Silver Nanoparticles on the Horizon: Exploring Future Directions in Healthcare

Download Article

DOI: 10.21522/TIJPH.2013.13.02.Art067

Authors : Bharathi Selvaraj, Dhanraj Ganapathy

Abstract:

Nanoparticles, consisting of clusters of atoms ranging from 1 to 100 nm, exhibit unique properties attributable to their small size and extensive surface area. This review paper addresses silver nanoparticles (AgNPs), their classification, manufacturing methods, and diverse uses. Nanoparticles are classed into organic, inorganic, and carbon-based categories, with silver nanoparticles (AgNPs) being under the inorganic classification. The discussion covers both top-down and bottom-up approaches for synthesis highlighting their strengths and limitations of each. A significant focus on green synthesis approaches that use biological agents such as plant extracts, microorganisms and enzymes present a promising alternative to chemical methods that often involve toxic chemicals and high energy. AgNPs find versatile applications: in agriculture to boost crop resilience, nutrient uptake and pest management; in aquaculture to combat microbial infection; in textiles, to develop smart, antimicrobial fabrics for medical and industrial uses; in environmental to facilitate dye detoxification and pollution degradation; and in health care, to enable targeted drug delivery, support diagnostic assays and promote wound healing. Overall, this review highlights the significance of AgNPs and their capacity to tackle contemporary challenges in medicine, agriculture and environmental protection, while emphasizing the need for ongoing research to improve synthesis strategies and expand their practical application.

References:

[1].   Chandran, N., Ramesh, S., Shanmugam, R., 2024, Synthesis of silver nanoparticles using Azadirachta indica and Syzygium aromaticum extract and its antibacterial action against Enterococcus faecalis: An in vitro study, Cureus, vol. 16, no. 7, p. e65044.

[2].   El‐Nour, K. A., Eftaiha, A.  F., Al‐Warthan, A., Ammar, R. A. A., 2010, Synthesis and applications of silver nanoparticles, Arab. J. Chem., vol. 3, no. 3, p. 135–140.

[3].   Chung, I. M., Park, I., Seung‐Hyun, K., Thiruvengadam, M., Rajakumar, G., 2016, Plant‐mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications, Nanoscale Res. Lett., vol. 11, no. 1, p. 40.

[4].   Saravanakumar, A., Peng, M. M., Ganesh, M., Jayaprakash, J., Murugan, M., Jang, H., 2016, Low‐cost and eco‐friendly green synthesis of silver nanoparticles using Prunus japonica (Rosaceae) leaf extract and their antibacterial, antioxidant properties, Artif. Cells Nanomed. Biotechnol., vol. 45, no. 6, p. 1–7.

[5].   Ahmed, S., Saifullah, M., Ahmad, B., Lal Swami, Ikram, S., 2016, Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract, J. Radiat. Res. Appl. Sci., vol. 9, no. 1, p. 1–7.

[6].   Zhang, T., Wang, L., Chen, Q., Chen, C., 2014, Cytotoxic potential of silver nanoparticles, Yonsei Med. J., vol. 55, no. 2, p. 283–291.

[7].   Pingale, S. S., Rupanar, S. V., Chaskar, M., 2018, Plant mediated biosynthesis of silver nanoparticles from Gymnema sylvestre and their use in photodegradation of methyl orange dye, J. Water Environ. Nanotechnol., vol. 3, no. 2, p. 106–115.

[8].   Balamurugan, V., Ragavendran, C., Arulbalachandran, D., Alrefaei, A. F., Rajendran, R., 2024, Green synthesis of silver nanoparticles using Pandanus tectorius aerial root extract: Characterization, antibacterial, cytotoxic, and photocatalytic properties, and ecotoxicological assessment, Inorg. Chem. Commun., vol. 168, p. 112882.

[9].   Lakshmanan, G., Sathiyaseelan, A., Kalaichelvan, P. T., Murugesan, K., 2018, Plant‐mediated synthesis of silver nanoparticles using fruit extract of Cleome viscosa L.: Assessment of their antibacterial and anticancer activity, Karbala Int. J. Mod. Sci., vol. 4, no. 1, p. 61–68.

[10].  Rigo, C., Tocco, F., Roman, L. M., Munivrana, I. M., Gardin, I. C., Cairns, W. R. L., Vindigni, V., Azzena, B., Barbante, C., Zavan, B., 2013, Active silver nanoparticles for wound healing, Int. J. Mol. Sci., vol. 14, p. 4817–4840.

[11].  Syafiuddin, A., Salmiati, Salim, M. R., Kueh, A. B. H., Hadibarata, T., Nur, H., 2017, A review of silver nanoparticles: Research trends, global consumption, synthesis, properties, and future challenges, J. Chin. Chem. Soc., vol. 64, p. 732–756.

[12].  Prasad, R., Bhattacharyya, A., Nguyen, Q. D., 2017, Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives, Front. Microbiol., vol. 8, p. 10–14.

[13].  Bhattacharyya, A., Duraisamy, P., Govindarajan, M., Buhroo, A. A., Prasad, R., 2016, Nano‐biofungicides: emerging trend in insect pest control: advances and application through fungal nanobiotechnology, Springer International Publishing, Cham, pp. 307–319.

[14].  Goswami, A., Roy, I., Sengupta, S., Debnath, N., 2010, Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens, Thin Solid Films, vol. 519, no. 3, p. 1252–1257.

[15].  Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., Nehra, K., Duhan, S., 2017, Nanotechnology: the new perspective in precision agriculture, Biotechnol. Rep., vol. 15, p. 11–23.

[16].  Khosravi‐Katuli, K., Prato, E., Lofrano, G., Guida, M., Vale, G., Libralato, G., 2017, Effects of nanoparticles in species of aquaculture interest, Environ. Sci. Pollut. Res., vol. 24, p. 17326–17346.

