Understanding the Regulation of Breast Cancer by TGF-β/Smad Signaling and Matrix Metalloproteinases (MMPs): A Molecular Perspective

Abstract:
Breast cancer is a complex and heterogeneous disease, with metastasis being the primary cause of mortality. The intricate molecular mechanisms governing breast cancer progression are critical areas of research, particularly the roles of the Transforming Growth Factor-beta (TGF-β) signaling pathway and Matrix Metalloproteinases (MMPs). TGF-β signaling, mediated through Smad proteins, is known for its dual role in cancer biology. In the early stages of breast cancer, TGF-β acts as a tumor suppressor, inhibiting cell proliferation and promoting apoptosis. However, in advanced stages, it switches roles to promote tumor progression, invasion, and metastasis. This switch is largely influenced by the tumor microenvironment and the complex cross-talk between TGF-β/Smad signaling and other molecular pathways. One such pathway involves MMPs, a family of zinc-dependent enzymes responsible for degrading the extracellular matrix (ECM). MMPs facilitate tumor invasion by breaking down ECM barriers, allowing cancer cells to disseminate and establish metastases. TGF-β is known to upregulate MMP expression, thereby enhancing the invasive capabilities of breast cancer cells. The interplay between TGF-β/Smad signalling and MMP activity creates a pro-metastatic environment that not only supports tumor growth but also contributes to therapeutic resistance. Targeting these pathways could offer new therapeutic strategies for managing breast cancer, particularly in combating metastasis and overcoming drug resistance. Understanding the molecular dynamics of TGF-β/Smad signaling and MMPs in breast cancer provides valuable insights into the development of more effective treatments, potentially improving patient outcomes.
References:
[1].
Feng,
Y., Spezia, M., Huang, S., Yuan, C., Zeng, Z., Zhang, L., Ji, X., Liu, W.,
Huang, B., Luo, W., Liu, B., Lei, Y., Du, S., Vuppalapati, A., Luu, H. H.,
Haydon, R. C., He, T. C., & Ren, G., 2018, Breast cancer development and
progression: Risk factors, cancer stem cells, signaling pathways, genomics, and
molecular pathogenesis. Genes & diseases, 5(2), 77–106. https://doi.org/10.1016/j.gendis.2018.05.001
[2].
Guo,
L., Kong, D., Liu, J., Zhan, L., Luo, L., Zheng, W., Zheng, Q., Chen, C., &
Sun, S., 2023, Breast cancer heterogeneity and its implication in personalized
precision therapy. Experimental hematology & oncology, 12(1), 3. https://doi.org/10.1186/s40164-022-00363-1
[3].
Soosai,
D., Ramalingam, R., Perumal, E., Veeramani, K., Pancras, C., Almutairi, M. H.,
Savarimuthu, L. A. R., Veeramuthu, D., & Antony, S., 2024, Anticancer
effects of rutin from Fagopyrum tataricum (tartary buckwheat) against
osteosarcoma cell line. Molecular biology reports, 51(1), 312. https://doi.org/10.1007/s11033-024-09218-w
[4].
Shi,
X., Yang, J., Deng, S., Xu, H., Wu, D., Zeng, Q., Wang, S., Hu, T., Wu, F.,
& Zhou, H., 2022, TGF-β signaling in the tumor metabolic microenvironment
and targeted therapies. Journal of hematology & oncology, 15(1),
135. https://doi.org/10.1186/s13045-022-01349-6
[5].
Wang,
X., & Khalil, R. A., 2018, Matrix Metalloproteinases, Vascular Remodeling,
and Vascular Disease. Advances in pharmacology (San Diego, Calif.), 81,
241–330. https://doi.org/10.1016/bs.apha.2017.08.002
[6].
Freitas-Rodríguez,
S., Folgueras, A. R., & López-Otín, C., 2017, The role of matrix
metalloproteinases in aging: Tissue remodeling and beyond. Biochimica et
biophysica acta. Molecular cell research, 1864(11 Pt A), 2015–2025. https://doi.org/10.1016/j.bbamcr.2017.05.007
[7].
Pickup,
M., Novitskiy, S., & Moses, H. L., 2013, The roles of TGFβ in the tumour
microenvironment. Nature reviews. Cancer, 13(11), 788–799. https://doi.org/10.1038/nrc3603
[8].
Zhao,
M., Mishra, L., & Deng, C. X., 2018, The role of TGF-β/SMAD4 signaling in
cancer. International journal of biological sciences, 14(2), 111–123. https://doi.org/10.7150/ijbs.23230
[9].
Chow,
A., Arteaga, C. L., & Wang, S. E., 2011, When tumor suppressor TGFβ meets
the HER2 (ERBB2) oncogene. Journal of mammary gland biology and neoplasia,
16(2), 81–88. https://doi.org/10.1007/s10911-011-9206-4
[10].
