Alginate-Whitlockite Composite Scaffolds for Bone Tissue Engineering: Synthesis, Characterization, and Biocompatibility Evaluation

Abstract:
Whitlockite (WH), a calcium phosphate mineral, has
emerged as a promising material in bone tissue engineering due to its excellent
biocompatibility and osteogenic potential. This study aimed to biologically
characterize an alginate-whitlockite (Wh-Al) composite scaffold to evaluate its
potential in promoting bone regeneration. The scaffold was synthesized using an
ultrafast hydrothermal method to produce WH nanoparticles, which were
subsequently incorporated into an alginate matrix. The scaffold was extensively
characterized to assess its morphology and composition. Scanning electron
microscopy (SEM) revealed a porous microstructure favorable for cell attachment
and proliferation, while X-ray diffraction (XRD) and Fourier transform infrared
spectroscopy (FTIR) confirmed the successful integration of WH nanoparticles
into the alginate matrix. Biological evaluation was conducted using the MTT
assay with human osteoblast-like MG-63 cells under ISO 10993-6:2016 standards.
The results demonstrated excellent biocompatibility, with cell viability
exceeding 90% across all tested conditions, indicating a high potential for
osteogenesis. These findings underscore the ability of the alginate-whitlockite
composite scaffold to support cellular activity and promote bone tissue
regeneration. The porous structure and bioactive composition of the scaffold
make it a suitable candidate for bone tissue engineering applications. Further
in vivo studies are recommended to investigate the scaffold’s osteoinductive
properties and its clinical efficacy in repairing bone defects, ultimately
advancing the development of regenerative therapies for orthopedic and dental
applications.
References:
[1]. Lee, W.-B., Wang, C., Lee, J.-H., Jeong, K.-J., Jang, Y.-S., Park, J.-Y., Ryu, M. H., Kim, U.-K., Lee, J., & Hwang, D.-S., 2020, Whitlockite granules on bone regeneration in defect of rat calvaria. ACS Applied Bio Materials. https://doi.org/10.1021/acsabm.0c00960
[2]. Jang, H. L., Jin, K., Lee, J., Kim, Y., Nahm, S. H., Hong, K. S., & Nam, K. T., 2014, Revisiting whitlockite, the second most abundant biomineral in bone: Nanocrystal synthesis in physiologically relevant conditions and biocompatibility evaluation. ACS Nano, 8(1), 634–641. https://doi.org/10.1021/nn405246h
[3]. Kurzyk, A., Szwed-Georgiou, A., Pagacz, J., Antosik, A., Tymowicz-Grzyb, P., Gerle, A., Szterner, P., Włodarczyk, M., Płociński, P., Urbaniak, M. M., Rudnicka, K., & Biernat, M., 2023, Calcination and ion substitution improve physicochemical and biological properties of nanohydroxyapatite for bone tissue engineering applications. Scientific Reports, 13(1), 15384. https://doi.org/10.1038/s41598-023-42271-2
[4]. Padmanabhan, V. P., Sivashanmugam, P., Kulandaivelu, R., Sagadevan, S., Sridevi, B., Govindasamy, R., & Thiruvengadam, M., 2022, Biosynthesised silver nanoparticles loading onto biphasic calcium phosphate for antibacterial and bone tissue engineering applications. Antibiotics (Basel, Switzerland), 11(12). https://doi.org/10.3390/antibiotics11121780
[5]. Swarna Meenakshi, S., & Sankari, M., 2021, Effectiveness of chitosan nanohydrogel as a bone regenerative material in intrabony defects in patients with chronic periodontitis: A randomized clinical trial. Journal of Advanced Oral Research. https://doi.org/10.1177/2320206821998574
[6]. Strutynska, N. Y., Grynyuk, I. I., Vasyliuk, O. M., Prylutska, S. V., Vovchenko, L. L., Kraievska, I. A., Slobodyanik, N. S., Ritter, U., & Prylutskyy, Y. I., 2022, Novel whitlockite/alginate/c60 fullerene composites: Synthesis, characterization and properties for medical application. Arabian Journal for Science and Engineering, 47(6), 7093–7104. https://doi.org/10.1007/s13369-021-06552-0
