Osteogenic Potential of Hafnium Oxide Nanoparticle-Coated Titanium Micro screws: An In Vitro Study

Download Article

DOI: 10.21522/TIJPH.2013.13.02.Art059

Authors : Saravanan Sekaran, Vaishnavi Rajaramana, Padma Arigaa, Hooriyah Laiq Ahmada

Abstract:

This study evaluates the osteogenic activity of hafnium oxide-coated titanium micro screws using the MG-63 osteoblast cell line in an in vitro setting. The objective is to assess cell viability, proliferation, differentiation, and the impact of hafnium coating on implant integration. Titanium micro screws served as the control, while hafnium oxide-coated titanium screws formed the test group. MTT assay was conducted to determine cell viability and proliferation, while qPCR analysis measured osteogenic differentiation through key markers: BMP-2, ALP, and Runx2. The results showed that hafnium-coated screws exhibited significantly higher expression of osteogenic markers compared to the uncoated group. The MTT assay confirmed biocompatibility in both groups, with no cytotoxic effects observed. However, hafnium-coated screws significantly enhanced osteoblast proliferation and differentiation, suggesting superior osteogenic potential. These findings highlight that hafnium oxide coating improves bone-forming activity, indicating enhanced osseointegration for orthopaedic and dental implant applications. The increased expression of BMP-2, ALP, and Runx2 suggests that hafnium coating facilitates osteoblast differentiation and bone formation, making it a promising material for next-generation implants.

References:

[1].   Adya, N., Alam, M., Ravindranath, T., et al., 2005, Corrosion in titanium dental implants: literature review, Journal of Indian Prosthodontic Society, vol. 5, pp. 126.

[2].   Echhpal, U., Maiti, S., Abhinav, R. P., 2024, A critical review of YouTube videos on the socket-shield technique: a content-quality analysis, Contemporary Clinical Dentistry, vol. 15, no. 4, pp. 292–294.

[3].   Koppaka, R., Maiti, S., Ahmed, N., Abhinav, R. P., Arun, M., 2024, Computer-aided prosthetic rehabilitation of a resected maxilla after mucormycosis using a quad zygomatic implant protocol with digital planning, Journal of Prosthetic Dentistry, vol. [Ahead of print].

[4].   Bhattacharya, D., Ponnanna, A. A., Jingade, R. R. K., Maiti, S., Rai, N., Gopalkrishna, M., 2024, An in vitro assessment of optimizing implant positions in bilateral distal extension implant-assisted removable partial dentures: a microstress analysis, Journal of Indian Prosthodontic Society, vol. 24, no. 1, pp. 82–87.

[5].   George, R., Maiti, S., Ganapathy, D. M., 2023, Estimation of L-carnitine levels in diabetic completely edentulous patients for implant diagnosis: a cross-sectional study, Dental Research Journal (Isfahan), vol. 20, pp. 96.

[6].   Maiti, S., Dhakshinya, M., Nallaswamy, D., et al., 2024, Comparative analysis of surface characteristics and hardness of three-dimensional printed PEEK vs. PEKK as implant biomaterial, Journal of Osseointegration, vol. 16, pp. 16–22.

[7].   Matsuno, H., Yokoyama, A., Watari, F., et al., 2001, Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum, and rhenium, Biomaterials, vol. 22, pp. 1253–1262.

[8].   Dong, H., Liu, H., Zhou, N., et al., 2020, Surface-modified techniques and emerging functional coating of dental implants, Coatings, vol. 10, no. 11, doi: 10.3390/coatings10111012.

[9].   Xuereb, M., Camilleri, J., Attard, N., 2015, Systematic review of current dental implant coating materials and novel coating techniques, International Journal of Prosthodontics, vol. 28, pp. 51–59.

[10].  Liu, Y., Rath, B., Tingart, M., et al., 2020, Role of implant surface modification in osseointegration: a systematic review, Journal of Biomedical Materials Research Part A, vol. 108, pp. 470–484.

[11].  Rajaraman, V., Nallaswamy, D., Ganapathy, D., et al., 2021, Effect of hafnium coating on osseointegration of titanium implants: a split mouth animal study, Journal of Nanomaterials, vol. 2021, pp. 1–9.

[12].  Jayaraman, V., Bhavesh, G., Chinnathambi, S., et al., 2014, Synthesis and characterization of hafnium oxide nanoparticles for biosafety, Materials Express, vol. 4, pp. 375–383.

[13].  Miyazaki, T., Sueoka, M., Shirosaki, Y., et al., 2018, Development of hafnium metal and titanium-hafnium alloys having apatite-forming ability by chemical surface modification, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 106, pp. 2519–2523.