Luo,
K., 2017, Signaling Cross Talk between TGF-β/Smad and Other Signaling Pathways.
Cold Spring Harbor perspectives in biology, 9(1), a022137. https://doi.org/10.1101/cshperspect.a022137
[11].
Suwanabol,
P. A., Seedial, S. M., Zhang, F., Shi, X., Si, Y., Liu, B., & Kent, K. C.,
2012, TGF-β and Smad3 modulate PI3K/Akt signaling pathway in vascular smooth
muscle cells. American journal of physiology. Heart and circulatory
physiology, 302(11), H2211–H2219. https://doi.org/10.1152/ajpheart.00966.2011
[12].
Rajeshkumar,
S., Jayakodi, S., Tharani, M., Alharbi, N. S., & Thiruvengadam, M., 2024,
Antimicrobial activity of probiotic bacteria-mediated cadmium oxide
nanoparticles against fish pathogens. Microbial pathogenesis, 189,
106602. https://doi.org/10.1016/j.micpath.2024.106602
[13].
Paulraj,
J., Pushparathna, B., Maiti, S., Sharma, N., & Shanmugam, R., 2024, A
Comparative In Vitro Analysis of Antimicrobial Effectiveness and Compressive
Strength of Ginger and Clove-Modified Glass Ionomer Cement. Cureus,
16(3), e55964. https://doi.org/10.7759/cureus.55964
[14].
Deng,
Z., Fan, T., Xiao, C., Tian, H., Zheng, Y., Li, C., & He, J., 2024, TGF-β
signaling in health, disease, and therapeutics. Signal transduction and
targeted therapy, 9(1), 61. https://doi.org/10.1038/s41392-024-01764-w
[15].
Miyazawa,
K., & Miyazono, K., 2017, Regulation of TGF-β Family Signaling by
Inhibitory Smads. Cold Spring Harbor perspectives in biology, 9(3),
a022095. https://doi.org/10.1101/cshperspect.a022095
[16].
İlhan,
A., Golestani, S., Shafagh, S. G., Asadi, F., Daneshdoust, D., Al-Naqeeb, B. Z.
T., Nemati, M. M., Khalatbari, F., & Yaseri, A. F., 2023, The dual role of
microRNA (miR)-20b in cancers: Friend or foe?. Cell communication and
signaling: CCS, 21(1), 26. https://doi.org/10.1186/s12964-022-01019-7
[17].
Jabłońska-Trypuć,
A., Matejczyk, M., & Rosochacki, S., 2016, Matrix metalloproteinases
(MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as
a target for anticancer drugs. Journal of enzyme inhibition and medicinal
chemistry, 31(sup1), 177–183. https://doi.org/10.3109/14756366.2016.1161620
[18].
Derynck,
R., Turley, S. J., & Akhurst, R. J., 2021, TGFβ biology in cancer
progression and immunotherapy. Nature reviews. Clinical oncology, 18(1),
9–34. https://doi.org/10.1038/s41571-020-0403-1
[19].
Winkler,
J., Abisoye-Ogunniyan, A., Metcalf, K. J., & Werb, Z., 2020, Concepts of
extracellular matrix remodelling in tumour progression and metastasis. Nature
communications, 11(1), 5120. https://doi.org/10.1038/s41467-020-18794-x
[20].
Quintero-Fabián,
S., Arreola, R., Becerril-Villanueva, E., Torres-Romero, J. C., Arana-Argáez,
V., Lara-Riegos, J., Ramírez-Camacho, M. A., & Alvarez-Sánchez, M. E.,
2019, Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Frontiers
in oncology, 9, 1370. https://doi.org/10.3389/fonc.2019.01370
[21].
Chiechi,
A., Waning, D. L., Stayrook, K. R., Buijs, J. T., Guise, T. A., & Mohammad,
K. S., 2013, Role of TGF-β in breast cancer bone metastases. Advances in
bioscience and biotechnology (Print), 4(10C), 15–30. https://doi.org/10.4236/abb.2013.410A4003
[22].
Hata,
A., & Chen, Y. G., 2016, TGF-β Signaling from Receptors to Smads. Cold
Spring Harbor perspectives in biology, 8(9), a022061. https://doi.org/10.1101/cshperspect.a022061
[23].
Nannuru,
K. C., Futakuchi, M., Varney, M. L., Vincent, T. M., Marcusson, E. G., &
Singh, R. K., 2010, Matrix metalloproteinase (MMP)-13 regulates mammary
tumor-induced osteolysis by activating MMP9 and transforming growth factor-beta
signaling at the tumor-bone interface. Cancer Research, 70(9),
3494–3504. https://doi.org/10.1158/0008-5472.CAN-09-3251
[24].
