In vitro Characterization of Chitosan-Whitlockite Scaffolds for Bone Tissue Engineering Applications

Download Article

DOI: 10.21522/TIJPH.2013.13.02.Art031

Authors : Palati Sinduja, Dhanraj Ganapathy, Saravanan Sekaran, Annanya Arora

Abstract:

The study explores the development of a Chitosan-Whitlockite (Ch-WH) composite scaffold for bone tissue engineering. Chitosan, a natural polymer, and Whitlockite (WH), a calcium-magnesium phosphate mineral, are combined to leverage their individual properties. The scaffold was synthesized and characterized using X-ray diffraction (XRD) to confirm crystalline structure, Fourier-transform infrared spectroscopy (FTIR) for chemical interactions, scanning electron microscopy (SEM) for surface morphology and porosity, and energy-dispersive X-ray spectroscopy (EDS) to verify elemental composition. In vitro evaluations using human osteoblast-like cells demonstrated strong biocompatibility, with the scaffold supporting cell adhesion, proliferation, and differentiation. The addition of magnesium from Whitlockite enhanced osteoblast activity and bone mineralization. The scaffold also exhibited antibacterial properties, minimizing infection risks. With its biocompatibility, bioactivity, and antibacterial potential, the Ch-WH composite scaffold presents a promising solution for bone tissue engineering, warranting further exploration for clinical applications.

References:

[1]. Sheen, J. R., Mabrouk, A., & Garla, V. V., 2023, Fracture Healing Overview. In StatPearls [Internet]. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK551678/

[2]. Sugumaran, S., Selvam, D., Nivedhitha, M. S., Ganesh Mohanraj, K., Almutairi, B. O., Arokiyaraj, S., Guru, A., & Arockiaraj, J., 2023, Role of individual and combined impact of simvastatin and α-TCP in rat calvarial bone defect: An experimental study. The Saudi Dental Journal, 35(7), 861–868. https://doi.org/10.1016/j.sdentj.2023.07.013

[3]. Evaluation of an injectable bioactive borate glass cement to heal bone defects in a rabbit femoral condyle model., 2017, Materials Science and Engineering: C, 73, 585–595. https://doi.org/10.1016/j.msec.2016.12.101

[4]. Ye, Y., Pang, Y., Zhang, Z., Wu, C., Jin, J., Su, M., Pan, J., Liu, Y., Chen, L., & Jin, K., 2018, Decellularized periosteum-covered chitosan globule composite for bone regeneration in rabbit femur condyle bone defects. Macromolecular Bioscience, 18(9). https://doi.org/10.1002/mabi.201700424

[5]. Shao, R. X., Quan, R. F., Wang, T., Du, W. B., Jia, G. Y., Wang, D., Lv, L. B., Xu, C. Y., Wei, X. C., Wang, J. F., & Yang, D. S., 2018, Effects of a bone graft substitute consisting of porous gradient HA/ZrO2 and gelatin/chitosan slow-release hydrogel containing BMP-2 and BMSCs on lumbar vertebral defect repair in rhesus monkey. Journal of Tissue Engineering and Regenerative Medicine, 12(3). https://doi.org/10.1002/term.2601

[6]. Vimalraj, S., & Saravanan, S. 2023, Tooth-derived stem cells integrated biomaterials for bone and dental tissue engineering. Cell and Tissue Research, 394(2), 245–255. https://doi.org/10.1007/s00441-023-03815-0

[7]. Chitosan-based nanocomposites for the repair of bone defects., 2017, Nanomedicine: Nanotechnology, Biology, and Medicine, 13(7), 2231–2240. https://doi.org/10.1016/j.nano.2017.06.007

[8]. Radwan, N. H., Nasr, M., Ishak, R. A. H., Abdeltawab, N. F., & Awad, G. A. S., 2020, Chitosan-calcium phosphate composite scaffolds for control of post-operative osteomyelitis: Fabrication, characterization, and in vitro-in vivo evaluation. Carbohydrate Polymers, 244. https://doi.org/10.1016/j.carbpol.2020.116482

[9]. Kumar Dewangan, V., Sampath Kumar, T. S., Doble, M., & Daniel Varghese, V., 2023, Fabrication of injectable antibiotic-loaded apatitic bone cements with prolonged drug delivery for treating post-surgery infections. Journal of Biomedical Materials Research. Part A, 111(11), 1750–1767. https://doi.org/10.1002/jbm.a.37584

