Understanding the Regulation of Breast Cancer by TGF-β/Smad Signaling and Matrix Metalloproteinases (MMPs): A Molecular Perspective

Download Article

DOI: 10.21522/TIJPH.2013.13.02.Art004

Authors : Monisha Prasad, Karun Abhinav Marimuthu, Kaavya ShanmugaSundaram

Abstract:

Breast cancer is a complex and heterogeneous disease, with metastasis being the primary cause of mortality. The intricate molecular mechanisms governing breast cancer progression are critical areas of research, particularly the roles of the Transforming Growth Factor-beta (TGF-β) signaling pathway and Matrix Metalloproteinases (MMPs). TGF-β signaling, mediated through Smad proteins, is known for its dual role in cancer biology. In the early stages of breast cancer, TGF-β acts as a tumor suppressor, inhibiting cell proliferation and promoting apoptosis. However, in advanced stages, it switches roles to promote tumor progression, invasion, and metastasis. This switch is largely influenced by the tumor microenvironment and the complex cross-talk between TGF-β/Smad signaling and other molecular pathways. One such pathway involves MMPs, a family of zinc-dependent enzymes responsible for degrading the extracellular matrix (ECM). MMPs facilitate tumor invasion by breaking down ECM barriers, allowing cancer cells to disseminate and establish metastases. TGF-β is known to upregulate MMP expression, thereby enhancing the invasive capabilities of breast cancer cells. The interplay between TGF-β/Smad signalling and MMP activity creates a pro-metastatic environment that not only supports tumor growth but also contributes to therapeutic resistance. Targeting these pathways could offer new therapeutic strategies for managing breast cancer, particularly in combating metastasis and overcoming drug resistance. Understanding the molecular dynamics of TGF-β/Smad signaling and MMPs in breast cancer provides valuable insights into the development of more effective treatments, potentially improving patient outcomes.

References:

[1].   Feng, Y., Spezia, M., Huang, S., Yuan, C., Zeng, Z., Zhang, L., Ji, X., Liu, W., Huang, B., Luo, W., Liu, B., Lei, Y., Du, S., Vuppalapati, A., Luu, H. H., Haydon, R. C., He, T. C., & Ren, G., 2018, Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes & diseases, 5(2), 77–106. https://doi.org/10.1016/j.gendis.2018.05.001

[2].   Guo, L., Kong, D., Liu, J., Zhan, L., Luo, L., Zheng, W., Zheng, Q., Chen, C., & Sun, S., 2023, Breast cancer heterogeneity and its implication in personalized precision therapy. Experimental hematology & oncology, 12(1), 3. https://doi.org/10.1186/s40164-022-00363-1

[3].   Soosai, D., Ramalingam, R., Perumal, E., Veeramani, K., Pancras, C., Almutairi, M. H., Savarimuthu, L. A. R., Veeramuthu, D., & Antony, S., 2024, Anticancer effects of rutin from Fagopyrum tataricum (tartary buckwheat) against osteosarcoma cell line. Molecular biology reports, 51(1), 312. https://doi.org/10.1007/s11033-024-09218-w

[4].   Shi, X., Yang, J., Deng, S., Xu, H., Wu, D., Zeng, Q., Wang, S., Hu, T., Wu, F., & Zhou, H., 2022, TGF-β signaling in the tumor metabolic microenvironment and targeted therapies. Journal of hematology & oncology, 15(1), 135. https://doi.org/10.1186/s13045-022-01349-6

[5].   Wang, X., & Khalil, R. A., 2018, Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. Advances in pharmacology (San Diego, Calif.), 81, 241–330. https://doi.org/10.1016/bs.apha.2017.08.002

[6].   Freitas-Rodríguez, S., Folgueras, A. R., & López-Otín, C., 2017, The role of matrix metalloproteinases in aging: Tissue remodeling and beyond. Biochimica et biophysica acta. Molecular cell research, 1864(11 Pt A), 2015–2025. https://doi.org/10.1016/j.bbamcr.2017.05.007

[7].   Pickup, M., Novitskiy, S., & Moses, H. L., 2013, The roles of TGFβ in the tumour microenvironment. Nature reviews. Cancer, 13(11), 788–799. https://doi.org/10.1038/nrc3603

[8].   Zhao, M., Mishra, L., & Deng, C. X., 2018, The role of TGF-β/SMAD4 signaling in cancer. International journal of biological sciences, 14(2), 111–123. https://doi.org/10.7150/ijbs.23230

