Protective Role of Withaferin A on Lead Acetate Induced Testicular Toxicity - Histopathological and Immunohistochemical Analysis in Wistar Rats

Download Article

DOI: 10.21522/TIJPH.2013.13.02.Art068

Authors : Karthik Ganesh Mohanraj, Raj Kumar Durairaj

Abstract:

Infertility is increasing and becoming a major concern, particularly in a nation like India where there are large populations on the one hand and childless couples on the other. Male infertility affects that half of the population. A number of factors contribute to infertility, some of which are environmental in nature. One of such notable factor of environmental pollutant is the lead. Lead is almost present in all of your surroundings in different ways, especially usage of lead in the paint industries, lead pipes and in toys. Its effect is detrimental to reproductive organs especially to testis. To treat this issue withaferin A is used to scientifically validate its fertility enhancing property. A total of five sets of Wistar rats were obtained. Control, lead acetate (Pb), lead acetate + withaferin A, lead acetate + vitamin A & selenium and withaferin A alone, comprise Group I, II, III, IV and V respectively. Following the experiment, rats were euthanized and samples were collected for histopathological examination. Group I and Group V animals in the control and drug control group exhibit no alterations. After being exposed to lead acetate solution and inflicting several reproductive cell damages, Group II undergoes a substantial pathological alteration. Withaferin A considerably improves the lead induced toxic condition of testis than vitamin A and selenium treated group. Alternate approach makes substantial use of the withaferin A in animal models of reproductive cell damage caused by oxidative stress upon lead toxicity. Thus, withaferin A have encouraging outcomes on male infertility.

References:

[1].   World Health Organization, 1980, Report of a Study Group: Recommended Health-Based Limits in Occupational Exposure to Heavy Metals. Technical Report 647. WHO, Geneva, Switzerland.

[2].   Lave, L. B., Hendrickson, C. T., and McMichael, F. C., 1995, Environmental implications of electric cars. Science, 268, 993-995.

[3].   Tas, S., Lauwerys, R., & Lison, D., 1996, Occupational hazards for the male reproductive system. Critical Reviews in Toxicology, 26(3), 261–307.

[4].   Pant, N., Upadhyay, G., Pandey, S., Mathur, N., Saxena, D. K., & Srivastava, S. P., 2003, Lead and cadmium concentration in the seminal plasma of men in the general population: correlation with sperm quality. Reproductive Toxicology, 17(4): 447–450, https://doi.org/10.1016/s0890-6238(03)00036-4

[5].   Lin, S., Hwang, S. A., Marshall, E. G., Stone, R., & Chen, J., 1996, Fertility rates among lead workers and professional bus drivers: a comparative study. Annals of Epidemiology, 6(3): 201–208.

[6].   Sallmén, M., Lindbohm, M. L., & Nurminen, M., 2000, Paternal Exposure to Lead and Infertility. In Epidemiology, 11(2): 148-152, https://doi.org/10.1097/00001648-200003000-00011

[7].   Apostoli, P., Kiss, P., Porru, S., Bonde, J. P., & Vanhoorne, M., 1998, Male reproductive toxicity of lead in animals and humans. ASCLEPIOS Study Group. Occupational and Environmental Medicine, 55(6), 364–374, https://doi.org/10.1136/oem.55.6.364

[8].   Naha, N., Bhar, R. B., Mukherjee, A., & Chowdhury, A. R., 2005, Structural alteration of spermatozoa in the persons employed in lead acid battery factory. Indian Journal of Physiology and Pharmacology, 49(2), 153–162.

[9].   Saxena, D. K., Hussain, T., Bachchu, L. A. L., & Chandra, S. V., 1986, Lead induced testicular dysfunction in weaned rats, Industrial Health, 24(2): 105–109, https://doi.org/10.2486/indhealth.24.105

[10].  Hsu, P. C., Hsu, C. C., Liu, M. Y., Chen, L. Y., & Guo, Y. L., 1998, Lead-induced changes in spermatozoa function and metabolism. Journal of Toxicology and Environmental Health. Part A, 55(1), 45–64.

[11].  Batra, N., Nehru, B., & Bansal, M. P., 2001, Influence of lead and zinc on rat male reproduction at “biochemical and histopathological levels.” Journal of Applied Toxicology: JAT, 21(6), 507–512.

[12].  Hernández-Ochoa, I., García-Vargas, G., López-Carrillo, L., Rubio-Andrade, M., Morán-Martínez, J., Cebrián, M. E., & Quintanilla-Vega, B., 2005, Low lead environmental exposure alters semen quality and sperm chromatin condensation in northern Mexico. Reproductive Toxicology, 20(2), 221–228.

