New Isolates of Proteus Mirabilis and Klebsiella Pneumoniae Associated with Burn Surface Infection

Abstract:
Burn patients suffer from breach of the protective
skin layer which would lead to the association of complications including nosocomial
bacterial infection. Klebsiella pneumoniae and Proteus mirabilis are among the
most common bacterial infections. They are characterised by the expression of
virulence factors leading to multi-drug resistance (MDR) the present study
aimed to identify the association of virulence genes with burn bacterial
infection. After a fire broke out in an accident in an Al-Hamdaniya town (Iraq),
a total of 250 clinical isolates (swabs) were collected from patients. Identification
of 184 (73.6%) and P. mirabilis 66 (26.4%) were made as the commonest
Gram-negative bacteria to be studied. All isolates were carried out depending
on microscopic examination, cultures, and genetic technique. A susceptibility
test was achieved for all clinical isolates using the disk diffusion method.
Ten antibiotics disks (imipenem, gentamycin, cefotaxime, sulphamethoxazole, pipracillin,
cefixime, amoxycillin, trimethoprim, ciprofloxacin, and amikacin. For both K.
pneumoniae and P. mirabilis, sensitivity was the highest with IMP (65% and
100%, respectively and lowest with PRL (0% and 4.6%, respectively). expressed mrkD, uge, fimH-, bla CTXM-1, and bla NDM-1,
while the sample of P. mirabilis
expressed aclb, bla TEM, atpD, ureC, rsbA, zabA, bla CTX, and bla OXA-1, these
genes supposed that they evade the antibiotic therapy and thereby commence
antibiotic-resistance.
This study observed that some Iraqi isolates contain many different genes for
both K. pneumoniae and P. mirabilis the causative agent of burn wound infections.
These bacteria were resistant to multiple drugs with the highest sensitivity
being associated with imipenem and the lowest with piperacillin.
References:
[1].
Guggenheim, M., Zbinden, R., Handschin, A.
E., Gohritz, A., Altintas, M. A., Giovanoli, P., 2009, Changes in bacterial
isolates from burn wounds and their antibiograms: a 20-year study (1986–2005).
Burns, 35(4), 553-560, doi: 10.1016/j.burns.2008.09.004.
[2].
Maslova, E., Eisaiankhongi, L., Sjöberg,
F., McCarthy, R. R., 2021, Burns and biofilms: priority pathogens and in vivo
models. npj Biofilms and Microbiomes, 7(1), 73,
doi:10.1038/s41522-021-00243-2.
[3].
El Hamzaoui, N., Barguigua, A., Larouz,
S., Maouloua, M., 2020, Epidemiology of burn wound bacterial infections at a
Meknes hospital, Morocco. New microbes and new infections, 38, 100764, doi:
10.1016/j.nmni.2020.100764.
[4].
ElTaweel, M., Said, H. S., Barwa, R.,
2024, Emergence of extensive drug resistance and high prevalence of multidrug
resistance among clinical Proteus mirabilis isolates in Egypt. Annals of
Clinical Microbiology and Antimicrobials, 23(1), 46,
doi:10.1186/s12941-024-00705-3.
[5].
Sheridan, R., Weber, J., Chang, P.,
Schulz, J., Goverman, J., Friedstat, J., Pasternack, M., 2018, Multi-drug
resistant gram negative bacteria colonization and infection in burned children:
lessons learned from a 20-year experience. Burns Open, 2(1), 43-46, doi:
10.1016/j.burnso.2017.09.002.
[6].
Vuotto, C., Longo, F., Pascolini, C.,
Donelli, G., Balice, M. P., Libori, M. F., Varaldo, P. E., 2017, Biofilm
formation and antibiotic resistance in Klebsiella pneumoniae urinary strains.
Journal of applied microbiology, 123(4), 1003-1018, doi:10.1111/jam.13533.
[7].
