Immersive Technology in Stroke Rehabilitation: A Scoping Review of Effectiveness, Challenges and Future Direction

Download Article

DOI: 10.21522/TIJPH.2013.SE.25.02.Art020

Authors : Vanitha Jayaraj, Santhana Lakshmi S, Keerthana A K, Daniel A, Sathya Siva

Abstract:

Stroke rehabilitation has traditionally relied on physical and occupational therapies to improve motor and cognitive functions. Recently, immersive technologies, including Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR), have emerged as innovative tools for enhancing recovery. These technologies offer engaging, tailored rehabilitation experiences, potentially improving stroke outcomes. This scoping review synthesizes recent studies on immersive technologies in stroke rehabilitation, focusing on clinical trials, pilot studies, and systematic reviews published in the past decade. Findings indicate that VR, AR, and MR interventions show promise in improving motor function, gait rehabilitation, and cognitive recovery. VR-based interventions, including treadmill training and mirror therapy, have demonstrated benefits such as increased walking speed and enhanced upper limb motor function. However, challenges remain, including participant selection bias, small sample sizes, and a lack of long-term follow-up. Additionally, issues such as physical discomfort, safety concerns, and the need for personalized therapy were noted. The diversity of stroke severity and patient heterogeneity further complicate generalizability. Immersive technologies hold significant potential in stroke rehabilitation by providing engaging and effective therapies. However, challenges such as safety, accessibility, and scalability must be addressed. Future research should focus on larger, multicenter trials with diverse patient populations, long-term follow-ups, and integrating advanced technologies like AI and motion tracking to optimize immersive interventions for stroke recovery.

References:

[1].   Sacco, R. L., Kasner, S. E., Broderick, J. P., et al., 2013, An updated definition of stroke for the 21st century. Stroke., 44(7):2064–2089. doi:10.1161/STR.0b013e318296aeca.

[2].   Maruvada, S. S., Sornavalli, V., Poonambalaganapathi, & Gowri Sankar, A., 2025. Mini mental state examination (MMSE) as a predictor of cognitive recovery in acute stroke. Romanian Journal of Neurology, 24(1):25–30. Doi:10.37897/RJN.2025.1.5.

[3].   O'Donnell, M. J., Xavier, D., Liu, L., et al., 2010, Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet., 376(9735):112–123. doi:10.1016/S0140-6736(10)60834-3.

[4].   Roth, E. J., Harvey, R. L., Rehabilitation of stroke syndromes. In: Physical Medicine and Rehabilitation.

[5].   TP, A., 1990, Rehabilitation of patients with completed stroke. In: Krusen's Handbook of Physical Medicine and Rehabilitation., 656–673.

[6].   Herpich, F., Rincon, F., 2020, Management of acute ischemic stroke. Crit Care Med., 48(11):1654–1663. doi:10.1097/CCM.0000000000004597.

[7].   Chen, X., Liu, F., Yan, Z., et al., 2018, Therapeutic effects of sensory input training on motor function rehabilitation after stroke. Medicine., 97(48):e13387. doi:10.1097/MD.0000000000013387.

[8].   Joypriyanka, M., Surendran R., Sathish Kumar, P. J, Sivasangari A. Game therapy for specially-abled individuals with PPO reinforcement learning in VR-based educational games. In: Proceedings of the 5th International Conference on Data Intelligence and Cognitive Informatics (ICDICI 2024). 2024. Doi:10.1109/ICDICI62993.2024.10810847

[9].   Coleman, E. R., Moudgal, R., Lang, K., et al., 2017, Early rehabilitation after stroke: a literature review. Curr Atheroscler Rep., 19(12):59. doi:10.1007/s11883-017-0686-6.

[10].  Puderbaugh, M., Emmady, P. D., 2023, Neuroplasticity. In: StatPearls. St. Petersburg (FL): StatPearls Publishing.

