Silver Nanoparticles on the Horizon: Exploring Future Directions in Healthcare

Abstract:
Nanoparticles,
consisting of clusters of atoms ranging from 1 to 100 nm, exhibit unique
properties attributable to their small size and extensive surface area. This review
paper addresses silver nanoparticles (AgNPs), their classification,
manufacturing methods, and diverse uses. Nanoparticles are classed into
organic, inorganic, and carbon-based categories, with silver nanoparticles
(AgNPs) being under the inorganic classification. The discussion covers
both top-down and bottom-up approaches for synthesis highlighting their
strengths and limitations of each. A significant focus on green synthesis
approaches that use biological agents such as plant extracts, microorganisms
and enzymes present a promising alternative to chemical methods that often
involve toxic chemicals and high energy. AgNPs find versatile applications: in agriculture
to boost crop resilience, nutrient uptake and pest management; in aquaculture
to combat microbial infection; in textiles, to develop smart, antimicrobial
fabrics for medical and industrial uses; in environmental to facilitate dye
detoxification and pollution degradation; and in health care, to enable
targeted drug delivery, support diagnostic assays and promote wound healing. Overall,
this review highlights the significance of AgNPs and their capacity to tackle
contemporary challenges in medicine, agriculture and environmental protection, while
emphasizing the need for ongoing research to improve synthesis strategies and
expand their practical application.
References:
[1]. Chandran, N., Ramesh, S.,
Shanmugam, R., 2024, Synthesis of silver nanoparticles using Azadirachta
indica and Syzygium aromaticum extract and its antibacterial action
against Enterococcus faecalis: An in vitro study, Cureus, vol. 16, no.
7, p. e65044.
[2]. El‐Nour, K. A., Eftaiha, A. F., Al‐Warthan, A., Ammar, R. A. A., 2010,
Synthesis and applications of silver nanoparticles, Arab. J. Chem., vol.
3, no. 3, p. 135–140.
[3]. Chung, I. M., Park, I., Seung‐Hyun, K.,
Thiruvengadam, M., Rajakumar, G., 2016, Plant‐mediated synthesis of silver
nanoparticles: their characteristic properties and therapeutic applications, Nanoscale
Res. Lett., vol. 11, no. 1, p. 40.
[4]. Saravanakumar, A., Peng, M. M., Ganesh, M.,
Jayaprakash, J., Murugan, M., Jang, H., 2016, Low‐cost and eco‐friendly green
synthesis of silver nanoparticles using Prunus japonica (Rosaceae) leaf
extract and their antibacterial, antioxidant properties, Artif. Cells
Nanomed. Biotechnol., vol. 45, no. 6, p. 1–7.
[5]. Ahmed, S., Saifullah, M., Ahmad, B., Lal
Swami, Ikram, S., 2016, Green synthesis of silver nanoparticles using Azadirachta
indica aqueous leaf extract, J. Radiat. Res. Appl. Sci., vol. 9, no.
1, p. 1–7.
[6]. Zhang, T., Wang, L., Chen, Q., Chen, C., 2014,
Cytotoxic potential of silver nanoparticles, Yonsei Med. J., vol. 55,
no. 2, p. 283–291.
[7]. Pingale, S. S., Rupanar, S. V., Chaskar, M.,
2018, Plant mediated biosynthesis of silver nanoparticles from Gymnema
sylvestre and their use in photodegradation of methyl orange dye, J.
Water Environ. Nanotechnol., vol. 3, no. 2, p. 106–115.
[9]. Lakshmanan, G., Sathiyaseelan, A.,
Kalaichelvan, P. T., Murugesan, K., 2018, Plant‐mediated synthesis of silver
nanoparticles using fruit extract of Cleome viscosa L.: Assessment of
their antibacterial and anticancer activity, Karbala Int. J. Mod. Sci.,
vol. 4, no. 1, p. 61–68.