[17].  Bharathi, S., Kumaran, S., Suresh, G., Pugazhvendan, S. R., 2014, Nanotechnology as a novel tool for aquaculture industry: A review, World J. Pharm. Sci., vol. 2, no. 9, p. 1089–1096.

[18].  Pradeep, T., 2009, Noble metal nanoparticles for water purification: a critical review, Thin Solid Films, vol. 517, no. 24, p. 6441–6478.

[19].  Ballottin, D., Fulaz, S., Cabrini, F., Tasic, L., 2017, Antimicrobial textiles: Biogenic silver nanoparticles against Candida and Xanthomonas, Mater. Sci. Eng. C, vol. 75, p. 582–589.

[20].  Akter, M., Sikder, M. D. T., Rahman, M. D. M., Ullah, A. K. M., Hossain, K. F., Banik, S., Hosokawa, T., Saito, T., Kurasaki, M. A., 2018, Systematic review on silver nanoparticles‐induced cytotoxicity: Physicochemical properties and perspectives, J. Adv. Res., vol. 9, p. 1–16.

[21].  Khatoon, N., Sardar, M., 2017, Efficient removal of toxic textile dyes using silver nanocomposites, J. Nanosci. Curr. Res., vol. 2, no. 3, p. 3.

[22].  Ge, L., Li, Q., Wang, M., Ouyang, J., Li, X., Xing, M. M. Q., 2014, Nanosilver particles in medical applications: synthesis, performance, and toxicity, Int. J. Nanomedicine, vol. 9, p. 2399–2407.

[23].  Chaloupka, K., Malam, Y., Seifalian, A. M., 2010, Nanosilver as a new generation of nanoproduct in biomedical applications, Trends Biotechnol., vol. 28, no. 11, p. 580–588.

[24].  Pauksch, L., Hartmann, S., Szalay, G., Alt, V., Lips, K. S., 2014, In vitro assessment of nanosilver‐functionalized PMMA bone cement on primary human mesenchymal stem cells and osteoblasts, PLoS One, vol. 9, no. 12, p. e114740.

[25].  Haes, A. J., Hall, W. P., Chang, L., Klein, W. L., Duyne, R. P. V., 2004, A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease, Nano Lett., vol. 4, no. 6, p. 1029–1034.

[26].  Loo, C., Lowery, A., Halas, N., West, J., Drezek, R., 2005, Immuno targeted nanoshells for integrated cancer imaging and therapy, Nano Lett., vol. 5, no. 4, p. 709–711.

[27].  Haes, A. J., Duyne, R. P. V., 2002, A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles, J. Am. Chem. Soc., vol. 124, no. 35, p. 10596–10604.

[28].  Dakal, T. C., Kumar, A., Majumdar, R. S., Yadav, V., 2016, Mechanistic basis of antimicrobial actions of silver nanoparticles, Front. Microbiol., vol. 7, p. 1831.

[29].  Russell, A. D., Hugo, W. B., 1994, Antimicrobial activity and action of silver, Prog. Med. Chem., vol. 31, p. 354–365.

[30].  Soni, M., Pitchiah, S., Suresh, V., Ramasamy, P., 2024, Fabrication and partial characterization of silver nanoparticles from mangrove (Avicennia marina) leaves and their antibacterial efficacy against oral bacteria, Cureus, vol. 16, no. 1, p. e52131.

[31].  Nainangu, P., Mothilal, S. N., Subramanian, K., et al., 2024, Characterization and antibacterial evaluation of eco-friendly silver nanoparticles synthesized by halophilic Streptomyces rochei SSCM102 isolated from mangrove sediment, Mol. Biol. Rep., vol. 51, p. 730.

[32].  Giada, M., 2013, Food phenolic compounds: main classes, sources and their antioxidant power, in: Morales‐Gonzalez, J. A., (Ed.), Oxidative Stress and Chronic Degenerative Diseases – A Role for Antioxidants, InTech, pp. 87–112.

[33].  Apak, R. R., Gorinstein, S., Bohm, V., Schaich, K., Ozyurek, M., Guclu, K., 2013, Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report), Pure Appl. Chem., vol. 85, no. 5, p. 957–998.

[34].  Subramanian, R., Subbramaniyan, P., Raj, 2013, Antioxidant activity of the stem bark of Shorea roxburghii and its silver reducing power, Springer Plus, vol. 2, no. 1, p. 28.

[35].  Bowler, P. G., Duerden, B. I., Armstrong, D. G., 2001, Wound microbiology and associated approaches to wound management, Clin. Microbiol. Rev., vol. 14, no. 2, p. 244–269.

[36].  Everts, R., 2016, New Zealand Doctor Newspaper, 23 November; Pharmacy Today.

[37].  Bhuvaneswari, T., Thiyagarajan, M., Geetha, N., Venkatachalam, P., 2014, Bioactive compound loaded stable silver nanoparticle synthesis from microwave irradiated aqueous extracellular leaf extracts of Naringi crenulata and its wound healing activity in experimental rat model, Acta Trop., vol. 135, p. 55–61.

[38].  Schafer, M., Werner, S., 2008, Oxidative stress in normal and impaired wound repair, Pharmacol. Res., vol. 58, no. 2, p. 165–171.

[39].  Tsala, D. E., Amadou, D., Habtemariam, S., 2013, Natural wound healing and bioactive natural products, Phytopharmacology, vol. 4, no. 3, p. 532–560.

[40].  Gunasekaran, T., Nigusse, T., Dhanaraju, M. D., 2012, Silver nanoparticles as real topical bullets for wound healing, J. Am. Coll. Clin. Wound Spec., vol. 3, no. 4, p. 82–96.