., Bouma, B. J., van den Berg, M. P., Asselbergs, F. W., Doevendans, P. A., & Teske, A. J, 2019, The Prognostic Value of Right Ventricular Deformation Imaging in Early Arrhythmogenic Right Ventricular Cardiomyopathy. JACC. Cardiovascular Imaging, 12(3), 446–455. https://doi.org/10.1016/j.jcmg.2018.01.012.

[25] Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., Zhao, Y., Li, Y., Wang, X., & Peng, Z, 2020, Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA, 323(11), 1061–1069. https://doi.org/10.1001/jama.2020.1585.

[26] Lei, S., Jiang, F., Su, W., Chen, C., Chen, J., Mei, W., Zhan, L. Y., Jia, Y., Zhang, L., Liu, D., Xia, Z. Y., & Xia, Z, 2020, Clinical characteristics and outcomes of patients undergoing surgeries during the incubation period of COVID-19 infection. E-Clinical Medicine, 21, 100331. https://doi.org/10.1016/j.eclinm.2020.100331.

[27] Yu, C. M., Wong, R. S., Wu, E. B., Kong, S. L., Wong, J., Yip, G. W., Soo, Y. O., Chiu, M. L., Chan, Y. S., Hui, D., Lee, N., Wu, A., Leung, C. B., & Sung, J. J, 2006, Cardiovascular complications of severe acute respiratory syndrome. Postgraduate Medical Journal, 82(964), 140–144. https://doi.org/10.1136/pgmj.2005.037515.

[28] Wang, Y., Wang, Z., Tse, G., Zhang, L., Wan, E. Y., Guo, Y., Lip, G., Li, G., Lu, Z., & Liu, T, 2020, Cardiac arrhythmias in patients with COVID-19. Journal of Arrhythmia, 36(5), 827–836. https://doi.org/10.1002/joa3.12405.

[29] He, X. W., Lai, J. S., Cheng, J., Wang, M. W., Liu, Y. J., Xiao, Z. C., Xu, C., Li, S. S., & Zeng, H. S, 2020, Zhonghua xin xue guan bing za zhi, 48(6), 456–460. https://doi.org/10.3760/cma.j.cn112148-20200228-00137.