[14].  Morita, T., Miyatani, A., Takesue, S., et al., 2021, Effects of particle collision treatments on fatigue strength of Ti–6Al–4V alloy with polishing marks, Materials Transactions, vol. 62, pp. 1298–1303.

[15].  Badr, N. A., El Hadary, A. A., 2007, Hydroxyapatite-electroplated cp-titanium implant and its bone integration potentiality: an in vivo study, Implant Dentistry, vol. 16, pp. 297–308.

[16].  Cho, Y-S., Jung, W-K., Kim, J-A., et al., 2009, Beneficial effects of fucoidan on osteoblastic MG-63 cell differentiation, Food Chemistry, vol. 116, pp. 990–994.

[17].  Mohammadi, M., Rahmani, S., Ebrahimi, Z., et al., 2024, In situ forming hydrogel reinforced with antibiotic-loaded mesoporous silica nanoparticles for the treatment of bacterial keratitis, AAPS PharmSciTech, vol. 25, pp. 254.

[18].  Fidan, E. B. E., Bal, K., Şentürk, S., et al., 2024, Enhancing gene delivery efficiency with amphiphilic chitosan modified by myristic acid and tertiary amino groups, International Journal of Biological Macromolecules, vol. [Ahead of print].

[19].  Bogaardt, C., van Tonder, A. J., Brueggemann, A. B., 2015, Genomic analyses of pneumococci reveal a wide diversity of bacteriocins, including pneumocyclicin, a novel circular bacteriocin, BMC Genomics, vol. 16, pp. 554.

[20].  Knani, L., Venditti, M., Rouis, H., et al., 2024, Effects of dopaminergic neuron degeneration on osteocyte apoptosis and osteogenic markers in a 6-OHDA male rat model of Parkinson’s disease, Bone, vol. 190, pp. 117271.

[21].  Karunakaran, N., Maiti, S., Jayaraman, S., Paulraj, J., 2023, Assessment of bone turnover markers prior to dental implant placement for osteoporosis patients: a case-control study, Annals of Dental Specialties, vol. 11, no. 2, pp. 57–61.

[22].  Lee, S., Kim, J-H., Kim, Y-H., et al., 2024, Sustained BMP-2 delivery via alginate microbeads and polydopamine-coated 3D-printed PCL/β-TCP scaffold enhances bone regeneration in long bone segmental defects, Journal of Orthopaedic Translation, vol. 49, pp. 11–22.

[23].  Li, Y., Wang, Y., Liu, Q., et al., 2024, Kaempferol promotes osteogenic differentiation in bone marrow mesenchymal stem cells by inhibiting CAV-1, Journal of Orthopaedic Surgery and Research, vol. 19, pp. 678.

[24].  Ferre, F., 2012, Gene Quantification, Springer Science & Business Media.

[25].  Wu, S-H., Yu, J-H., Liao, Y-T., et al., 2024, Comparison of infant bone marrow- and umbilical cord-derived mesenchymal stem cells in multilineage differentiation, Regenerative Therapy, vol. 26, pp. 837–849

[26].  Zhang, S., Qu, D., Luo, B., et al., 2024, Regulation of osteogenic differentiation of hBMSCs by the overlay angles of bone lamellae-like matrices, ACS Applied Materials & Interfaces, vol. [Ahead of print], doi: 10.1021/acsami.4c12847.

[27].  Magnusson, C., Ransjö, M., 2024, Orthosilicic acid inhibits human osteoclast differentiation and bone resorption, PLoS One, vol. 19, pp. e0312169.

[28].  Hampton, T. H., Barnaby, R., Roche, C., et al., 2024, Gene expression responses of CF airway epithelial cells exposed to elexacaftor/tezacaftor/ivacaftor (ETI) suggest benefits beyond improved CFTR channel function, American Journal of Physiology-Lung Cellular and Molecular Physiology, vol. [Ahead of print].

[29].  Liu, X., Zhou, S., Yan, R., et al., 2024, Evaluation of metagenomic next-generation sequencing (mNGS) combined with quantitative PCR: cutting-edge methods for rapid diagnosis of non-invasive fungal rhinosinusitis, European Journal of Clinical Microbiology & Infectious Diseases, vol. [Ahead of print].

[30].  Sun, M., Cheng, H., Yang, Z., et al., 2024, Preliminary investigation on the establishment of a new meibomian gland obstruction model and gene expression, Scientific Reports, vol. 14, pp. 25018.