Novel Liposomal Drug Delivery of Tecomaquinone I for Oral Squamous Cell Carcinoma as a Potential Therapeutic Strategy- An Invitro Study

Abstract:
Oral cancer is one of the most
common cancers in the world and 90% of the oral cancers are oral squamous cell
carcinoma (OSCC). The treatment modalities of oral squamous cell carcinoma
includes surgery, chemotherapy and radiotherapy. Though these treatment
modalities are considered to be effective, they have their own adverse effects.
Treating OSCC with a plant-based drug through an effective drug delivery system
may increase the quality of life of the patients. The aim of this study is to
formulate a liposomal drug delivery of Tecomaquinone I for oral squamous cell
carcinoma. Tecomaquinone I extract of Tectona grandis Linn was extracted.
Pegalated liposome infused with Tecomaquinone I extract was fabricated using
conventional method. The MDA-MB-231, A549 and SCC-25 cancer cell lines were
treated with the pegalated liposome infused with Tecomaquinone I to analyse the
cell cycle arrest, cytotoxic effects and apoptotic effects of Tecomaquinone I.
Liposomal Tecomaquinone I showed substantial accumulation of cells in the G2/M
phase, indicative of mitotic arrest and enhanced apoptotic cell death in SCC-25
(OSCC) cell line. Tecomaquinone I exerts potent cell cycle arrest, cytotoxic
and apoptotic effects on Oral squamous cell carcinoma cell line (SCC-25).
References:
[1]. Tiwari, G., Tiwari, R., Bannerjee, S., Bhati, L., Pandey, S., Pandey, P., Sriwastawa, B., 2012, Drug delivery systems: An updated review. International Journal of Pharmaceutical Investigation, 2:2.
[2]. Nsairat, H., Khater, D., Sayed, U., Odeh, F., Bawab, A. A., Alshaer, W., 2022, Liposomes: structure, composition, types, and clinical applications. Heliyon, 8:e09394.
[3]. Jha, S., Sharma, P. K., Malviya, R., 2016, Liposomal Drug delivery system for cancer therapy: advancement and patents. Recent Patents on Drug Delivery & Formulation, 10, 177–183.
[4]. Cabanes, A., Even-Chen, S., Zimberoff, J., Barenholz, Y., Kedar, E., Gabizon, A., 1999, Enhancement of antitumor activity of polyethylene glycol-coated liposomal doxorubicin with soluble and liposomal interleukin 2. Clin Cancer Res, 5, 687–93.
[5]. Fassas, A., Anagnostopoulos, A., 2005, The use of liposomal daunorubicin (DaunoXome) in acute myeloid leukemia. Leukemia & Lymphoma/Leukemia and Lymphoma, 46, 795–802.
[6]. Rudramurthy, S. M., Jatana, M., Singh, R., Chakrabarti, A., 2012, In vitroantifungal activity of Indian liposomal amphotericin B against clinical isolates of emerging species of yeast and moulds, and its comparison with amphotericin B deoxycholate, voriconazole, itraconazole and fluconazole. Mycoses, 56, 39–46.
[7]. Chang, H. I., Yeh, M. K., 2011, Clinical development of liposome based drugs: formulation, characterization, and therapeutic efficacy. International Journal of Nanomedicine, 49-60.
[8]. Angst, M. S., Drover, D. R., 2006, Pharmacology of Drugs Formulated with DepoFoam??? Clinical Pharmacokinetics, 45, 1153–1176.
[9]. Ghantous, Y., Elnaaj, A. I., 2017, Global Incidence and Risk Factors of Oral Cancer. Harefuah, 156, 645–649.
[10]. Nethan, S. T., Ravi, P., Gupta, P. C., 2022, Epidemiology of Oral Squamous Cell Carcinoma in Indian Scenario. In: Routray, S, (eds) Microbes and Oral Squamous Cell Carcinoma, Springer, Singapore, pp 1–7
[11]. Mehrotra, R., Yadav, S., 2006, Oral squamous cell carcinoma: Etiology, pathogenesis and prognostic value of genomic alterations. Indian Journal of Cancer, 43(2), 60-6.
[12]. Reichal, P., Ramani, P., Kizhakkoottu, S., 2024, Association of site and recurrence in oral squamous cell carcinoma patients visiting private hospital in Chennai: a retrospective study. Cureus, 16(1), e52774. https://doi.org/10.7759/cureus.52774
[13]. Thomas, P., Mathew, D., Anisha, K., Ramasubramanian, A., Ramalingam, K., Ramani, P., Sekar, D., 2024, A retrospective analysis of the clinicopathological profile of oral squamous cell carcinoma in tobacco and non-tobacco users: highlighting the significance of chronic mechanical irritation. Cureus, 16(5), e59953. https://doi.org/10.7759/cureus.59953.
