Effect of TLIF on the Regional Lumbar Alignment of Patients with Lumbosacral Spinal Fusion in Comparison with PLF

Download Article

DOI: 10.21522/TIJPH.2013.13.02.Art027

Authors : Osama Arim, Mohammed Z. Shakir, Abdul Rahman Kamal

Abstract:

This study aimed to evaluate the effects of transforaminal interbody fusion (TLIF) on the preservation or correction of regional lumbar alignment in patients with lumbosacral fusion surgery in compare with posterolateral intertransverse process fusion surgery (PLF). A total of 200 patients with severe low back pain and radicular pain were randomly selected for either posterolateral lumbar fusion by [titanium polyaxial pedicle screw] or transforaminal lumbar interbody fusion by [titanium polyaxial pedicle screw)] with intervertebral support by PEEK cage. The primary outcome scores were obtained using the visual analogue score (VAS) for Pain, Oswestry disability Index (ODI). All measures were assessed as follow-up after surgery. We included in this study 200 patients who fulfilled the inclusion criteria and underwent TLIF or PLF operation. The blood loss (250 cc) and duration of the procedure (2h) were better in PLF compared to TLIF (350cc; 2.5h) groups. However, the complications in PLF seem to be more sensitive to the presence of compiling chronic diseases (hypertension and diabetes mellitus). Analysis of pre- or post-operative follow-up parameters has indicated a non-significant difference between PLF and TLIF regarding all measured parameters except PRE-OP SS and POST OP LL which has shown a significant (P<0.05) higher in TLIF compared to PLF. Moreover, comparing results within the PLF group in PRE-OP versus POST-OP has shown significantly (P<0.05)  higher PRE-OP PT over POST-OP PT. Additionally, comparing results within the TLIF group in PRE-OP versus POST-OP has shown significantly (P<0.05)  higher POST-OP LL over PRE-OP LL alongside significantly (P<0.05)  higher PRE-OP PI-LL over POST-OP PI-LL. TLIF get higher improvement in lumbar parameters, especially lumbar lordosis, sacral slope, pelvic tilt and PI-LL mismatch. Improvement of local spinopelvic parameters (LL, SS and PT) contributes to improved post-operative functional scores (ODI and VAS).

References:

[1].   Glassman, S. D., Carreon, L. Y., Ghogawala, Z., Foley, K. T., McGirt, M. J., Asher, A. L., 2016. Benefit of transforaminal lumbar interbody fusion vs posterolateral spinal fusion in lumbar spine disorders: a propensity-matched analysis from the national neurosurgical quality and outcomes database registry. Neurosurgery, 79(3), 397-405. Doi:10.1227/NEU.0000000000001118.

[2].   Deyo, R. A., Gray, D. T., Kreuter, W., Mirza, S., Martin, B. I., 2005. United States trends in lumbar fusion surgery for degenerative conditions. Spine, 30(12), 1441-1445. doi:10.1097/01.brs.0000166503.37969.8a.

[3].   Ciol, M. A., Deyo, R. A., Howell, E., Kreif, S., 1996. An assessment of surgery for spinal stenosis: time trends, geographic variations, complications, and reoperations. Journal of the American Geriatrics Society, 44(3), 285-290. Doi:10.1111/j.1532-5415.1996.tb00915.x.

[4].   Harris, I. A., Traeger, A., Stanford, R., Maher, C. G., Buchbinder, R., 2018. Lumbar spine fusion: what is the evidence?. Internal medicine journal, 48(12), 1430-1434. Doi:10.1111/imj.14120.

[5].   Khoury, N. N., Champagne, P. O., Kotowski, M., Raymond, J., Roy, D., Weill, A., 2017. Unexpected complications with head and neck hydrogel microsphere particle embolization: a case series and a technical note. Interventional Neuroradiology, 23(1), 107-111. Doi:10.1177/1591019916668840.

[6].   Blizzard, D. J., Gallizzi, M. A., Sheets, C., Smith, B. T., Isaacs, R. E., Eure, M., Brown, C. R., 2016. Sagittal balance correction in lateral interbody fusion for degenerative scoliosis. International Journal of Spine Surgery, 10. Doi:10.14444/3029.