[13].  Ronis, M. J. J., Badger, T. M., Shema, S. J., Roberson, P. K., & Shaikh, F., 1996, Reproductive Toxicity and Growth Effects in Rats Exposed to Lead at Different Periods during Development. Toxicology and Applied Pharmacology, 136(2): 361–371, https://doi.org/10.1006/taap.1996.0044

[14].  Benoff, S., Jacob, A., Hurley, I. R., 2000, Male infertility and environmental exposure to lead and cadmium. Human reproduction update, 6(2):107-121.

[15].  Telisman, S., Cvitković, P., Jurasovic, Jasna, Pizent, Alica, Gavella, M., Rocić, B., 2000, Semen quality and reproductive endocrine function in relation to biomarkers of lead, cadmium, zinc, and copper in men. Environmental health perspectives. 108. 45-53.

[16].  Lavie, D., Glotter, E., Shvo, Y., 1965b, Constituents of Withania somnifera Dun. III. The Side Chain of Withaferin A, The Journal of Organic Chemistry, 30(6): 1774–1778, https://doi.org/10.1021/jo01017a015

[17].  Khodaei, M., Jafari, M., & Noori, M., 2012, Remedial Use of Withanolides from Withania Coagolans (Stocks) Dunal. Advances in Life Sciences, 2(1): 6–19, https://doi.org/10.5923/j.als.20120201.02

[18].  Chaurasiya, N. D., Sangwan, N. S., Sabir, F., Misra, L., & Sangwan, R. S., 2012, Withanolide biosynthesis recruits both mevalonate and DOXP pathways of isoprenogenesis in Ashwagandha Withania somnifera L. (Dunal), Plant Cell Reports, 31(10): 1889–1897.

[19].  Mishra, L. C., Singh, B. B., & Dagenais, S., 2000, Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Alternative Medicine Review: A Journal of Clinical Therapeutic, 5(4): 334–346.

[20].  Evans, H. M., & Bishop, K. S., 1922, On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science, 56(1458): 650–651.

[21].  Mohd Mutalip, S. S., Ab-Rahim, S., Rajikin, M. H., 2018, Vitamin E as an Antioxidant in Female Reproductive Health. Antioxidants (Basel), 7(2): 22, https://doi.org/10.3390/antiox7020022

[22].  Carlson, B. A., Martin-Romero, Francisco Javier, Kumaraswamy, Easwari, Moustafa, Mohamed, H., Zhi, D. .L, Hatfield, 2001, Selenium: its molecular biology and role in human health, pp. 333-341.

[23].  Soudani, N., Ben Amara, I., Sefi, M., Boudawara, T., & Zeghal, N., 2011, Effects of selenium on chromium (VI)-induced hepatotoxicity in adult rats. Experimental and Toxicologic Pathology, 63(6): 541–548, https://doi.org/10.1016/j.etp.2010.04.005

[24].  Zwolak, I., Zaporowska, H., 2012, Selenium interactions and toxicity: a review. Selenium interactions and toxicity. Cell Biol Toxicol, 28(1): 31-46, doi: 10.1007/s10565-011-9203-9.

[25].  Sainath, S. B., Meena, R., Supriya, C. h., Reddy, K. P., Reddy, P. S., 2011, Protective role of Centella asiatica on lead-induced oxidative stress and suppressed reproductive health in male rats. Environ Toxicol Pharmacol, 32(2): 146-54, doi: 10.1016/j.etap.2011.04.005

[26].  Ahmed, A. E., Alshehri, A., Al-Kahtani, M. A., Elbehairi, S. E. I., Alshehri, M. A., Shati, A. A., Alfaifi, M. Y., Al-Doais, A. A., Taha, R., Morsy, K., El-Mansi, A. A., 2020, Vitamin E and selenium administration synergistically mitigates ivermectin and doramectin-induced testicular dysfunction in male Wistar albino rats. Biomed Pharmacother, 124: 109841, doi: 10.1016/j.biopha.2020.109841

[27].  Meenakshi, S., Varghese, S. S., Mohanraj, K. G., 2023, Bone Regenerative Potential of a Recombinant Parathormone Derivative in Experimentally Induced Critical-size Calvarial Defects in Wistar Albino Rats. World J Dent, 14(5): 452–461.