[11].  Cirstea, M. C., Levin, M. F., 2000, Compensatory strategies for reaching in stroke. Brain., 123(5):940–953. doi:10.1093/brain/123.5.940.

[12].  Li, W., Luo, Z., Jiang, J., Li, K., Wu, C., 2023, The effects of exercise intervention on cognition and motor function in stroke survivors: a systematic review and meta-analysis. Neurol Sci., 44(6):1891–1903. doi:10.1007/s10072-023-06636-9.

[13].  Teasell, R., Meyer, M. J., McClure, A., et al., 2009, Stroke rehabilitation: an international perspective. Top Stroke Rehabil., 16(1):44–56. doi:10.1310/tsr1601-44.

[14].  Huang, Q., Wu, W., Chen, X., et al., 2019, Evaluating the effect and mechanism of upper limb motor function recovery induced by immersive virtual-reality-based rehabilitation for subacute stroke subjects: study protocol for a randomized controlled trial. Trials., 20(1):104. doi:10.1186/s13063-019-3177-y.

[15].  Bhavani Sowndharya, B., Mathan Muthu, C. M., Vickram, A. S., Saravanan, A., 2025. Bio-ethical considerations in the application of artificial intelligence in spinal surgery. Brain Spine Lett., 10:104161. doi:10.1016/j.bas.2024.104161.

[16].  Bonnyaud, C., Gallien, P., Decavel, P., et al., 2018, Effects of a 6-month self-rehabilitation programme in addition to botulinum toxin injections and conventional physiotherapy on limitations of patients with spastic hemiparesis following stroke (ADJU-TOX): protocol study for a randomised controlled, investigator blinded study. BMJ Open., 8(8):e020915. doi:10.1136/bmjopen-2017-020915.

[17].  Nik Ramli, N. N., Asokan, A., Mayakrishnan, D., et al., 2021, Exploring stroke rehabilitation in Malaysia: are robots better than humans for stroke recuperation? Malays J Med Sci., 28(4):14–23. doi:10.21315/mjms2021.28.4.3.

[18].  Rikhof, C. J. H., Leerskov, K. S., Prange-Lasonder, G. B., et al., 2024, Combining robotics and functional electrical stimulation for assist-as-needed support of leg movements in stroke patients: a feasibility study. Med Eng Phys., 130:104216. doi:10.1016/j.medengphy.2024.104216.

[19].  Suh, A., Prophet, J., 2018, The state of immersive technology research: A literature analysis. Comput Human Behav., 86:77–90. doi:10.1016/j.chb.2018.04.019.

[20].  Slater, M., Sanchez-Vives, M. V., 2016, Enhancing our lives with immersive virtual reality. Front Robot AI., 3:74. doi:10.3389/frobt.2016.00074.

[21].  Diriba Kenea, C., Gemechu Abessa, T., Lamba, D., Bonnechère, B., 2024, Technological features of immersive virtual reality systems for upper limb stroke rehabilitation: a systematic review. Sensors (Basel)., 24(11):3546. doi:10.3390/s24113546.

[22].  Azuma, R., Baillot, Y., Behringer, R., et al., 2001, Recent advances in augmented reality. IEEE Comput Graph Appl., 21(6):34–47. doi:10.1109/38.963459.

[23].  Sigrist, R., Rauter, G., Riener, R., Wolf, P., 2013, Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychon Bull Rev., 20(1):21–53. doi:10.3758/s13423-012-0333-8.

[24].  Da Gama, A. E., Chaves, T. M., Figueiredo, L. S., et al., 2016, MirrARbilitation: A clinically-related gesture recognition interactive tool for an AR rehabilitation system. Comput Methods Programs Biomed., 135:105–114. doi:10.1016/j.cmpb.2016.07.014.

[25].  Tang, A., Biocca, F., Lim, L., Comparing differences in presence during social interaction in augmented reality versus virtual reality environments: An exploratory study.