[7].   Mac-Thiong, J. M., Labelle, H., Berthonnaud, E., Betz, R. R., Roussouly, P., 2007. Sagittal spinopelvic balance in normal children and adolescents. European Spine Journal, 16, 227-234. Doi:10.1007/s00586-005-0013-8.

[8].   Jagannathan, J., Sansur, C. A., Oskouian Jr, R. J., Fu, K. M., Shaffrey, C. I., 2009. Radiographic restoration of lumbar alignment after transforaminal lumbar interbody fusion. Neurosurgery, 64(5), 955-964. Doi:10.1227/01.NEU.0000343544.77456.46.

[9].   Dibble, C. F., Zhang, J. K., Greenberg, J. K., Javeed, S., Khalifeh, J. M., Jain, D., Ray, W. Z., 2022. Comparison of local and regional radiographic outcomes in minimally invasive and open TLIF: a propensity score–matched cohort. Journal of Neurosurgery: Spine, 37(3), 384-394. Doi:10.3171/2022.1.SPINE211254.

[10].  Tanasansomboon, T., Robinson, J. E., Anand, N., 2023. Minimally Invasive Transforaminal Lumbar Interbody Fusion: Strategies for Creating Lordosis with a Posterior Approach. Neurosurgery Clinics, 34(4), 643-651. Doi:10.1016/j.nec.2023.06.014.

[11].  Ohtori, S., Koshi, T., Yamashita, M., Yamauchi, K., Inoue, G., Suzuki, M., Takahashi, K., 2011. Surgical versus nonsurgical treatment of selected patients with discogenic low back pain: a small-sized randomized trial. Spine, 36(5),347–54. Doi: 10.1097/BRS.0b013e3181d0c944.

[12].  Tang, A. R., Chanbour, H., Steinle, A. M., Jonzzon, S., Roth, S. G., Abtahi, A. M., Zuckerman, S. L., 2023. Which Approach Leads to More Reoperations in Single-Level, Open, Posterior Lumbar Fusion: Transforaminal Lumbar Interbody Fusion or Posterolateral Fusion Alone?. International Journal of Spine Surgery, 17(2), 292-299. Doi:10.14444/8424.

[13].  Levin, J. M., Tanenbaum, J. E., Steinmetz, M. P., Mroz, T. E., Overley, S. C., 2018. Posterolateral fusion (PLF) versus transforaminal lumbar interbody fusion (TLIF) for spondylolisthesis: a systematic review and meta-analysis. The Spine Journal, 18(6), 1088-1098. Doi:10.1016/j.spinee.2018.01.028.

[14].  Fujimori, T., Le, H., Schairer, W. W., Berven, S. H., Qamirani, E., Hu, S. S., 2015. Does transforaminal lumbar interbody fusion have advantages over posterolateral lumbar fusion for degenerative spondylolisthesis?. Global spine journal, 5(2), 102-109. Doi:10.1055/s-0034-1396432.

[15].  Tang, A. R., Chanbour, H., Steinle, A. M., Jonzzon, S., Roth, S. G., Abtahi, A. M., Zuckerman, S. L., 2023. Which Approach Leads to More Reoperations in Single-Level, Open, Posterior Lumbar Fusion: Transforaminal Lumbar Interbody Fusion or Posterolateral Fusion Alone?. International Journal of Spine Surgery, 17(2), 292-299. Doi:10.14444/8424.

[16].  Tuse, S. S., Matin, A., 2022. Comparison of early clinico-radiological outcome of posterolateral fusion and transforaminal lumbar interbody fusion techniques. International Journal of Research in Orthopaedics, 8(2), 165. Doi:10.18203/issn.2455-4510.IntJResOrthop20210602.

[17].  Ould-Slimane, M., Lenoir, T., Dauzac, C., Rillardon, L., Hoffmann, E., Guigui, P., Ilharreborde, B., 2012. Influence of transforaminal lumbar interbody fusion procedures on spinal and pelvic parameters of sagittal balance. European spine journal, 21, 1200-1206. Doi:10.1007/s00586-011-2124-8.

[18].  Bassani, R., Morselli, C., Querenghi, A. M., Nuara, A., Sconfienza, L. M., Peretti, G. M., 2020. Functional and radiological outcome of anterior retroperitoneal versus posterior transforaminal interbody fusion in the management of single-level lumbar degenerative disease. Neurosurgical Focus, 49(3), E2. Doi:10.3171/2020.6.FOCUS20374.