[28].  Adhikari, N., Sinha, N., Narayan, R., & Saxena, D. K., 2001, Lead-induced cell death in testes of young rats, Journal of Applied Toxicology, 21(4): 275–277.

[29].  Souparnika, V., Karthik Ganesh Mohanraj, & Vidya, S., 2023, Antioxidant Activity Of L - Theanine On Cadmium Induced Oxidative Stress Mediated Neurodegeneration - An In Vivo Analysis. Journal of Population Therapeutics and Clinical Pharmacology29(02), 123-130, https://doi.org/10.47750/jptcp.2022.952

[30].  Pandiar, D., Ramani, P., Krishnan, R. P., Y. Dinesh, 2022, Histopathological analysis of soft tissue changes in gingival biopsied specimen from patients with underlying corona virus disease associated mucormycosis (CAM). Med Oral Patol Oral Cir Bucal, 1;27(3):e216-e222, doi: 10.4317/medoral.25050

[31].  Neto, F. T. L., Bach, P. V., Najari, B. B., Li, P. S., & Goldstein, M., 2016, Spermatogenesis in humans and its affecting factors. Seminars in Cell & Developmental Biology, 59, 10–26.

[32].  Ebenezer Leonoline, J., Gunapriya, R., Ranganathan, K., Vijayaraghavan, R., Ganesh Karthik, M., 2021, Determine Cyp17a1 and Ki67 Expressions in Pcos Induced Rat Model Treated with Sepia pharaonis Ink Extract Proves Effective. Indian Journal of Animal Research, 55(10): 1206-1214. doi: 10.18805/IJAR.B-4204

[33].  Apostoli, P., 2006, World Health Organization, United Nations Environment Programme, & International Labour Organisation. Elemental Speciation in Human Health Risk Assessment. World Health Organization. pp. 14, https://iris.who.int/handle/10665/43442

[34].  Sanjay Varshan, M., Lavanya Prathap, Selvaraj Jayaraman, Preetha, S., 2022, Anti Proliferative Effect of Endogenous Dopamine Replica in Human Lung Cancer Cells (A549) Via Pi3k and Akt Signalling Molecules. Journal of Pharmaceutical Negative Results, 3(3): 1380-1386, https://doi.org/10.47750/pnr.2022.13.S03.215

[35].  Kwon, D. H., Cha, H.-J., Lee, H., Hong, S.-H., Park, C., Park, S.-H., Kim, G.-Y., Kim, S., Kim, H.-S., Hwang, H.-J., & Choi, Y. H., 2019, Protective Effect of Glutathione against Oxidative Stress-induced Cytotoxicity in RAW 264.7 Macrophages through Activating the Nuclear Factor Erythroid 2-Related Factor-2/Heme Oxygenase-1 Pathway. Antioxidants & Redox Signaling, 8(4), 82.

[36].  Santhakumar, P., Roy, A., Mohanraj, K. G., Jayaraman, S., & Durairaj, R., 2021, Ethanolic Extract of Capparis decidua Fruit Ameliorates Methotrexate-Induced Hepatotoxicity by Activating Nrf2/HO-1 and PPARγ Mediated Pathways, Indian Journal of Pharmaceutical Education and Research, 55(1s): s265-s274, http://dx.doi.org/10.5530/ijper.55.1s.59

[37].  Diemer, T., Allen, J. A., Hales, K. H., & Hales, D. B., 2003, Reactive oxygen disrupts mitochondria in MA-10 tumor Leydig cells and inhibits steroidogenic acute regulatory (StAR) protein and steroidogenesis, Endocrinology, 144(7): 2882–2891.

[38].  El-Desoky, G. E., Bashandy, S. A., Alhazza, I. M., Al-Othman, Z. A., Aboul-Soud, M. A. M., & Yusuf, K., 2013, Improvement of Mercuric Chloride-Induced Testis Injuries and Sperm Quality Deteriorations by Spirulina platensis in Rats. PloS One, 8(3): e59177.

[39].  Keck, C., Bergmann, M., Ernst, E., Müller, C., Kliesch, S., & Nieschlag, E., 1993, Autometallographic detection of mercury in testicular tissue of an infertile man exposed to mercury vapor. In Reproductive Toxicology, 7(5): 469–475, https://doi.org/10.1016/0890-6238(93)90092-l

[40].  Contreras-Zentella, M. L., Hernández-Muñoz, R., 2016, Is Liver Enzyme Release Really Associated with Cell Necrosis Induced by Oxidant Stress? Oxidative Medicine and Cellular Longevity, 2016:3529149, https://doi.org/10.1155/2016/3529149