Immersive Technology in Stroke Rehabilitation: A Scoping Review of Effectiveness, Challenges and Future Direction

Abstract:
Stroke rehabilitation has traditionally relied on physical and
occupational therapies to improve motor and cognitive functions. Recently,
immersive technologies, including Virtual Reality (VR), Augmented Reality (AR),
and Mixed Reality (MR), have emerged as innovative tools for enhancing
recovery. These technologies offer engaging, tailored rehabilitation
experiences, potentially improving stroke outcomes. This scoping review
synthesizes recent studies on immersive technologies in stroke rehabilitation,
focusing on clinical trials, pilot studies, and systematic reviews published in
the past decade. Findings indicate that VR, AR, and MR interventions show
promise in improving motor function, gait rehabilitation, and cognitive
recovery. VR-based interventions, including treadmill training and mirror
therapy, have demonstrated benefits such as increased walking speed and enhanced
upper limb motor function. However, challenges remain, including participant
selection bias, small sample sizes, and a lack of long-term follow-up.
Additionally, issues such as physical discomfort, safety concerns, and the need
for personalized therapy were noted. The diversity of stroke severity and
patient heterogeneity further complicate generalizability. Immersive
technologies hold significant potential in stroke rehabilitation by providing
engaging and effective therapies. However, challenges such as safety,
accessibility, and scalability must be addressed. Future research should focus
on larger, multicenter trials with diverse patient populations, long-term
follow-ups, and integrating advanced technologies like AI and motion tracking
to optimize immersive interventions for stroke recovery.
References:
[1].
Sacco,
R. L., Kasner, S. E., Broderick, J. P., et al., 2013, An updated definition of
stroke for the 21st century. Stroke., 44(7):2064–2089.
doi:10.1161/STR.0b013e318296aeca.
[2].
Maruvada,
S. S., Sornavalli, V., Poonambalaganapathi, & Gowri Sankar, A., 2025. Mini
mental state examination (MMSE) as a predictor of cognitive recovery in acute
stroke. Romanian Journal of Neurology, 24(1):25–30. Doi:10.37897/RJN.2025.1.5.
[3].
O'Donnell,
M. J., Xavier, D., Liu, L., et al., 2010, Risk factors for ischaemic and
intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a
case-control study. Lancet., 376(9735):112–123.
doi:10.1016/S0140-6736(10)60834-3.
[4].
Roth,
E. J., Harvey, R. L., Rehabilitation of stroke syndromes. In: Physical Medicine
and Rehabilitation.
[5].
TP,
A., 1990, Rehabilitation of patients with completed stroke. In: Krusen's
Handbook of Physical Medicine and Rehabilitation., 656–673.
[6].
Herpich,
F., Rincon, F., 2020, Management of acute ischemic stroke. Crit Care Med.,
48(11):1654–1663. doi:10.1097/CCM.0000000000004597.
[7].
Chen,
X., Liu, F., Yan, Z., et al., 2018, Therapeutic effects of sensory input
training on motor function rehabilitation after stroke. Medicine.,
97(48):e13387. doi:10.1097/MD.0000000000013387.
[8].
Joypriyanka,
M., Surendran R., Sathish Kumar, P. J, Sivasangari A. Game therapy for
specially-abled individuals with PPO reinforcement learning in VR-based
educational games. In: Proceedings of the 5th International Conference on
Data Intelligence and Cognitive Informatics (ICDICI 2024). 2024.
Doi:10.1109/ICDICI62993.2024.10810847
[9].
Coleman,
E. R., Moudgal, R., Lang, K., et al., 2017, Early rehabilitation after stroke:
a literature review. Curr Atheroscler Rep., 19(12):59.
doi:10.1007/s11883-017-0686-6.
[10].
Puderbaugh,
M., Emmady, P. D., 2023, Neuroplasticity. In: StatPearls. St. Petersburg (FL): StatPearls
Publishing.
[11].
Cirstea,
M. C., Levin, M. F., 2000, Compensatory strategies for reaching in stroke. Brain.,
123(5):940–953. doi:10.1093/brain/123.5.940.
[12].