[10]. Rigo, C., Tocco, F., Roman, L. M., Munivrana,
I. M., Gardin, I. C., Cairns, W. R. L., Vindigni, V., Azzena, B., Barbante, C.,
Zavan, B., 2013, Active silver nanoparticles for wound healing, Int. J. Mol.
Sci., vol. 14, p. 4817–4840.
[11]. Syafiuddin, A., Salmiati, Salim, M. R., Kueh,
A. B. H., Hadibarata, T., Nur, H., 2017, A review of silver nanoparticles:
Research trends, global consumption, synthesis, properties, and future
challenges, J. Chin. Chem. Soc., vol. 64, p. 732–756.
[12]. Prasad, R., Bhattacharyya, A., Nguyen, Q. D.,
2017, Nanotechnology in sustainable agriculture: recent developments,
challenges, and perspectives, Front. Microbiol., vol. 8, p. 10–14.
[13]. Bhattacharyya, A., Duraisamy, P.,
Govindarajan, M., Buhroo, A. A., Prasad, R., 2016, Nano‐biofungicides: emerging
trend in insect pest control: advances and application through fungal
nanobiotechnology, Springer International Publishing, Cham, pp. 307–319.
[14]. Goswami, A., Roy, I., Sengupta, S., Debnath,
N., 2010, Novel applications of solid and liquid formulations of nanoparticles
against insect pests and pathogens, Thin Solid Films, vol. 519, no. 3,
p. 1252–1257.
[15]. Duhan, J. S., Kumar, R., Kumar, N., Kaur, P.,
Nehra, K., Duhan, S., 2017, Nanotechnology: the new perspective in precision
agriculture, Biotechnol. Rep., vol. 15, p. 11–23.
[16]. Khosravi‐Katuli, K., Prato, E., Lofrano, G.,
Guida, M., Vale, G., Libralato, G., 2017, Effects of nanoparticles in species
of aquaculture interest, Environ. Sci. Pollut. Res., vol. 24, p.
17326–17346.
[17]. Bharathi, S., Kumaran, S., Suresh, G.,
Pugazhvendan, S. R., 2014, Nanotechnology as a novel tool for aquaculture
industry: A review, World J. Pharm. Sci., vol. 2, no. 9, p. 1089–1096.
[18]. Pradeep, T., 2009, Noble metal nanoparticles
for water purification: a critical review, Thin Solid Films, vol. 517,
no. 24, p. 6441–6478.
[19]. Ballottin, D., Fulaz, S., Cabrini, F., Tasic,
L., 2017, Antimicrobial textiles: Biogenic silver nanoparticles against Candida
and Xanthomonas, Mater. Sci. Eng. C, vol. 75, p. 582–589.
[20]. Akter, M., Sikder, M. D. T., Rahman, M. D. M.,
Ullah, A. K. M., Hossain, K. F., Banik, S., Hosokawa, T., Saito, T., Kurasaki,
M. A., 2018, Systematic review on silver nanoparticles‐induced cytotoxicity:
Physicochemical properties and perspectives, J. Adv. Res., vol. 9, p.
1–16.
[21]. Khatoon, N., Sardar, M., 2017, Efficient
removal of toxic textile dyes using silver nanocomposites, J. Nanosci. Curr.
Res., vol. 2, no. 3, p. 3.
[22]. Ge, L., Li, Q., Wang, M., Ouyang, J., Li, X.,
Xing, M. M. Q., 2014, Nanosilver particles in medical applications: synthesis,
performance, and toxicity, Int. J. Nanomedicine, vol. 9, p. 2399–2407.
[23]. Chaloupka, K., Malam, Y., Seifalian, A. M.,
2010, Nanosilver as a new generation of nanoproduct in biomedical applications,
Trends Biotechnol., vol. 28, no. 11, p. 580–588.