[26].  Phan, H. L., Le, T. H., Lim, J. M., Hwang, C. H., Koo, K.-I., 2022, Effectiveness of augmented reality in stroke rehabilitation: A meta-analysis. Appl Sci., 12(4):1848. doi:10.3390/app12041848.

[27].  Cameirão, M. S., Badia, S. B., Duarte, E., Frisoli, A., Verschure, P. F., 2012, The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke., 43(10):2720–2728. doi:10.1161/STROKEAHA.112.653196.

[28].  Duff, M., Chen, Y., Cheng, L., Liu, S. M., Blake, P., Wolf, S. L., Rikakis, T., 2013, Adaptive mixed reality rehabilitation improves quality of reaching movements more than traditional reaching therapy following stroke. Neurorehabil Neural Repair., 27(4):306–315. doi:10.1177/1545968312465195.

[29].  Page, M. J., McKenzie, J. E., Bossuyt, P. M., et al., 2021, The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ., 372:n71. doi:10.1136/bmj.n71.

[30].  Gustavsson, M., Kjörk, E. K., Erhardsson, M., et al., 2022, Virtual reality gaming in rehabilitation after stroke: user experiences and perceptions. Disabil Rehabil., 44(22):6759–6765. doi:10.1080/09638288.2021.1972351.

[31].  Winter, C., Kern, F., Gall, D., Latoschik, M. E., Pauli, P., Käthner, I., 2021, Immersive virtual reality during gait rehabilitation increases walking speed and motivation: a usability evaluation with healthy participants and patients with multiple sclerosis and stroke. J Neuroeng Rehabil., 18(1):68. doi:10.1186/s12984-021-00848-w.

[32].  Huang, Q., Jiang, X., Jin, Y., et al., 2024, Immersive virtual reality-based rehabilitation for subacute stroke: a randomized controlled trial. J Neurol., 271(3):1256–1266. doi:10.1007/s00415-023-12060-y.

[33].  Mekbib, D. B., Debeli, D. K., Zhang, L., et al., 2021, A novel fully immersive virtual reality environment for upper extremity rehabilitation in patients with stroke. Ann NY Acad Sci., 1493(1):75–89. doi:10.1111/nyas.14554.

[34].  Chatterjee, K., Buchanan, A., Cottrell, K., et al., 2022, Immersive virtual reality for the cognitive rehabilitation of stroke survivors. IEEE Trans Neural Syst Rehabil Eng., 30:719–728. doi:10.1109/TNSRE.2022.3158731.

[35].  Heinrich, C., Morkisch, N., Langlotz, T., Regenbrecht, H., Dohle, C., 2022, Feasibility and psychophysical effects of immersive virtual reality-based mirror therapy. J Neuroeng Rehabil., 19(1):107. doi:10.1186/s12984-022-01086-4.

[36].  Amin, F., Azad, A., Zubair, M., et al., 2024, Effectiveness of immersive virtual reality-based hand rehabilitation games for improving hand motor functions in subacute stroke patients. IEEE Trans Neural Syst Rehabil Eng., 32:2060–2069. doi:10.1109/TNSRE.2024.3405852.

[37].  Li, P., Wang, Z., Zhang, J., et al., 2023, Virtual reality rehabilitation for stroke patients: a meta-analysis of randomized controlled trials. Comput Methods Programs Biomed., 225:107037. doi:10.1016/j.cmpb.2023.107037.

[38].  Kwok, Y., Chen, L., Lee, W., et al., 2024, The impact of virtual reality therapy on cognitive and motor rehabilitation in stroke patients: A review of clinical studies. J Clin Neurosci., 81:13–23. doi:10.1016/j.jocn.2024.04.017.

[39].  Serrano, F., Martínez, C., Sánchez, A., et al., 2023, Effectiveness of virtual reality in post-stroke rehabilitation: a comparative meta-analysis. Arch Phys Med Rehabil., 104(6):1235–1245. doi:10.1016/j.apmr.2023.01.052.