Li,
W., Luo, Z., Jiang, J., Li, K., Wu, C., 2023, The effects of exercise
intervention on cognition and motor function in stroke survivors: a systematic
review and meta-analysis. Neurol Sci., 44(6):1891–1903.
doi:10.1007/s10072-023-06636-9.
[13].
Teasell,
R., Meyer, M. J., McClure, A., et al., 2009, Stroke rehabilitation: an
international perspective. Top Stroke Rehabil., 16(1):44–56.
doi:10.1310/tsr1601-44.
[14].
Huang,
Q., Wu, W., Chen, X., et al., 2019, Evaluating the effect and mechanism of
upper limb motor function recovery induced by immersive virtual-reality-based
rehabilitation for subacute stroke subjects: study protocol for a randomized
controlled trial. Trials., 20(1):104. doi:10.1186/s13063-019-3177-y.
[15].
Bhavani
Sowndharya, B., Mathan Muthu, C. M., Vickram, A. S., Saravanan, A., 2025.
Bio-ethical considerations in the application of artificial intelligence in
spinal surgery. Brain Spine Lett., 10:104161.
doi:10.1016/j.bas.2024.104161.
[16].
Bonnyaud,
C., Gallien, P., Decavel, P., et al., 2018, Effects of a 6-month
self-rehabilitation programme in addition to botulinum toxin injections and
conventional physiotherapy on limitations of patients with spastic hemiparesis
following stroke (ADJU-TOX): protocol study for a randomised controlled,
investigator blinded study. BMJ Open., 8(8):e020915.
doi:10.1136/bmjopen-2017-020915.
[17].
Nik
Ramli, N. N., Asokan, A., Mayakrishnan, D., et al., 2021, Exploring stroke
rehabilitation in Malaysia: are robots better than humans for stroke
recuperation? Malays J Med Sci., 28(4):14–23.
doi:10.21315/mjms2021.28.4.3.
[18].
Rikhof,
C. J. H., Leerskov, K. S., Prange-Lasonder, G. B., et al., 2024, Combining
robotics and functional electrical stimulation for assist-as-needed support of
leg movements in stroke patients: a feasibility study. Med Eng Phys.,
130:104216. doi:10.1016/j.medengphy.2024.104216.
[19].
Suh,
A., Prophet, J., 2018, The state of immersive technology research: A literature
analysis. Comput Human Behav., 86:77–90. doi:10.1016/j.chb.2018.04.019.
[20].
Slater,
M., Sanchez-Vives, M. V., 2016, Enhancing our lives with immersive virtual
reality. Front Robot AI., 3:74. doi:10.3389/frobt.2016.00074.
[21].
Diriba
Kenea, C., Gemechu Abessa, T., Lamba, D., Bonnechère, B., 2024, Technological
features of immersive virtual reality systems for upper limb stroke
rehabilitation: a systematic review. Sensors (Basel)., 24(11):3546.
doi:10.3390/s24113546.
[22].
Azuma,
R., Baillot, Y., Behringer, R., et al., 2001, Recent advances in augmented
reality. IEEE Comput Graph Appl., 21(6):34–47. doi:10.1109/38.963459.
[23].
Sigrist,
R., Rauter, G., Riener, R., Wolf, P., 2013, Augmented visual, auditory, haptic,
and multimodal feedback in motor learning: a review. Psychon Bull Rev.,
20(1):21–53. doi:10.3758/s13423-012-0333-8.
[24].
Da
Gama, A. E., Chaves, T. M., Figueiredo, L. S., et al., 2016, MirrARbilitation:
A clinically-related gesture recognition interactive tool for an AR
rehabilitation system. Comput Methods Programs Biomed., 135:105–114.
doi:10.1016/j.cmpb.2016.07.014.
[25].
Tang,
A., Biocca, F., Lim, L., Comparing differences in presence during social
interaction in augmented reality versus virtual reality environments: An
exploratory study.
[26].
Phan,
H. L., Le, T. H., Lim, J. M., Hwang, C. H., Koo, K.-I., 2022, Effectiveness of
augmented reality in stroke rehabilitation: A meta-analysis. Appl Sci., 12(4):1848.
doi:10.3390/app12041848.