Vargas, J. M., Mochi, M. M., Nuñez, J. M.,
Cáceres, M., Mochi, S., Del Campo Moreno, R., Jure, M. A., 2019, Virulence
factors and clinical patterns of multiple-clone hypermucoviscous KPC-2
producing K. pneumoniae. Heliyon, 5(6),
doi:10.1016/j.heliyon.2019.e01829.
[8].
Riwu, K. H. P., Effendi, M. H., Rantam, F.
A., Khairullah, A. R., Widodo, A., 2022, A review: virulence factors of
Klebsiella pneumonia as emerging infection on the food chain. Veterinary
world, 15(9), 2172, doi:10.14202/vetworld.2022.2172-2179.
[9].
van Langeveld, I., Gagnon, R. C., Conrad,
P. F., Gamelli, R. L., Martin, B., Choudhry, M. A., Mosier, M. J., 2017,
Multiple-drug resistance in burn patients: a retrospective study on the impact
of antibiotic resistance on survival and length of stay. Journal of Burn
Care & Research, 38(2), 99-105, doi:10.1097/BCR.0000000000000479.
[10].Hall, R. J.,
Snaith, A. E., Thomas, M. J., Brockhurst, M. A., McNally, A., 202, Multidrug
resistance plasmids commonly reprogram the expression of metabolic genes in
Escherichia coli. Msystems, 9(3), e01193-23,
doi:10.1128/msystems.01193-23.
[11].Ahmed, O. I.,
El-Hady, S. A., Ahmed, T. M., Ahmed, I. Z., 2013, Detection of bla SHV and bla
CTX-M genes in ESBL producing Klebsiella pneumoniae isolated from Egyptian
patients with suspected nosocomial infections. Egyptian Journal of Medical
Human Genetics, 14(3), 277-283, doi: 10.1016/j.ejmhg.2013.05.002.
[12].Paterson, D. L.,
Bonomo, R. A., 2005, Extended-spectrum β-lactamases: a clinical update. Clinical
microbiology reviews, 18(4), 657-686, doi:10.1128/CMR.18.4.657-686.2005.
[13].Cole, J. M.,
Schuetz, A. N., Hill, C. E., Nolte, F. S., 2009, Development and evaluation of
a real-time PCR assay for detection of Klebsiella pneumoniae carbapenemase
genes. Journal of clinical microbiology, 47(2), 322-326,
doi:10.1128/JCM.01550-08.
[14].Mac Aogáin, M.,
Rogers, T. R., Crowley, B., 2016, Identification of emergent blaCMY-2-carrying
Proteus mirabilis lineages by whole-genome sequencing. New microbes and new
infections, 9, 58-62, doi: 10.1016/j.nmni.2015.11.012.
[15].Park, C. H.,
Robicsek, A., Jacoby, G. A., Sahm, D., Hooper, D. C., 2006, Prevalence in the
United States of aac (6′)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrobial
agents and chemotherapy, 50(11), 3953-3955, doi:10.1128/AAC.00915-06.
[16].Gupta, M., Naik,
A. K., Singh, S. K., 2019, Bacteriological profile and antimicrobial resistance
patterns of burn wound infections in a tertiary care hospital. Heliyon,
5(12), doi: 10.1016/j.heliyon. 2019.e02956.
[17].Nubahumpatse, E.,
2022, Awareness, attitude and practice of paediatricians in relation to
helicobacter pylori infection diagnosis and management in Rwanda (Doctoral
dissertation, University of Rwanda), doi:10.4314/rmj.v81i1.1.
[18].Mirzaie, A.,
Ranjbar, R., 2021, Antibiotic resistance, virulence-associated genes analysis
and molecular typing of Klebsiella pneumoniae strains recovered from clinical
samples. AMB Express, 11(1), 122, doi:10.1186/s13568-021-01282-w.
[19].Li, Y., Kumar, S.,
Zhang, L., Wu, H., Wu, H., 2023, Characteristics of antibiotic resistance
mechanisms and genes of Klebsiella pneumoniae. Open Medicine, 18(1),
20230707, doi:10.1515/med-2023-0707.