[10]. Topsakal, A., Uzun, M., Ugar, G., Ozcan, A., Altun, E., Oktar, F. N., Ikram, F., Ozkan, O., Turkoglu, S. H., & Gunduz, O., 2018, Development of Amoxicillin-Loaded Electrospun Polyurethane/Chitosan/ β -Tricalcium Phosphate Scaffold for Bone Tissue Regeneration. IEEE Transactions on Nanobioscience, 17(3). https://doi.org/10.1109/TNB.2018.2844870

[11]. Website. (n.d.). https://www.scopus.com/inward/record.url?eid=2-s2.0-85161646526&partnerID=40&md5=2d8d235de025b3474484323088212641

[12]. Elakkiya, K., Bargavi, P., & Balakumar, S., 2023, 3D interconnected porous PMMA scaffold integrating with advanced nanostructured CaP-based biomaterials for rapid bone repair and regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 147, 106106. https://doi.org/10.1016/j.jmbbm.2023.106106

[13]. Shah, F. A., 2021, Magnesium whitlockite - omnipresent in pathological mineralisation of soft tissues but not a significant inorganic constituent of bone. Acta Biomaterialia, 125. https://doi.org/10.1016/j.actbio.2021.02.021

[14]. Batool, S., Liaqat, U., Babar, B., & Hussain, Z., 2021, Bone whitlockite: synthesis, applications, and future prospects. Journal of the Korean Ceramic Society, 58(5), 530–547. https://doi.org/10.1007/s43207-021-00120-w

[15]. Batool, S., Liaqat, U., Hussain, Z., & Sohail, M., 2020, Synthesis, characterization and process optimization of bone whitlockite. Nanomaterials, 10(9), 1856. https://doi.org/10.3390/nano10091856

[16]. Development and in vivo response of hydroxyapatite/whitlockite from chicken bones as bone substitute using a chitosan membrane for guided bone regeneration, 2018, Ceramics International, 44(18), 22583–22591. https://doi.org/10.1016/j.ceramint.2018.09.032

[17]. Kjalarsdóttir, L., Dýrfjörd, A., Dagbjartsson, A., Laxdal, E. H., Örlygsson, G., Gíslason, J., Einarsson, J. M., Ng, C. H., & Jónsson, H., 2019, Bone remodeling effect of a chitosan and calcium phosphate-based composite. Regenerative Biomaterials, 6(4). https://doi.org/10.1093/rb/rbz009

[18]. Mickymaray, S., Al Aboody, M. S., Eraqi, M. M., Alhoqail, W. A., Alothaim, A. S., & Suresh, K., 2023, Biopolymer Chitosan surface engineering with magnesium oxide-Pluronic-F127-Escin nanoparticles on human breast carcinoma cell line and microbial strains. Nanomaterials (Basel, Switzerland), 13(7), 1227. https://doi.org/10.3390/nano13071227

[19]. Mickymaray, S., Al Aboody, M. S., Eraqi, M. M., Alhoqail, W. A., Alothaim, A. S., Suresh, K., & Arulselvan, P., 2023. Chitosan-encapsulated nickel oxide, tin dioxide, and farnesol nanoparticles: Antimicrobial and anticancer properties in breast cancer cells. International Journal of Biological Macromolecules, 248(125799), 125799. https://doi.org/10.1016/j.ijbiomac.2023.125799

[20]. Website. (n.d.). https://www.scopus.com/inward/record.url?eid=2-s2.0-85178134245&partnerID=40&md5=5c28e9476bfefdc06315e3ce2a7b9875

[21]. Kazemi Shariat Panahi, H., Dehhaghi, M., Amiri, H., Guillemin, G. J., Gupta, V. K., Rajaei, A., Yang, Y., Peng, W., Pan, J., Aghbashlo, M., & Tabatabaei, M., 2023, Current and emerging applications of saccharide-modified chitosan: a critical review. Biotechnology Advances, 66(108172), 108172. https://doi.org/10.1016/j.biotechadv.2023.108172

[22]. Sage Journals: Discover world-class research. (n.d.). Sage Journals. Retrieved October 4, 2024, from https://journals.sagepub.com/action/cookieAbsent