[7]. Magnesium whitlockite nanoparticles: Hydrothermal synthesis, anti-inflammatory and anti-cancer potential. (2024). Colloids and Surfaces. B, Biointerfaces, 239, 113931. https://doi.org/10.1016/j.colsurfb.2024.113931
[8]. Walewska, A., Janucik, A., Tynecka, M., Moniuszko, M., & Eljaszewicz, A., 2023, Mesenchymal stem cells under epigenetic control - the role of epigenetic machinery in fate decision and functional properties. Cell Death & Disease, 14(11), 720. https://doi.org/10.1038/s41419-023-06239-4
[9]. Wang, C., Jeong, K.-J., Park, H. J., Lee, M., Ryu, S.-C., Hwang, D. Y., Nam, K. H., Han, I. H., & Lee, J., 2020, Synthesis and formation mechanism of bone mineral, whitlockite nanocrystals in tri-solvent system. Journal of Colloid and Interface Science, 569, 1–11. https://doi.org/10.1016/j.jcis.2020.02.072
[10]. Kim, H. D., Jang, H. L., Ahn, H.-Y., Lee, H. K., Park, J., Lee, E.-S., Lee, E. A., Jeong, Y.-H., Kim, D.-G., Nam, K. T., & Hwang, N. S., 2017, Biomimetic whitlockite inorganic nanoparticles-mediated in situ remodeling and rapid bone regeneration. Biomaterials, 112, 31–43. https://doi.org/10.1016/j.biomaterials.2016.10.009
[11]. Nazurudeen, J., Palati, S., Sekaran, S., & Ganapathy, D., 2024, Biocompatibility evaluation of ampicillin-loaded whitlockite for bone regeneration. Cureus, 16(5), e61461. https://doi.org/10.7759/cureus.61461
[12]. Alginate and alginate composites for biomedical applications, 2021, Asian Journal of Pharmaceutical Sciences, 16(3), 280–306. https://doi.org/10.1016/j.ajps.2020.10.001
[13]. Sun, J., & Tan, H., 2013, Alginate-based biomaterials for regenerative medicine applications. Materials, 6(4), 1285–1309. https://doi.org/10.3390/ma6041285
[14]. Shaikh, M. A. J., Gupta, G., Afzal, O., Gupta, M. M., Goyal, A., Altamimi, A. S. A., Alzarea, S. I., Almalki, W. H., Kazmi, I., Negi, P., Singh, S. K., & Dua, K., 2023, Sodium alginate-based drug delivery for diabetes management: A review. International Journal of Biological Macromolecules, 236, 123986. https://doi.org/10.1016/j.ijbiomac.2023.123986
[15]. Drug loaded bioglass nanoparticles and their coating for efficient tissue and bone regeneration. (2023). Journal of Non-Crystalline Solids, 616, 122469. https://doi.org/10.1016/j.jnoncrysol.2023.122469
[16]. Chinnaiah, K., Kannan, K., Krishnamoorthy, R., & Gurushankar, K., 2023, Datura metel L. leaf extract mediated sodium alginate polymer membrane for supercapacitor and food packaging applications. International Journal of Biological Macromolecules, 242(3), 125112. https://doi.org/10.1016/j.ijbiomac.2023.125112
[17]. Dimitriou, R., Jones, E., McGonagle, D., & Giannoudis, P. V., 2011, Bone regeneration: current concepts and future directions. BMC Medicine, 9(1), 1–10. https://doi.org/10.1186/1741-7015-9-66
[18]. Kochar, S. P., Reche, A., & Paul, P., 2022, The etiology and management of dental implant failure: A review. Cureus, 14(10), e30455. https://doi.org/10.7759/cureus.30455
[19]. Johnson, C. T., & García, A. J., 2015, Scaffold-based anti-infection strategies in bone repair. Annals of Biomedical Engineering, 43(3), 515–528. https://doi.org/10.1007/s10439-014-1205-3
[20]. Zhao, C., Liu, W., Zhu, M., Wu, C., & Zhu, Y., 2022, Bioceramic-based scaffolds with antibacterial function for bone tissue engineering: A review. Bioactive Materials, 18, 383–398. https://doi.org/10.1016/j.bioactmat.2022.02.010