[27].
Cameirão,
M. S., Badia, S. B., Duarte, E., Frisoli, A., Verschure, P. F., 2012, The
combined impact of virtual reality neurorehabilitation and its interfaces on
upper extremity functional recovery in patients with chronic stroke. Stroke.,
43(10):2720–2728. doi:10.1161/STROKEAHA.112.653196.
[28].
Duff,
M., Chen, Y., Cheng, L., Liu, S. M., Blake, P., Wolf, S. L., Rikakis, T., 2013,
Adaptive mixed reality rehabilitation improves quality of reaching movements
more than traditional reaching therapy following stroke. Neurorehabil Neural
Repair., 27(4):306–315. doi:10.1177/1545968312465195.
[29].
Page,
M. J., McKenzie, J. E., Bossuyt, P. M., et al., 2021, The PRISMA 2020
statement: an updated guideline for reporting systematic reviews. BMJ.,
372:n71. doi:10.1136/bmj.n71.
[30].
Gustavsson,
M., Kjörk, E. K., Erhardsson, M., et al., 2022, Virtual reality gaming in
rehabilitation after stroke: user experiences and perceptions. Disabil
Rehabil., 44(22):6759–6765. doi:10.1080/09638288.2021.1972351.
[31].
Winter,
C., Kern, F., Gall, D., Latoschik, M. E., Pauli, P., Käthner, I., 2021,
Immersive virtual reality during gait rehabilitation increases walking speed
and motivation: a usability evaluation with healthy participants and patients
with multiple sclerosis and stroke. J Neuroeng Rehabil., 18(1):68.
doi:10.1186/s12984-021-00848-w.
[32].
Huang,
Q., Jiang, X., Jin, Y., et al., 2024, Immersive virtual reality-based
rehabilitation for subacute stroke: a randomized controlled trial. J
Neurol., 271(3):1256–1266. doi:10.1007/s00415-023-12060-y.
[33].
Mekbib,
D. B., Debeli, D. K., Zhang, L., et al., 2021, A novel fully immersive virtual
reality environment for upper extremity rehabilitation in patients with stroke.
Ann NY Acad Sci., 1493(1):75–89. doi:10.1111/nyas.14554.
[34].
Chatterjee,
K., Buchanan, A., Cottrell, K., et al., 2022, Immersive virtual reality for the
cognitive rehabilitation of stroke survivors. IEEE Trans Neural Syst Rehabil
Eng., 30:719–728. doi:10.1109/TNSRE.2022.3158731.
[35].
Heinrich,
C., Morkisch, N., Langlotz, T., Regenbrecht, H., Dohle, C., 2022, Feasibility
and psychophysical effects of immersive virtual reality-based mirror therapy.
J Neuroeng Rehabil., 19(1):107. doi:10.1186/s12984-022-01086-4.
[36].
Amin,
F., Azad, A., Zubair, M., et al., 2024, Effectiveness of immersive virtual
reality-based hand rehabilitation games for improving hand motor functions in
subacute stroke patients. IEEE Trans Neural Syst Rehabil Eng., 32:2060–2069.
doi:10.1109/TNSRE.2024.3405852.
[37].
Li,
P., Wang, Z., Zhang, J., et al., 2023, Virtual reality rehabilitation for
stroke patients: a meta-analysis of randomized controlled trials. Comput
Methods Programs Biomed., 225:107037. doi:10.1016/j.cmpb.2023.107037.
[38].
Kwok,
Y., Chen, L., Lee, W., et al., 2024, The impact of virtual reality therapy on
cognitive and motor rehabilitation in stroke patients: A review of clinical
studies. J Clin Neurosci., 81:13–23. doi:10.1016/j.jocn.2024.04.017.
[39].
Serrano,
F., Martínez, C., Sánchez, A., et al., 2023, Effectiveness of virtual reality
in post-stroke rehabilitation: a comparative meta-analysis. Arch Phys Med
Rehabil., 104(6):1235–1245. doi:10.1016/j.apmr.2023.01.052.