[23]. Manjubaashini, N., Bargavi, P., Thomas, N. G., Krishnan, N., & Balakumar, S., 2024, Chitosan bioactive glass scaffolds for in vivo subcutaneous implantation, toxicity assessment, and diabetic wound healing upon animal model. International Journal of Biological Macromolecules, 256(128291), 128291. https://doi.org/10.1016/j.ijbiomac.2023.128291

[24]. Hazari, S. A., Sheikh, A., Abourehab, M. A. S., Tulbah, A. S., & Kesharwani, P., 2023, Self-assembled Gallic acid loaded lecithin-chitosan hybrid nanostructured gel as a potential tool against imiquimod-induced psoriasis. Environmental Research, 234(116562), 116562. https://doi.org/10.1016/j.envres.2023.116562

[25]. Christina, K., Subbiah, K., Arulraj, P., Krishnan, S. K., & Sathishkumar, P., 2024, A sustainable and eco-friendly approach for environmental and energy management using biopolymers chitosan, lignin and cellulose - A review. International Journal of Biological Macromolecules, 257(Pt 2), 128550. https://doi.org/10.1016/j.ijbiomac.2023.128550

[26]. LogithKumar, R., KeshavNarayan, A., Dhivya, S., Chawla, A., Saravanan, S., & Selvamurugan, N., 2016, A review of chitosan and its derivatives in bone tissue engineering. Carbohydrate Polymers, 151. https://doi.org/10.1016/j.carbpol.2016.05.049

[27]. Tao, F., Cheng, Y., Shi, X., Zheng, H., Du, Y., Xiang, W., & Deng, H., 2020, Applications of chitin and chitosan nanofibers in bone regenerative engineering. Carbohydrate Polymers, 230. https://doi.org/10.1016/j.carbpol.2019.115658

[28]. Zhou, D., Qi, C., Chen, Y.-X., Zhu, Y.-J., Sun, T.-W., Chen, F., & Zhang, C.-Q., 2017, Comparative study of porous hydroxyapatite/chitosan and whitlockite/chitosan scaffolds for bone regeneration in calvarial defects. International Journal of Nanomedicine. https://www.tandfonline.com/doi/abs/10.2147/IJN.S131251

[29]. Xiao, F., Shi, J., Zhang, X., Hu, M., Chen, K., Shen, C., Chen, X., Guo, Y., & Li, Y., 2023, Gadolinium-doped whitlockite/chitosan composite scaffolds with osteogenic activity for bone defect treatment: In vitro and in vivo evaluations. Frontiers in Bioengineering and Biotechnology, 11, 1071692. https://doi.org/10.3389/fbioe.2023.1071692

[30]. Dissolution-Precipitation Synthesis and Cold Sintering of Mussel Shells-Derived Hydroxyapatite and Hydroxyapatite/Chitosan Composites for Bone Tissue Engineering, 2023, Open Ceramics, 15, 100418. https://doi.org/10.1016/j.oceram.2023.100418

[31]. Kowalczyk, P., Podgórski, R., Wojasiński, M., Gut, G., Bojar, W., & Ciach, T., 2021, Chitosan-Human Bone Composite Granulates for Guided Bone Regeneration. International Journal of Molecular Sciences, 22(5), 2324. https://doi.org/10.3390/ijms22052324

[32]. Bauer, L., Antunović, M., Gallego-Ferrer, G., Ivanković, M., & Ivanković, H., 2021, PCL-Coated Multi-Substituted Calcium Phosphate Bone Scaffolds with Enhanced Properties. Materials, 14(16), 4403. https://doi.org/10.3390/ma14164403

[33]. Nazurudeen, J., Palati, S., Sekaran, S., & Ganapathy, D., 2024, Biocompatibility Evaluation of Ampicillin-Loaded Whitlockite for Bone Regeneration. Cureus, 16(5). https://doi.org/10.7759/cureus.61461

[34]. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo, 2019, Materials Science and Engineering: C, 94, 713–728. https://doi.org/10.1016/j.msec.2018.10.022

[35]. Tian, Y., Wu, D., Wu, D., Cui, Y., Ren, G., Wang, Y., Wang, J., & Peng, C., 2022, Chitosan-Based Biomaterial Scaffolds for the Repair of Infected Bone Defects. Frontiers in Bioengineering and Biotechnology, 10, 899760. https://doi.org/10.3389/fbioe.2022.899760