[19].  Gala, R. J., Bovonratwet, P., Webb, M. L., Varthi, A. G., Daubs, M. D., Grauer, J. N., 2018. Different fusion approaches for single-level lumbar spondylolysis have similar perioperative outcomes. Spine, 43(2), E111-E117, Doi:10.1097/BRS.0000000000002262.

[20].  Lee, N., Kim, K. N., Yi, S., Ha, Y., Shin, D. A., Kim, K. S., 2017. Comparison of outcomes of anterior, posterior, and transforaminal lumbar interbody fusion surgery at a single lumbar level with degenerative spinal disease. World neurosurgery, 101, 216-226, Doi: 10.1016/j.wneu.2017.01.114.

[21].  P Pradhan, B. B., Nassar, J. A., Delamarter, R. B., & Wang, J. C., 2002. Single-level lumbar spine fusion: a comparison of anterior and posterior approaches. Clinical Spine Surgery, 15(5), 355-361.

[22].  Adogwa, O., Elsamadicy, A. A., Han, J. L., Cheng, J., Karikari, I., Bagley, C. A., 2016. Do measures of surgical effectiveness at 1 year after lumbar spine surgery accurately predict 2-year outcomes?. Journal of Neurosurgery. Spine, 25(6), 689-696. Doi:10.3171/2015.8.SPINE15476.

[23].  Barnes, B., Rodts, G. E., McLaughlin, M. R., Haid, R. W., 2001. Threaded cortical bone dowels for lumbar interbody fusion: over 1-year mean follow up in 28 patients. Journal of Neurosurgery. Spine, 95(1), 1-4. Doi:10.3171/spi.2001.95.1.0001.

[24].  Bozzio, A. E., Johnson, C. R., Fattor, J. A., Kleck, C. J., Patel, V. V., Burger, E. L., Cain, C. M., 2018. Stand-alone anterior lumbar interbody, transforaminal lumbar interbody, and anterior/posterior fusion: analysis of fusion outcomes and costs. Orthopedics, 41(5), e655-e662, Doi:10.3928/01477447-20180711-06.

[25].  Freudenberger, C., Lindley, E. M., Beard, D. W., Reckling, W. C., Williams, A., Burger, E. L., Patel, V. V., 2009. Posterior versus anterior lumbar interbody fusion with anterior tension band plating: retrospective analysis. Orthopedics, 32(7), 492-496, Doi:10.3928/01477447-20090527-12.

[26].  Glassman, S., Gornet, M. F., Branch, C., Polly Jr, D., Peloza, J., Schwender, J. D., Carreon, L., 2006. MOS short form 36 and Oswestry Disability Index outcomes in lumbar fusion: a multicenter experience. The Spine Journal, 6(1), 21-26, Doi:10.1016/j.spinee.2005.09.004.

[27].  Kuang, L., Wang, B., Lü, G., 2017. Transforaminal lumbar interbody fusion versus mini-open anterior lumbar interbody fusion with oblique self-anchored stand-alone cages for the treatment of lumbar disc herniation: a retrospective study with 2-year follow-up. Spine, 42(21), E1259-E1265, Doi:10.1097/BRS.0000000000002145.

[28].  Madan, S. S., Boeree, N. R., 2003. Comparison of instrumented anterior interbody fusion with instrumented circumferential lumbar fusion. European Spine Journal, 12, 567-575, Doi:10.1007/s00586-002-0516-5.

[29].  Peng, B., Chen, J., Kuang, Z., Li, D., Pang, X., Zhang, X., 2009. Diagnosis and surgical treatment of back pain originating from endplate. European Spine Journal, 18, 1035-1040, Doi:10.1007/s00586-009-0938-4.

[30].  U Udby, P. M., Bech-Azeddine, R., 2015. Clinical outcome of stand-alone ALIF compared to posterior instrumentation for degenerative disc disease: a pilot study and a literature review. Clinical neurology and neurosurgery, 133, 64-69, Doi:10.1016/j.clineuro.2015.03.008.

[31].  Eladawy, A., Youssef, E. M., Abdeen, M., 2022. Transforaminal Lumbar Interbody Fusion Versus Posterolateral Fusion for Surgical Treatment of Segmental Lumbar Spinal Instability. Advanced Spine Journal, 41(1), 5, Doi:10.57055/2314-8969.1002.