[9].   Chow, A., Arteaga, C. L., & Wang, S. E., 2011, When tumor suppressor TGFβ meets the HER2 (ERBB2) oncogene. Journal of mammary gland biology and neoplasia, 16(2), 81–88. https://doi.org/10.1007/s10911-011-9206-4

[10].  Luo, K., 2017, Signaling Cross Talk between TGF-β/Smad and Other Signaling Pathways. Cold Spring Harbor perspectives in biology, 9(1), a022137. https://doi.org/10.1101/cshperspect.a022137

[11].  Suwanabol, P. A., Seedial, S. M., Zhang, F., Shi, X., Si, Y., Liu, B., & Kent, K. C., 2012, TGF-β and Smad3 modulate PI3K/Akt signaling pathway in vascular smooth muscle cells. American journal of physiology. Heart and circulatory physiology, 302(11), H2211–H2219. https://doi.org/10.1152/ajpheart.00966.2011

[12].  Rajeshkumar, S., Jayakodi, S., Tharani, M., Alharbi, N. S., & Thiruvengadam, M., 2024, Antimicrobial activity of probiotic bacteria-mediated cadmium oxide nanoparticles against fish pathogens. Microbial pathogenesis, 189, 106602. https://doi.org/10.1016/j.micpath.2024.106602

[13].  Paulraj, J., Pushparathna, B., Maiti, S., Sharma, N., & Shanmugam, R., 2024, A Comparative In Vitro Analysis of Antimicrobial Effectiveness and Compressive Strength of Ginger and Clove-Modified Glass Ionomer Cement. Cureus, 16(3), e55964. https://doi.org/10.7759/cureus.55964

[14].  Deng, Z., Fan, T., Xiao, C., Tian, H., Zheng, Y., Li, C., & He, J., 2024, TGF-β signaling in health, disease, and therapeutics. Signal transduction and targeted therapy, 9(1), 61. https://doi.org/10.1038/s41392-024-01764-w

[15].  Miyazawa, K., & Miyazono, K., 2017, Regulation of TGF-β Family Signaling by Inhibitory Smads. Cold Spring Harbor perspectives in biology, 9(3), a022095. https://doi.org/10.1101/cshperspect.a022095

[16].  İlhan, A., Golestani, S., Shafagh, S. G., Asadi, F., Daneshdoust, D., Al-Naqeeb, B. Z. T., Nemati, M. M., Khalatbari, F., & Yaseri, A. F., 2023, The dual role of microRNA (miR)-20b in cancers: Friend or foe?. Cell communication and signaling: CCS, 21(1), 26. https://doi.org/10.1186/s12964-022-01019-7

[17].  Jabłońska-Trypuć, A., Matejczyk, M., & Rosochacki, S., 2016, Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. Journal of enzyme inhibition and medicinal chemistry, 31(sup1), 177–183. https://doi.org/10.3109/14756366.2016.1161620

[18].  Derynck, R., Turley, S. J., & Akhurst, R. J., 2021, TGFβ biology in cancer progression and immunotherapy. Nature reviews. Clinical oncology, 18(1), 9–34. https://doi.org/10.1038/s41571-020-0403-1

[19].  Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K. J., & Werb, Z., 2020, Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nature communications, 11(1), 5120. https://doi.org/10.1038/s41467-020-18794-x

[20].  Quintero-Fabián, S., Arreola, R., Becerril-Villanueva, E., Torres-Romero, J. C., Arana-Argáez, V., Lara-Riegos, J., Ramírez-Camacho, M. A., & Alvarez-Sánchez, M. E., 2019, Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Frontiers in oncology, 9, 1370. https://doi.org/10.3389/fonc.2019.01370

[21].  Chiechi, A., Waning, D. L., Stayrook, K. R., Buijs, J. T., Guise, T. A., & Mohammad, K. S., 2013, Role of TGF-β in breast cancer bone metastases. Advances in bioscience and biotechnology (Print), 4(10C), 15–30. https://doi.org/10.4236/abb.2013.410A4003

[22].  Hata, A., & Chen, Y. G., 2016, TGF-β Signaling from Receptors to Smads. Cold Spring Harbor perspectives in biology, 8(9), a022061. https://doi.org/10.1101/cshperspect.a022061

[23].  Nannuru, K. C., Futakuchi, M., Varney, M. L., Vincent, T. M., Marcusson, E. G., & Singh, R. K., 2010, Matrix metalloproteinase (MMP)-13 regulates mammary tumor-induced osteolysis by activating MMP9 and transforming growth factor-beta signaling at the tumor-bone interface. Cancer Research, 70(9), 3494–3504. https://doi.org/10.1158/0008-5472.CAN-09-3251