Zhuang,
Y., Li, X., Zhan, P., Pi, G., & Wen, G., 2021, MMP11 promotes the
proliferation and progression of breast cancer through stabilizing Smad2
protein. Oncology Reports, 45(4), 16. https://doi.org/10.3892/or.2021.7967
[25].
Stuelten,
C. H., DaCosta Byfield, S., Arany, P. R., Karpova, T. S., Stetler-Stevenson, W.
G., & Roberts, A. B., 2005, Breast cancer cells induce stromal fibroblasts
to express MMP-9 via secretion of TNF-alpha and TGF-beta. Journal of Cell
Science, 118(Pt 10), 2143–2153. https://doi.org/10.1242/jcs.02334
[26].
Gomes,
L. R., Terra, L. F., Wailemann, R. A., Labriola, L., & Sogayar, M. C.,
2012, TGF-β1 modulates the homeostasis between MMPs and MMP inhibitors through
p38 MAPK and ERK1/2 in highly invasive breast cancer cells. BMC Cancer,
12, 26. https://doi.org/10.1186/1471-2407-12-26
[27].
Cao,
W. H., Liu, X. P., Meng, S. L., Gao, Y. W., Wang, Y., Ma, Z. L., Wang, X. G.,
& Wang, H. B., 2016, USP4 promotes invasion of breast cancer cells via
Relaxin/TGF-β1/Smad2/MMP-9 signal. European Review for Medical and
Pharmacological Sciences, 20(6), 1115–1122.
[28].
Wu,
Y., Tran, T., Dwabe, S., Sarkissyan, M., Kim, J., Nava, M., Clayton, S.,
Pietras, R., Farias-Eisner, R., & Vadgama, J. V., 2017, A83-01 inhibits
TGF-β-induced upregulation of Wnt3 and epithelial to mesenchymal transition in
HER2-overexpressing breast cancer cells. Breast Cancer Research and
Treatment, 163(3), 449–460. https://doi.org/10.1007/s10549-017-4211-y
(Retraction published Breast Cancer Res Treat. 2024 Jul;206(1):213. doi:
10.1007/s10549-024-07371-1.
[29].
Mo,
N., Li, Z. Q., Li, J., & Cao, Y. D., 2012, Curcumin inhibits TGF-β1-induced
MMP-9 and invasion through ERK and Smad signaling in breast cancer MDA-MB-231
cells. Asian Pacific Journal of Cancer Prevention, 13(11), 5709–5714. https://doi.org/10.7314/apjcp.2012.13.11.5709
[30].
Dong,
H., Diao, H., Zhao, Y., Xu, H., Pei, S., Gao, J., Wang, J., Hussain, T., Zhao,
D., Zhou, X., & Lin, D., 2019, Overexpression of matrix metalloproteinase-9
in breast cancer cell lines remarkably increases the cell malignancy largely
via activation of transforming growth factor beta/SMAD signalling. Cell
Proliferation, 52(5), e12633. https://doi.org/10.1111/cpr.12633
[31].
Mandal,
S., Johnson, K. R., & Wheelock, M. J., 2008, TGF-beta induces formation of
F-actin cores and matrix degradation in human breast cancer cells via distinct
signaling pathways. Experimental Cell Research, 314(19), 3478–3493. https://doi.org/10.1016/j.yexcr.2008.09.013
[32].
Kim,
E. S., Sohn, Y. W., & Moon, A., 2007, TGF-beta-induced transcriptional
activation of MMP-2 is mediated by activating transcription factor (ATF)2 in
human breast epithelial cells. Cancer Letters, 252(1), 147–156. https://doi.org/10.1016/j.canlet.2006.12.016
[33].
Deng,
Z., Fan, T., Xiao, C., Tian, H., Zheng, Y., Li, C., & He, J., 2024, TGF-β
signaling in health, disease, and therapeutics. Signal transduction and
targeted therapy, 9(1), 61. https://doi.org/10.1038/s41392-024-01764-w
[34].
Harini,
P., Neralla, M., Preethi, A., & Selvakumar, S. C., 2024, Impact of
Interleukin-6 on Oral Squamous Cell Carcinoma Among the South Indian
Population. Cureus, 16(7), e63789. https://doi.org/10.7759/cureus.63789
[35]. Malakondaiah, S., Pavithravedhavalli, V., Kayal, L., Ryntathiang, I., & Dharmalingam Jothinathan, M. K., 2024, Stem cell therapy: A new path in tackling oral cancer. Journal of stomatology, oral and maxillofacial surgery, 101967. Advance online publication. https://doi.org/10.1016/j.jormas.2024.101967