[21]. Sugumaran, S., Selvam, D., Nivedhitha, M. S., Ganesh Mohanraj, K., Almutairi, B. O., Arokiyaraj, S., Guru, A., & Arockiaraj, J., 2023, Role of individual and combined impact of simvastatin and α-TCP in rat calvarial bone defect: An experimental study. The Saudi Dental Journal, 35(7), 861–868. https://doi.org/10.1016/j.sdentj.2023.07.013
[22]. Elakkiya, K., Bargavi, P., & Balakumar, S., 2023, 3D interconnected porous PMMA scaffold integrating with advanced nanostructured CaP-based biomaterials for rapid bone repair and regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 147, 106106. https://doi.org/10.1016/j.jmbbm.2023.106106
[23]. Jeong, J., Shim, J. H., Koo, B. M., Choy, Y. B., & Heo, C. Y., 2022, Synergistic effect of whitlockite scaffolds combined with alendronate to promote bone regeneration. Tissue Engineering and Regenerative Medicine, 19(1), 83–92. https://doi.org/10.1007/s13770-021-00416-2
[24]. Jang, H. L., Zheng, G. B., Park, J., Kim, H. D., Baek, H.-R., Lee, H. K., Lee, K., Han, H. N., Lee, C.-K., Hwang, N. S., Lee, J. H., & Nam, K. T., 2016, In Vitro and In Vivo Evaluation of whitlockite biocompatibility: Comparative study with hydroxyapatite and β-Tricalcium phosphate. Advanced Healthcare Materials, 5(1), 128–136. https://doi.org/10.1002/adhm.201400824
[25]. Ku, J.-K., Kim, I.-H., Shim, J. H., Kim, Y. H., Kim, B. H., Kim, Y.-K., & Yun, P.-Y., 2022, The Effect of whitlockite as an osteoconductive synthetic bone substitute material in animal bony defect model. Materials, 15(5). https://doi.org/10.3390/ma15051921
[26]. Furko, M., Balázsi, K., & Balázsi, C., 2023, Calcium phosphate loaded biopolymer composites—A comprehensive review on the most recent progress and promising trends. Coatings World, 13(2), 360. https://doi.org/10.3390/coatings13020360
[27]. Loh, Q. L., & Choong, C., 2013, Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Engineering. Part B, Reviews, 19(6), 485–502. https://doi.org/10.1089/ten.TEB.2012.0437
[28]. Porous scaffolds for bone regeneration, 2020, Journal of Science: Advanced Materials and Devices, 5(1), 1–9. https://doi.org/10.1016/j.jsamd.2020.01.007s
[29]. Polo-Corrales, L., Latorre-Esteves, M., & Ramirez-Vick, J. E., 2014, Scaffold Design for Bone Regeneration. https://doi.org/10.1166/jnn.2014.9127
[30]. Innovative designs of 3D scaffolds for bone tissue regeneration: Understanding principles and addressing challenges, 2024, European Polymer Journal, 215, 113251. https://doi.org/10.1016/j.eurpolymj.2024.113251
[31]. Schulze, F., Lang, A., Schoon, J., Wassilew, G. I., & Reichert, J., 2023, Scaffold guided bone regeneration for the treatment of large segmental defects in long bones. Biomedicines, 11(2), 325. https://doi.org/10.3390/biomedicines11020325
[32]. Preparation of woven scaffolds with porous structure and piezoelectric stimulation capability for osteoblast regeneration, 2024, Journal of Alloys and Compounds, 997, 174941. https://doi.org/10.1016/j.jallcom.2024.174941
[33]. Saberian, E., Jenča, A., Zafari, Y., Petrášová, A., Zare-Zardini, H., & Jenčová, J., 2024, Scaffold application for bone regeneration with stem cells in dentistry: literature review. Cells, 13(12), 1065. https://doi.org/10.3390/cells13121065
[34]. Mammoli, F., Castiglioni, S., Parenti, S., Cappadone, C., Farruggia, G., Iotti, S., Davalli, P., Maier, J. A. M., Grande, A., & Frassineti, C., 2019, Magnesium is a Key Regulator of the Balance Between Osteoclast and Osteoblast Differentiation in the Presence of Vitamin D3. International Journal of Molecular Sciences, 20(2), 385. https://doi.org/10.3390/ijms20020385
[35]. Magnesium-based biomaterials as emerging agents for bone repair and regeneration: from mechanism to application, 2021, Journal of Magnesium and Alloys, 9(3), 779–804. https://doi.org/10.1016/j.jma.2021.03.004