[20].Wang, G., Huang,
T., Surendraiah, P. K. M., Wang, K., Komal, R., Zhuge, J., Wormser, G. P.,
2013, CTX-M β-Lactamase–producing Klebsiella pneumoniae in Suburban New York
City, New York, USA. Emerging infectious diseases, 19(11), 1803,
doi:10.3201/eid1911.121470.
[21].Snitkin, E. S.,
Won, S., Pirani, A., Lapp, Z., Weinstein, R. A., Lolans, K., Hayden, M. K.,
2017, Integrated genomic and interfacility patient-transfer data reveal the
transmission pathways of multidrug-resistant Klebsiella pneumoniae in a
regional outbreak. Science translational medicine, 9(417), eaan0093,
doi:10.1126/scitranslmed.aan0093.
[22].Algammal, A. M.,
Hashem, H. R., Alfifi, K. J., Hetta, H. F., Sheraba, N. S., Ramadan, H.,
El-Tarabili, R. M., 2021, atp D gene sequencing, multidrug resistance traits,
virulence-determinants, and antimicrobial resistance genes of emerging XDR and
MDR-Proteus mirabilis. Scientific reports, 11(1), 9476,
doi:10.1038/s41598-021-88861-w.
[23].Ekrami, A.,
Kalantar, E., 2007, Bacterial infections in burn patients at a burn hospital in
Iran. Indian Journal of Medical Research, 126(6), 541-544.
[24].Srinivasan, S.,
Vartak, A. M., Patil, A., Saldanha, J., 2009, Bacteriology of the burn wound at
the Bai Jerbai Wadia Hospital for children, Mumbai, India-A 13-year study, Part
I-Bacteriological profile. Indian journal of plastic surgery, 42(02),
213-218, doi:10.4103/0970-0358.59284.
[25].Elsheikh, R.,
Makram, A. M., 2024, Multidrug-resistant Organisms: The Silent Plight of Burn
Patients. Journal of Burn Care & Research, irae075,
doi:10.1093/jbcr/irae075.
[26].Singh, N. P.,
Goyal, R., Manchanda, V., Das, S., Kaur, I., Talwar, V., 2003, Changing trends
in bacteriology of burns in the burns unit, Delhi, India. Burns, 29(2),
129-132, doi:10.1016/S0305-4179(02)00249-8.
[27].Atoyebi, O. A.,
Sowemimo, G. O. A., Odugbemi, T., 1992, Bacterial flora of burn wounds in
Lagos, Nigeria: a prospective study. Burns, 18(6), 448-451,
doi:10.1016/0305-4179(92)90175-T.
[28].de Abreu, P. M.,
Farias, P. G., Paiva, G. S., Almeida, A. M., Morais, P. V., 2014, Persistence
of microbial communities including Pseudomonas aeruginosa in a hospital
environment: a potential health hazard. BMC microbiology, 14, 1-10,
doi:10.1186/1471-2180-14-118.
[29].Kulkarni, V.,
Arali, S. M., Jayaraj, Y. M., Shivannavar, C. T., Joshi, M. R., 2015, Bacterial
etiology and their antibiogram in burn wound infections at Kalaburgi region
(India). Indian Journal of Burns, 23(1), 65-70,
doi:10.4103/0971-653X.171660.
[30].Hateet, R., 2021,
Isolation and Identification of Some Bacteria Contemn in Burn Wounds in Misan,
Iraq. Archives of Razi Institute, 76(6), 1665,
doi:10.22092/ari.2021.356367.1833.
[31].Li, Y., Kumar, S.,
Zhang, L., Wu, H., 2022, Klebsiella pneumonia and its antibiotic resistance: a
bibliometric analysis. BioMed research international, 2022(1), 1668789,
doi:10.1155/2022/1668789.
[32].Wang, G., Zhao,
G., Chao, X., Xie, L., Wang, H., 2020, The characteristic of virulence, biofilm
and antibiotic resistance of Klebsiella pneumoniae. International journal of
environmental research and public health, 17(17), 6278,
doi:10.3390/ijerph17176278.