[14]. Pérez-Sayáns, N., 2009, Genetic and molecular alterations associated with oral squamous cell cancer (Review). Oncology Reports, 22(6), 1277-82. https://doi.org/10.3892/or_00000565.
[15]. Field, J. K., 1995, The role of oncogenes and tumour-suppressor genes in the aetiology of oral, head and neck squamous cell carcinoma. J R Soc Med, 88(1), 35P-39P.
[16]. Murugan, A. K., Munirajan, A. K., Tsuchida, N., 2012, Ras oncogenes in oral cancer: The past 20 years. Oral Oncology, 48(5), 383–392.
[17]. Devi, P., Dwivedi, R., Sankar, R., Jain, A., Gupta, S., Gupta S., 2024, Unraveling the Genetic Web: H-Ras Expression and Mutation in Oral Squamous Cell Carcinoma—A Systematic Review. Head and Neck Pathology, 18(1), 21.https://doi.org/10.1007/s12105-024-01623-8.
[18]. Palsuledesai, C. C., Distefano, M. D., 2015, Protein prenylation: enzymes, therapeutics, and biotechnology applications. ACS Chemical Biology, 10(1), 51–62.
[19]. Simanshu, D. K., Nissley, D. V., McCormick, F., 2017, RAS proteins and their regulators in human disease. Cell, 170(1), 17–33.
[20]. Rowinsky, E. K., Windle, J. J., Von Hoff, D. D., 1999, RAS protein farnesyltransferase: a strategic target for anticancer therapeutic development. Journal of Clinical Oncology, 17(11), 3631–3652.
[21]. Umashankar, K., Selvaraj, J., Ramani, P., 2021, Expression of ITG β-1, MMP9 and Vimentin in Oral Squamous Cell Carcinoma – A Real Time PCR Based Approach. Journal of Pharmaceutical Research International, 33(44B), 81–87.
[22]. Oladeji, O., 2016, The characteristics and roles of medicinal plants: Some important medicinal plants in Nigeria. Natural Products : An Indian Journal, 12(3), 102.
[23]. Desai, A., Qazi, G., Ganju, R., El-Tamer, M., Singh, J., Saxena, A., Bedi, Y., Taneja, S., Bhat, H., 2008, Medicinal plants and cancer chemoprevention. Current Drug Metabolism, 9(7), 581–591.
[24]. Greenwell, M., Rahman, P., 2015, Medicinal plants: their use in anticancer treatment. International Journal of Pharmaceutical Sciences and Research, 6(10), 4103-4112. https://doi.org/10.13040/ijpsr.0975-8232.6(10).4103-12.
[25]. Goswami, D., Nirmal, S., Patil, M., Dighe, N., Laware, R., Pattan, S., 2009, An overview of Tectona grandis: chemistry and pharmacological profile. Pharmacognosy Reviews, 3(5), 181–185.
[26]. Cadelis, M. M., Bourguet-Kondracki, M. L., Dubois, J., Valentin, A., Barker, D., Copp, B. R., 2016, Discovery and preliminary structure–activity relationship studies on Tecomaquinone I and tectol as novel farnesyltransferase and plasmodial inhibitors. Bioorganic & Medicinal Chemistry, 22 (14), 3102–3107.
[27]. Rafique, M., Sadaf, I., Rafique, M. S., Tahir, M. B., 2016, A review on green synthesis of silver nanoparticles and their applications. Artificial Cells, Nanomedicine and Biotechnology, 45(7), 1272–1291.
[28]. Kavitha, R. K., Vijayalakshmi, S., Babu M. B., 2019, Synthesis and Characterization of Silver Nano Particles using Tecoma Stans Flower Extract. International Journal of Recent Technology and Engineering (IJRTE), 8(4), 5624–5629.
[29]. Lombardo, D., Kiselev, M. A., 2022, Methods of liposomes preparation: Formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics, 14(3), 543.
[30]. Lu, W. L., Qi X. R., 2017, Liposome-Based drug delivery systems. Biomaterial engineering, https://doi.org/10.1007/978-3-662-49231-4.
[31]. Lasch, J., Weissig, V., Brandl, M., 2003, Preparation of liposomes. In: Liposomes - A Practical Approach. 2nd edition. Oxford University Press eBooks, pp 1–29.
[32]. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., Jemal, A., 2018, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 68(6), 394–424.
[33]. Mathur, P., Sathishkumar, K., Chaturvedi, M., Das, P., Stephen, S., 2022, Cancer incidence estimates for 2022 & projection for 2025: Result from National Cancer Registry Programme, India. Indian J Med Res, 156(4&5), 598-607.
[34]. Long, S. B., Casey, P. J., Beese, L. S., 2002, Reaction path of protein farnesyltransferase at atomic resolution. Nature, 419(6907), 645–650.