New Isolates of Proteus Mirabilis and Klebsiella Pneumoniae Associated with Burn Surface Infection

Download Article

DOI: 10.21522/TIJPH.2013.13.02.Art065

Authors : Nada K. Younus, Nadhim A. AL-Shaheri

Abstract:

Burn patients suffer from breach of the protective skin layer which would lead to the association of complications including nosocomial bacterial infection. Klebsiella pneumoniae and Proteus mirabilis are among the most common bacterial infections. They are characterised by the expression of virulence factors leading to multi-drug resistance (MDR) the present study aimed to identify the association of virulence genes with burn bacterial infection. After a fire broke out in an accident in an Al-Hamdaniya town (Iraq), a total of 250 clinical isolates (swabs) were collected from patients. Identification of 184 (73.6%) and P. mirabilis 66 (26.4%) were made as the commonest Gram-negative bacteria to be studied. All isolates were carried out depending on microscopic examination, cultures, and genetic technique. A susceptibility test was achieved for all clinical isolates using the disk diffusion method. Ten antibiotics disks (imipenem, gentamycin, cefotaxime, sulphamethoxazole, pipracillin, cefixime, amoxycillin, trimethoprim, ciprofloxacin, and amikacin. For both K. pneumoniae and P. mirabilis, sensitivity was the highest with IMP (65% and 100%, respectively and lowest with PRL (0% and 4.6%, respectively). expressed mrkD, uge, fimH-, bla CTXM-1, and bla NDM-1, while the sample of P. mirabilis expressed aclb, bla TEM, atpD, ureC, rsbA, zabA, bla CTX, and bla OXA-1, these genes supposed that they evade the antibiotic therapy and thereby commence antibiotic-resistance. This study observed that some Iraqi isolates contain many different genes for both K. pneumoniae and P. mirabilis the causative agent of burn wound infections. These bacteria were resistant to multiple drugs with the highest sensitivity being associated with imipenem and the lowest with piperacillin.

References:

[1].    Guggenheim, M., Zbinden, R., Handschin, A. E., Gohritz, A., Altintas, M. A., Giovanoli, P., 2009, Changes in bacterial isolates from burn wounds and their antibiograms: a 20-year study (1986–2005). Burns, 35(4), 553-560, doi: 10.1016/j.burns.2008.09.004.

[2].    Maslova, E., Eisaiankhongi, L., Sjöberg, F., McCarthy, R. R., 2021, Burns and biofilms: priority pathogens and in vivo models. npj Biofilms and Microbiomes, 7(1), 73, doi:10.1038/s41522-021-00243-2.

[3].    El Hamzaoui, N., Barguigua, A., Larouz, S., Maouloua, M., 2020, Epidemiology of burn wound bacterial infections at a Meknes hospital, Morocco. New microbes and new infections, 38, 100764, doi: 10.1016/j.nmni.2020.100764.

[4].    ElTaweel, M., Said, H. S., Barwa, R., 2024, Emergence of extensive drug resistance and high prevalence of multidrug resistance among clinical Proteus mirabilis isolates in Egypt. Annals of Clinical Microbiology and Antimicrobials, 23(1), 46, doi:10.1186/s12941-024-00705-3.

[5].    Sheridan, R., Weber, J., Chang, P., Schulz, J., Goverman, J., Friedstat, J., Pasternack, M., 2018, Multi-drug resistant gram negative bacteria colonization and infection in burned children: lessons learned from a 20-year experience. Burns Open, 2(1), 43-46, doi: 10.1016/j.burnso.2017.09.002.

[6].    Vuotto, C., Longo, F., Pascolini, C., Donelli, G., Balice, M. P., Libori, M. F., Varaldo, P. E., 2017, Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary strains. Journal of applied microbiology, 123(4), 1003-1018, doi:10.1111/jam.13533.

[7].    Vargas, J. M., Mochi, M. M., Nuñez, J. M., Cáceres, M., Mochi, S., Del Campo Moreno, R., Jure, M. A., 2019, Virulence factors and clinical patterns of multiple-clone hypermucoviscous KPC-2 producing K. pneumoniae. Heliyon, 5(6), doi:10.1016/j.heliyon.2019.e01829.

[8].    Riwu, K. H. P., Effendi, M. H., Rantam, F. A., Khairullah, A. R., Widodo, A., 2022, A review: virulence factors of Klebsiella pneumonia as emerging infection on the food chain. Veterinary world, 15(9), 2172, doi:10.14202/vetworld.2022.2172-2179.

[9].    van Langeveld, I., Gagnon, R. C., Conrad, P. F., Gamelli, R. L., Martin, B., Choudhry, M. A., Mosier, M. J., 2017, Multiple-drug resistance in burn patients: a retrospective study on the impact of antibiotic resistance on survival and length of stay. Journal of Burn Care & Research, 38(2), 99-105, doi:10.1097/BCR.0000000000000479.

[10].Hall, R. J., Snaith, A. E., Thomas, M. J., Brockhurst, M. A., McNally, A., 202, Multidrug resistance plasmids commonly reprogram the expression of metabolic genes in Escherichia coli. Msystems, 9(3), e01193-23, doi:10.1128/msystems.01193-23.