[33].Gorrie, C. L.,
Mirčeta, M., Wick, R. R., Judd, L. M., Lam, M. M., Gomi, R., Holt, K. E., 2022,
Genomic dissection of Klebsiella pneumoniae infections in hospital patients
reveals insights into an opportunistic pathogen. Nature communications,
13(1), 3017, doi:10.1038/s41467-022-30717-6.
[34].Sahly, H.,
Navon-Venezia, S., Roesler, L., Hay, A., Carmeli, Y., Podschun, R., Ofek, I.,
2008, Extended-spectrum β-lactamase production is associated with an increase
in cell invasion and expression of fimbrial adhesins in Klebsiella pneumoniae. Antimicrobial
agents and chemotherapy, 52(9), 3029-3034, doi:10.1128/AAC.00010-08.
[35].El Fertas-Aissani,
R., Messai, Y., Alouache, S., Bakour, R., 2013, Virulence profiles and
antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated
from different clinical specimens. Pathologie Biologie, 61(5), 209-216, doi:
10.1016/j.patbio.2012.10.004.
[36].Siu, L. K., Fung,
C. P., Chang, F. Y., Lee, N., Yeh, K. M., Koh, T. H., Ip, M., 2011, Molecular
typing and virulence analysis of serotype K1 Klebsiella pneumoniae strains
isolated from liver abscess patients and stool samples from noninfectious
subjects in Hong Kong, Singapore, and Taiwan. Journal of clinical
microbiology, 49(11), 3761-3765, doi:10.1128/JCM.00977-11.
[37].Compain, F.,
Babosan, A., Brisse, S., Genel, N., Audo, J., Ailloud, F., Decré, D., 2014,
Multiplex PCR for detection of seven virulence factors and K1/K2 capsular
serotypes of Klebsiella pneumoniae. Journal of clinical microbiology,
52(12), 4377-4380, doi:10.1128/JCM.02316-14.
[38].Lee, C. R., Lee,
J. H., Park, K. S., Kim, Y. B., Jeong, B. C., Lee, S. H., 2016, Global
dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology,
genetic context, treatment options, and detection methods. Frontiers in
microbiology, 7, 895, doi:10.3389/fmicb.2016.00895.
[39].Papp-Wallace, K. M.,
Bethel, C. R., Distler, A. M., Kasuboski, C., Taracila, M., Bonomo, R. A.,
2010, Inhibitor resistance in the KPC-2 β-lactamase, a preeminent property of
this class A β-lactamase. Antimicrobial agents and chemotherapy, 54(2),
890-897, doi:10.1128/AAC.00693-09.
[40].Cao, X. L., Shen,
H., Xu, Y. Y., Xu, X. J., Zhang, Z. F., Cheng, L., Arakawa, Y., 2017, High
prevalence of fosfomycin resistance gene fosA3 in blaCTX-M-harbouring
Escherichia coli from urine in a Chinese tertiary hospital during 2010–2014. Epidemiology
& Infection, 145(4), 818-824, doi:10.1017/S0950268816002879.
[41].Mukherjee, S.,
Bhattacharjee, A., Naha, S., Majumdar, T., Debbarma, S. K., Kaur, H., Basu, S.,
2019, Molecular characterization of NDM-1-producing Klebsiella pneumoniae ST29,
ST347, ST1224, and ST2558 causing sepsis in neonates in a tertiary care
hospital of North-East India. Infection, Genetics and Evolution, 69,
166-175, doi:10.1016/j.meegid.2019.01.024.
[42].Frirdich, E., Whitfield,
C., 2005, Characterization of GlaKP, a UDP-galacturonic acid C4-epimerase from
Klebsiella pneumoniae with extended substrate specificity. Journal of
bacteriology, 187(12), 4104-4115, doi:10.1128/JB.187.12.4104-4115.2005.