[32].  Rezk, E. M. A., Elkholy, A. R., & Shamhoot, E. A., 2019. Transforaminal lumbar interbody fusion (TLIF) versus posterior lumbar interbody fusion (PLIF) in the treatment of single-level lumbar spondylolisthesis. Egyptian Journal of Neurosurgery, 34, 1-8, Doi:10.1186/s41984-019-0052-9.

[33].  Etemadifar, M. R., Hadi, A., Masouleh, M. F., 2016. Posterolateral instrumented fusion with and without transforaminal lumbar interbody fusion for the treatment of adult isthmic spondylolisthesis: a randomized clinical trial with 2-year follow-up. Journal of Craniovertebral Junction and Spine, 7(1), 43-49, Doi:10.4103/0974-8237.176623.

[34].  Challier, V., Boissiere, L., Obeid, I., Vital, J. M., Castelain, J. E., Bénard, A., Gille, O., 2017. One-level lumbar degenerative spondylolisthesis and posterior approach: is transforaminal lateral interbody fusion mandatory?: a randomized controlled trial with 2-year follow-up. Spine,42(8),531–9, Doi:10.1097/BRS.0000000000001857.

[35].  Bridwell, K. H., Lenke, L. G., Cho, S. K., Pahys, J. M., Zebala, L. P., Dorward, I. G., Kang, M. M., 2013. Proximal junctional kyphosis in primary adult deformity surgery: evaluation of 20 degrees as a critical angle. Neurosurgery, 72(6), 899-906. Doi: 10.1227/NEU.0b013e31828bacd8.

[36].  Carreon, L. Y., Glassman, S. D., Ghogawala, Z., Mummaneni, P. V., McGirt, M. J., Asher, A. L., 2016. Modeled cost-effectiveness of transforaminal lumbar interbody fusion compared with posterolateral fusion for spondylolisthesis using N2QOD data. Journal of Neurosurgery: Spine, 24(6), 916-921, Doi:10.3171/2015.10.SPINE15917.

[37].  Ghasemi, A. A., 2016. Transforaminal lumbar interbody fusion versus instrumented posterolateral fusion in degenerative spondylolisthesis: an attempt to evaluate the superiority of one method over the other. Clinical neurology and neurosurgery, 150, 1-5, Doi:10.1016/j.clineuro.2016.08.017.

[38].  Owens, I. I., Carreon, L. Y., Djurasovic, M., Glassman, S. D., 2014. Relative benefit of TLIF versus PSF stratified by diagnostic indication. Clinical Spine Surgery, 27(3), 144-147, Doi:10.1097/BSD.0b013e3182867470.

[39].  Pooswamy, S., Muralidharagopalan, N. R., Subbaiah, S., 2017. Transforaminal lumbar interbody fusion versus instrumented posterolateral fusion in Grade I/II spondylolisthesis. Indian Journal of Orthopaedics, 51, 131-138, Doi:10.4103/0019-5413.201703.

[40].  Guigui, P., Levassor, N., Rillardon, L., Wodecki, P., Cardinne, L., 2003. Physiological value of pelvic and spinal parameters of sagital balance: analysis of 250 healthy volunteers. Revue de chirurgie orthopedique et reparatrice de l'appareil moteur, 89(6), 496-506.

[41].  Sembrano, J. N., Yson, S. C., Horazdovsky, R. D., Santos, E. R. G., Polly, D. W., 2015. Radiographic comparison of lateral lumbar interbody fusion versus traditional fusion approaches : analysis of sagittal contour change. International journal of spine surgery, 9, Doi:10.14444/2016.

[42].  Watkins IV, R. G., Hanna, R., Chang, D., Watkins III, R. G., 2014. Sagittal alignment after lumbar interbody fusion: comparing anterior, lateral, and transforaminal approaches. Clinical Spine Surgery, 27(5), 253-256, Doi:10.1097/BSD.0b013e31828a8447.

[43].  Andreyeva, T. O., Stoyanov, O. M., Chebotaryova, G. M., Kalashnikov, V. I., Vastyanov, R. S., Mashchenko, S. S., 2023. Densitometric correlates of degenerative-dystrophic processes in cervical vertebrae of humans and domestic animals, Regulatory Mechanisms in Biosystems, 14(3), 386-392, Doi:10.15421/10.15421/022357.