[24].  Zhuang, Y., Li, X., Zhan, P., Pi, G., & Wen, G., 2021, MMP11 promotes the proliferation and progression of breast cancer through stabilizing Smad2 protein. Oncology Reports, 45(4), 16. https://doi.org/10.3892/or.2021.7967

[25].  Stuelten, C. H., DaCosta Byfield, S., Arany, P. R., Karpova, T. S., Stetler-Stevenson, W. G., & Roberts, A. B., 2005, Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-alpha and TGF-beta. Journal of Cell Science, 118(Pt 10), 2143–2153. https://doi.org/10.1242/jcs.02334

[26].  Gomes, L. R., Terra, L. F., Wailemann, R. A., Labriola, L., & Sogayar, M. C., 2012, TGF-β1 modulates the homeostasis between MMPs and MMP inhibitors through p38 MAPK and ERK1/2 in highly invasive breast cancer cells. BMC Cancer, 12, 26. https://doi.org/10.1186/1471-2407-12-26

[27].  Cao, W. H., Liu, X. P., Meng, S. L., Gao, Y. W., Wang, Y., Ma, Z. L., Wang, X. G., & Wang, H. B., 2016, USP4 promotes invasion of breast cancer cells via Relaxin/TGF-β1/Smad2/MMP-9 signal. European Review for Medical and Pharmacological Sciences, 20(6), 1115–1122.

[28].  Wu, Y., Tran, T., Dwabe, S., Sarkissyan, M., Kim, J., Nava, M., Clayton, S., Pietras, R., Farias-Eisner, R., & Vadgama, J. V., 2017, A83-01 inhibits TGF-β-induced upregulation of Wnt3 and epithelial to mesenchymal transition in HER2-overexpressing breast cancer cells. Breast Cancer Research and Treatment, 163(3), 449–460. https://doi.org/10.1007/s10549-017-4211-y (Retraction published Breast Cancer Res Treat. 2024 Jul;206(1):213. doi: 10.1007/s10549-024-07371-1.

[29].  Mo, N., Li, Z. Q., Li, J., & Cao, Y. D., 2012, Curcumin inhibits TGF-β1-induced MMP-9 and invasion through ERK and Smad signaling in breast cancer MDA-MB-231 cells. Asian Pacific Journal of Cancer Prevention, 13(11), 5709–5714. https://doi.org/10.7314/apjcp.2012.13.11.5709

[30].  Dong, H., Diao, H., Zhao, Y., Xu, H., Pei, S., Gao, J., Wang, J., Hussain, T., Zhao, D., Zhou, X., & Lin, D., 2019, Overexpression of matrix metalloproteinase-9 in breast cancer cell lines remarkably increases the cell malignancy largely via activation of transforming growth factor beta/SMAD signalling. Cell Proliferation, 52(5), e12633. https://doi.org/10.1111/cpr.12633

[31].  Mandal, S., Johnson, K. R., & Wheelock, M. J., 2008, TGF-beta induces formation of F-actin cores and matrix degradation in human breast cancer cells via distinct signaling pathways. Experimental Cell Research, 314(19), 3478–3493. https://doi.org/10.1016/j.yexcr.2008.09.013

[32].  Kim, E. S., Sohn, Y. W., & Moon, A., 2007, TGF-beta-induced transcriptional activation of MMP-2 is mediated by activating transcription factor (ATF)2 in human breast epithelial cells. Cancer Letters, 252(1), 147–156. https://doi.org/10.1016/j.canlet.2006.12.016

[33].  Deng, Z., Fan, T., Xiao, C., Tian, H., Zheng, Y., Li, C., & He, J., 2024, TGF-β signaling in health, disease, and therapeutics. Signal transduction and targeted therapy, 9(1), 61. https://doi.org/10.1038/s41392-024-01764-w

[34].  Harini, P., Neralla, M., Preethi, A., & Selvakumar, S. C., 2024, Impact of Interleukin-6 on Oral Squamous Cell Carcinoma Among the South Indian Population. Cureus, 16(7), e63789. https://doi.org/10.7759/cureus.63789

[35].  Malakondaiah, S., Pavithravedhavalli, V., Kayal, L., Ryntathiang, I., & Dharmalingam Jothinathan, M. K., 2024, Stem cell therapy: A new path in tackling oral cancer. Journal of stomatology, oral and maxillofacial surgery, 101967. Advance online publication. https://doi.org/10.1016/j.jormas.2024.101967