[11].Ahmed, O. I., El-Hady, S. A., Ahmed, T. M., Ahmed, I. Z., 2013, Detection of bla SHV and bla CTX-M genes in ESBL producing Klebsiella pneumoniae isolated from Egyptian patients with suspected nosocomial infections. Egyptian Journal of Medical Human Genetics, 14(3), 277-283, doi: 10.1016/j.ejmhg.2013.05.002.

[12].Paterson, D. L., Bonomo, R. A., 2005, Extended-spectrum β-lactamases: a clinical update. Clinical microbiology reviews, 18(4), 657-686, doi:10.1128/CMR.18.4.657-686.2005.

[13].Cole, J. M., Schuetz, A. N., Hill, C. E., Nolte, F. S., 2009, Development and evaluation of a real-time PCR assay for detection of Klebsiella pneumoniae carbapenemase genes. Journal of clinical microbiology, 47(2), 322-326, doi:10.1128/JCM.01550-08.

[14].Mac Aogáin, M., Rogers, T. R., Crowley, B., 2016, Identification of emergent blaCMY-2-carrying Proteus mirabilis lineages by whole-genome sequencing. New microbes and new infections, 9, 58-62, doi: 10.1016/j.nmni.2015.11.012.

[15].Park, C. H., Robicsek, A., Jacoby, G. A., Sahm, D., Hooper, D. C., 2006, Prevalence in the United States of aac (6′)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrobial agents and chemotherapy, 50(11), 3953-3955, doi:10.1128/AAC.00915-06.

[16].Gupta, M., Naik, A. K., Singh, S. K., 2019, Bacteriological profile and antimicrobial resistance patterns of burn wound infections in a tertiary care hospital. Heliyon, 5(12), doi: 10.1016/j.heliyon. 2019.e02956.

[17].Nubahumpatse, E., 2022, Awareness, attitude and practice of paediatricians in relation to helicobacter pylori infection diagnosis and management in Rwanda (Doctoral dissertation, University of Rwanda), doi:10.4314/rmj.v81i1.1.

[18].Mirzaie, A., Ranjbar, R., 2021, Antibiotic resistance, virulence-associated genes analysis and molecular typing of Klebsiella pneumoniae strains recovered from clinical samples. AMB Express, 11(1), 122, doi:10.1186/s13568-021-01282-w.

[19].Li, Y., Kumar, S., Zhang, L., Wu, H., Wu, H., 2023, Characteristics of antibiotic resistance mechanisms and genes of Klebsiella pneumoniae. Open Medicine, 18(1), 20230707, doi:10.1515/med-2023-0707.

[20].Wang, G., Huang, T., Surendraiah, P. K. M., Wang, K., Komal, R., Zhuge, J., Wormser, G. P., 2013, CTX-M β-Lactamase–producing Klebsiella pneumoniae in Suburban New York City, New York, USA. Emerging infectious diseases, 19(11), 1803, doi:10.3201/eid1911.121470.

[21].Snitkin, E. S., Won, S., Pirani, A., Lapp, Z., Weinstein, R. A., Lolans, K., Hayden, M. K., 2017, Integrated genomic and interfacility patient-transfer data reveal the transmission pathways of multidrug-resistant Klebsiella pneumoniae in a regional outbreak. Science translational medicine, 9(417), eaan0093, doi:10.1126/scitranslmed.aan0093.

[22].Algammal, A. M., Hashem, H. R., Alfifi, K. J., Hetta, H. F., Sheraba, N. S., Ramadan, H., El-Tarabili, R. M., 2021, atp D gene sequencing, multidrug resistance traits, virulence-determinants, and antimicrobial resistance genes of emerging XDR and MDR-Proteus mirabilis. Scientific reports, 11(1), 9476, doi:10.1038/s41598-021-88861-w.

[23].Ekrami, A., Kalantar, E., 2007, Bacterial infections in burn patients at a burn hospital in Iran. Indian Journal of Medical Research, 126(6), 541-544.

[24].Srinivasan, S., Vartak, A. M., Patil, A., Saldanha, J., 2009, Bacteriology of the burn wound at the Bai Jerbai Wadia Hospital for children, Mumbai, India-A 13-year study, Part I-Bacteriological profile. Indian journal of plastic surgery, 42(02), 213-218, doi:10.4103/0970-0358.59284.

[25].Elsheikh, R., Makram, A. M., 2024, Multidrug-resistant Organisms: The Silent Plight of Burn Patients. Journal of Burn Care & Research, irae075, doi:10.1093/jbcr/irae075.

[26].Singh, N. P., Goyal, R., Manchanda, V., Das, S., Kaur, I., Talwar, V., 2003, Changing trends in bacteriology of burns in the burns unit, Delhi, India. Burns, 29(2), 129-132, doi:10.1016/S0305-4179(02)00249-8.

[27].Atoyebi, O. A., Sowemimo, G. O. A., Odugbemi, T., 1992, Bacterial flora of burn wounds in Lagos, Nigeria: a prospective study. Burns, 18(6), 448-451, doi:10.1016/0305-4179(92)90175-T.

