Fabrication and Characterization of Chitosan/Tricalcium Phosphate/Qurcetin Doped Silver Membranes for Guided Bone Regeneration

Abstract:
This
research focuses on the fabrication and characterization of chitosan/tricalcium
phosphate/quercetin-doped silver membranes for guided bone regeneration (GBR).
The study aims to investigate the potential benefits of these membranes in
facilitating the regeneration of bone tissue in areas with bone defects or
insufficient bone volume, particularly in dental and orthopaedic surgeries, as
well as periodontitis. Material characterization using FTIR, XRD, and SEM was
conducted to confirm the functional group, the presence of uniform fibres, and
a hydrophilic surface. The study also evaluated the material's biocompatibility
and its potential application in periodontitis treatment. The study
demonstrated the material's hydrophilic nature, biocompatibility, as well as
its potential applications in periodontitis treatment due to its compatibility
with cell attachment and nourishment, anti-inflammatory properties, and
bone-forming ability. The chitosan/tricalcium phosphate/quercetin-doped silver
membranes show promise in guided bone regeneration and potential implications
in periodontitis treatment, offering a multifunctional approach for enhancing
bone tissue regeneration.
References:
[1]. Elgali, I., Omar, O., Dahlin, C., Thomsen, P., 2017,
Guided bone regeneration: materials and biological mechanisms revisited. Eur
J Oral Sci 125(5):315–37. Available from: http://dx.doi.org/10.1111/eos.12364
[2]. Farsi, M., Asefnejad, A., Baharifar, H., 2022, A
hyaluronic acid/PVA electrospun coating on 3D printed PLA scaffold for
orthopedic application. Prog Biomater 11(1):67–77. Available from: http://dx.doi.org/10.1007/s40204-022-00180-z
[3]. Augustine, R., Rehman, S. R. U., Ahmed, R., Zahid, A.
A., Sharifi, M., Falahati, M., et al., 2020, Electrospun chitosan membranes
containing bioactive and therapeutic agents for enhanced wound healing. Int
J Biol Macromol 156:153–70. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2020.03.207
[4]. Miguel, S. P., Moreira, A. F., Correia, I. J., 2019,
Chitosan based-asymmetric membranes for wound healing: A review. Int J Biol
Macromol 127:460–75. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2019.01.072
[5]. Yin, I. X., Zhang, J., Zhao, I. S., Mei, M. L., Li,
Q., Chu, C. H., 2020, The Antibacterial Mechanism of Silver Nanoparticles and
Its Application in Dentistry. Int J Nanomedicine 15:2555–62. Available
from: http://dx.doi.org/10.2147/IJN.S246764
[6]. Yurteri, A., Yildirim, A., Çelik, Z. E., Vatansev, H.,
Durmaz, M. S., 2023, The effect of quercetin on bone healing in an experimental
rat model. Jt Dis Relat Surg 34(2):365–73. Available from: http://dx.doi.org/10.52312/jdrs.2023.870
[7]. Liu, Y., Zhang, X., Yang, L., Zhou, S., Li, Y., Shen,
Y., et al., 2023, Proteomics and transcriptomics explore the effect of a
mixture of herbal extracts on the diabetic wound healing process. Phytomedicine
116:154892. Available from: http://dx.doi.org/10.1016/j.phymed.2023.154892
[8]. Ma, S., Chen, Z., Qiao, F., Sun, Y., Yang, X., Deng,
X., et al., 2014, Guided bone regeneration with tripolyphosphate cross-linked
asymmetric chitosan membrane. J Dent 42(12):1603–12. Available from: http://dx.doi.org/10.1016/j.jdent.2014.08.015
[9]. Mi, F. L., Wu, Y. B., Shyu, S. S., Chao, A. C., Lai,
J. Y., Su, C. C., 2003, Asymmetric chitosan membranes prepared by dry/wet phase
separation: a new type of wound dressing for controlled antibacterial release. J
Membr Sci 212(1–2):237–54. Available from: http://dx.doi.org/10.1016/S0376-7388(02)00505-7
[10]. Huang, D., Niu, L., Li, J., Du, J., Wei, Y., Hu, Y.,
et al., 2018, Reinforced chitosan membranes by microspheres for guided bone
regeneration. J Mech Behav Biomed Mater 81:195–201. Available from: http://dx.doi.org/10.1016/j.jmbbm.2018.03.006
[11]. Kaga, N., Fujimoto, H., Morita, S., Yamaguchi, Y.,
Matsuura, T., 2021, Contact Angle and Cell Adhesion of Micro/Nano-Structured Poly
(lactic--glycolic acid) Membranes for Dental Regenerative Therapy. Dent J
9(11). Available from: http://dx.doi.org/10.3390/dj9110124
[12]. Masoudi, Rad, M., Nouri, Khorasani, S.,
Ghasemi-Mobarakeh, L., Prabhakaran, M. P., Foroughi, M. R., Kharaziha, M., et
al., 2017, Fabrication and characterization of two-layered nanofibrous membrane
for guided bone and tissue regeneration application. Mater Sci Eng C Mater
Biol Appl 80:75–87. Available from: http://dx.doi.org/10.1016/j.msec.2017.05.125
[13]. Gayathri, R., Anuradha, V., 2025, Phytochemical
screening and total phenolic content of aqueous and acetone extracts of seed,
butter, mace of nutmeg (Myristica fragrans Houtt). Int. J. Pharm. Sci. Rev.
Res.
[14]. Jerusha, S. P., Gayathri, R., Vishnupriya, V., 2016,
Preliminary phytochemical analysis and cytotoxicity potential of Bacopa
monnieri on oral cancer cell lines. Int J Pharm Sci Rev Res 39:4–8.
[15]. Satyamoorthy, K., Gayathri, R., Bhat, K., Saadi, A.,
Bhat, S., 2011, Allele, genotype, and composite genotype effects of IL-1A +4845
and IL-1B +3954 polymorphisms for chronic periodontitis in an Indian
population. Indian J Dent Res 22:612.
[16]. Keziah, V. S., Gayathri, R., Priya, V. V., 2018,
Biodegradable plastic production from corn starch. Drug Invention Today
10:1315–1317.
[17]. Manoharan, S. A. D., Vishnupriya, V. A. D., Gayathri,
R., 2015, Phytochemical Analysis and In vitro Antioxidant Activity of Jojoba
Oil. 8:512–516.
[18]. Tirupathi, S., Afnan, L., 2024, Dental Pulp Derived
Stem Cells for Facial Nerve Regeneration and Functional Repair: A Systematic
Review of Animal Studies. Current Oral Health Reports 11:198–214
[19]. Ramamurthy, J., Bajpai, D., 2024, Role of
alginate-based scaffolds for periodontal regeneration of intrabony defects: A
systematic review. World J Dent 15:181–187
[20]. Kumar, J. K., Surendranath, P., Eswaramoorthy, R.,
2023, Regeneration of immature incisor using platelet rich fibrin: report of a
novel clinical application. BMC Oral Health 23:69.
[21]. Kishen, A., Cecil, A., Chitra, S., 2023, Fabrication of hydroxyapatite reinforced polymeric hydrogel membrane for regeneration. Saudi Dent J 35:678–683.