[24]. Pauksch, L., Hartmann, S., Szalay, G., Alt,
V., Lips, K. S., 2014, In vitro assessment of nanosilver‐functionalized PMMA
bone cement on primary human mesenchymal stem cells and osteoblasts, PLoS
One, vol. 9, no. 12, p. e114740.
[25]. Haes, A. J., Hall, W. P., Chang, L., Klein, W.
L., Duyne, R. P. V., 2004, A localized surface plasmon resonance biosensor:
first steps toward an assay for Alzheimer’s disease, Nano Lett., vol. 4,
no. 6, p. 1029–1034.
[26]. Loo, C., Lowery, A., Halas, N., West, J.,
Drezek, R., 2005, Immuno targeted nanoshells for integrated cancer imaging and
therapy, Nano Lett., vol. 5, no. 4, p. 709–711.
[27]. Haes, A. J., Duyne, R. P. V., 2002, A
nanoscale optical biosensor: sensitivity and selectivity of an approach based
on the localized surface plasmon resonance spectroscopy of triangular silver
nanoparticles, J. Am. Chem. Soc., vol. 124, no. 35, p. 10596–10604.
[28]. Dakal, T. C., Kumar, A., Majumdar, R. S.,
Yadav, V., 2016, Mechanistic basis of antimicrobial actions of silver
nanoparticles, Front. Microbiol., vol. 7, p. 1831.
[29]. Russell, A. D., Hugo, W. B., 1994,
Antimicrobial activity and action of silver, Prog. Med. Chem., vol. 31,
p. 354–365.
[31]. Nainangu, P., Mothilal, S. N.,
Subramanian, K., et al., 2024, Characterization and antibacterial evaluation of
eco-friendly silver nanoparticles synthesized by halophilic Streptomyces
rochei SSCM102 isolated from mangrove sediment, Mol. Biol. Rep., vol. 51,
p. 730.
[32]. Giada, M., 2013, Food phenolic compounds: main
classes, sources and their antioxidant power, in: Morales‐Gonzalez, J. A.,
(Ed.), Oxidative Stress and Chronic Degenerative Diseases – A Role for
Antioxidants, InTech, pp. 87–112.
[33]. Apak, R. R., Gorinstein, S., Bohm, V.,
Schaich, K., Ozyurek, M., Guclu, K., 2013, Methods of measurement and
evaluation of natural antioxidant capacity/activity (IUPAC Technical Report), Pure
Appl. Chem., vol. 85, no. 5, p. 957–998.
[34]. Subramanian, R., Subbramaniyan, P., Raj, 2013,
Antioxidant activity of the stem bark of Shorea roxburghii and its
silver reducing power, Springer Plus, vol. 2, no. 1, p. 28.
[35]. Bowler, P. G., Duerden, B. I., Armstrong, D.
G., 2001, Wound microbiology and associated approaches to wound management, Clin.
Microbiol. Rev., vol. 14, no. 2, p. 244–269.
[36]. Everts, R., 2016, New Zealand Doctor
Newspaper, 23 November; Pharmacy Today.
[37]. Bhuvaneswari, T., Thiyagarajan, M., Geetha,
N., Venkatachalam, P., 2014, Bioactive compound loaded stable silver
nanoparticle synthesis from microwave irradiated aqueous extracellular leaf
extracts of Naringi crenulata and its wound healing activity in
experimental rat model, Acta Trop., vol. 135, p. 55–61.
[38]. Schafer, M., Werner, S., 2008, Oxidative
stress in normal and impaired wound repair, Pharmacol. Res., vol. 58,
no. 2, p. 165–171.
[39]. Tsala, D. E., Amadou, D., Habtemariam, S.,
2013, Natural wound healing and bioactive natural products, Phytopharmacology,
vol. 4, no. 3, p. 532–560.
[40].
Gunasekaran, T., Nigusse, T.,
Dhanaraju, M. D., 2012, Silver nanoparticles as real topical bullets for wound
healing, J. Am. Coll. Clin. Wound Spec., vol. 3, no. 4, p. 82–96.