[28].de Abreu, P. M., Farias, P. G., Paiva, G. S., Almeida, A. M., Morais, P. V., 2014, Persistence of microbial communities including Pseudomonas aeruginosa in a hospital environment: a potential health hazard. BMC microbiology, 14, 1-10, doi:10.1186/1471-2180-14-118.

[29].Kulkarni, V., Arali, S. M., Jayaraj, Y. M., Shivannavar, C. T., Joshi, M. R., 2015, Bacterial etiology and their antibiogram in burn wound infections at Kalaburgi region (India). Indian Journal of Burns, 23(1), 65-70, doi:10.4103/0971-653X.171660.

[30].Hateet, R., 2021, Isolation and Identification of Some Bacteria Contemn in Burn Wounds in Misan, Iraq. Archives of Razi Institute, 76(6), 1665, doi:10.22092/ari.2021.356367.1833.

[31].Li, Y., Kumar, S., Zhang, L., Wu, H., 2022, Klebsiella pneumonia and its antibiotic resistance: a bibliometric analysis. BioMed research international, 2022(1), 1668789, doi:10.1155/2022/1668789.

[32].Wang, G., Zhao, G., Chao, X., Xie, L., Wang, H., 2020, The characteristic of virulence, biofilm and antibiotic resistance of Klebsiella pneumoniae. International journal of environmental research and public health, 17(17), 6278, doi:10.3390/ijerph17176278.

[33].Gorrie, C. L., Mirčeta, M., Wick, R. R., Judd, L. M., Lam, M. M., Gomi, R., Holt, K. E., 2022, Genomic dissection of Klebsiella pneumoniae infections in hospital patients reveals insights into an opportunistic pathogen. Nature communications, 13(1), 3017, doi:10.1038/s41467-022-30717-6.

[34].Sahly, H., Navon-Venezia, S., Roesler, L., Hay, A., Carmeli, Y., Podschun, R., Ofek, I., 2008, Extended-spectrum β-lactamase production is associated with an increase in cell invasion and expression of fimbrial adhesins in Klebsiella pneumoniae. Antimicrobial agents and chemotherapy, 52(9), 3029-3034, doi:10.1128/AAC.00010-08.

[35].El Fertas-Aissani, R., Messai, Y., Alouache, S., Bakour, R., 2013, Virulence profiles and antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different clinical specimens. Pathologie Biologie, 61(5), 209-216, doi: 10.1016/j.patbio.2012.10.004.

[36].Siu, L. K., Fung, C. P., Chang, F. Y., Lee, N., Yeh, K. M., Koh, T. H., Ip, M., 2011, Molecular typing and virulence analysis of serotype K1 Klebsiella pneumoniae strains isolated from liver abscess patients and stool samples from noninfectious subjects in Hong Kong, Singapore, and Taiwan. Journal of clinical microbiology, 49(11), 3761-3765, doi:10.1128/JCM.00977-11.

[37].Compain, F., Babosan, A., Brisse, S., Genel, N., Audo, J., Ailloud, F., Decré, D., 2014, Multiplex PCR for detection of seven virulence factors and K1/K2 capsular serotypes of Klebsiella pneumoniae. Journal of clinical microbiology, 52(12), 4377-4380, doi:10.1128/JCM.02316-14.

[38].Lee, C. R., Lee, J. H., Park, K. S., Kim, Y. B., Jeong, B. C., Lee, S. H., 2016, Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Frontiers in microbiology, 7, 895, doi:10.3389/fmicb.2016.00895.

[39].Papp-Wallace, K. M., Bethel, C. R., Distler, A. M., Kasuboski, C., Taracila, M., Bonomo, R. A., 2010, Inhibitor resistance in the KPC-2 β-lactamase, a preeminent property of this class A β-lactamase. Antimicrobial agents and chemotherapy, 54(2), 890-897, doi:10.1128/AAC.00693-09.

[40].Cao, X. L., Shen, H., Xu, Y. Y., Xu, X. J., Zhang, Z. F., Cheng, L., Arakawa, Y., 2017, High prevalence of fosfomycin resistance gene fosA3 in blaCTX-M-harbouring Escherichia coli from urine in a Chinese tertiary hospital during 2010–2014. Epidemiology & Infection, 145(4), 818-824, doi:10.1017/S0950268816002879.

[41].Mukherjee, S., Bhattacharjee, A., Naha, S., Majumdar, T., Debbarma, S. K., Kaur, H., Basu, S., 2019, Molecular characterization of NDM-1-producing Klebsiella pneumoniae ST29, ST347, ST1224, and ST2558 causing sepsis in neonates in a tertiary care hospital of North-East India. Infection, Genetics and Evolution, 69, 166-175, doi:10.1016/j.meegid.2019.01.024.

[42].Frirdich, E., Whitfield, C., 2005, Characterization of GlaKP, a UDP-galacturonic acid C4-epimerase from Klebsiella pneumoniae with extended substrate specificity. Journal of bacteriology, 187(12), 4104-4115, doi:10.1128/JB.187.12.4104-4115.2005.