Targeting Gardnerella Vaginalis with Jatamansin for the Treatment of Bacterial Vaginosis

Download Article

DOI: 10.21522/TIJPH.2013.13.02.Art082

Authors : Saravanan Sekaran, Mohana S. J., LogaPrabu T., Chockkshi D. K., Sanjay Satheesh Kumar, Shanmugapriya M.

Abstract:

One of the most prevalent infections in the vagina is bacterial vaginosis which causes immense physical and psychosocial discomfort in reproductive women and raises the possibility of preterm birth, pelvic inflammatory disease, and other conditions. Many studies show that among the bacterial species that cause this disease, Gardnerella vaginalis is the major cause of bacterial vaginosis. This study aims to identify potential protein targets for treating bacterial vaginosis disease using phytochemical compounds. The potential protein target of G. vaginalis is identified through several analyses using bioinformatics tools. It was interacted against the existing 74 phytochemical compounds which were already used in studies related to vaginal infection, G. vaginalis, bacterial vaginosis by using molecular docking approach and stable interactions were analyzed using MD simulation. The potential protein target is 30s ribosomal s15, and the top 5 potential phytochemical compounds are Luteolin, Paulowin, Jatamansin, Apigenin, and Kaempferol were identified, and their interactions were visualized. Molecular Dynamics shows that among the 5 compounds, Jatamansin is stable and interacts well with the target. Jatamansin is a potential phytochemical that interacts well and has good pharmacokinetic properties against the 30s ribosomal s15 G. vaginalis protein to inhibit bacterial vaginosis infection.

References:

[1].   Muzny, C. A., Balkus, J., Mitchell, C., Sobel, J. D., Workowski, K., Marrazzo, J., et al., 2022, Diagnosis and management of bacterial vaginosis: Summary of evidence reviewed for the 2021 Centers for Disease Control and Prevention sexually transmitted infections treatment guidelines, Clinical Infectious Diseases, vol. 74, no. Supplement_2, pp. S144-51.

[2].   Vodstrcil, L. A., Muzny, C. A., Plummer, E. L., Sobel, J. D., Bradshaw, C. S., 2021, Bacterial vaginosis: Drivers of recurrence and challenges and opportunities in partner treatment, BMC Medicine, vol. 19, no. 1, p. 194.

[3].   Sarkar, P., Rifat, M. A., Talukdar, I. H., Saha, N., Rodriguez Neufeld, N. S., Miah, M. I., et al., 2024, Self-reported urinary tract infection and bacterial vaginosis symptoms among indigenous adolescents during seasonal periods of water scarcity: A cross-sectional study in Bandarban Hill District of Bangladesh, Health Science Reports, vol. 7, no. 5, p. e2107.

[4].   Peebles, K., Velloza, J., Balkus, J. E., McClelland, R. S., Barnabas, R. V., 2019, High global burden and costs of bacterial vaginosis: A systematic review and meta-analysis, Sexually Transmitted Diseases, vol. 46, no. 5, pp. 304-11.

[5].   Nayak, M., Sinha, S., Debta, A., Purohit, P., Patel, S., Patel, O., et al., 2020, Prevalence and risk factors associated with bacterial vaginosis and candidiasis in non-pregnant women of Western Odisha, India, Available from: https://imsear.searo.who.int/handle/123456789/214739.

[6].   Braunstein, M., Selk, A., 2024, Bacterial vaginosis, CMAJ, vol. 196, no. 21, pp. E728.

[7].   Coudray, M. S., Madhivanan, P., 2020, Bacterial vaginosis - A brief synopsis of the literature, European Journal of Obstetrics & Gynecology and Reproductive Biology, vol. 245, pp. 143-8.

[8].   Dong, W., Wang, S., Wang, X., Xu, G., Liu, Q., Li, Z., et al., 2024, Characteristics of vaginal microbiota of women of reproductive age with infections, Microorganisms, vol. 12, no. 5, Available from: http://dx.doi.org/10.3390/microorganisms12051030.

[9].   Nuzhad, A., Ghosh, B., Jana, S. C., 2023, Assessment of symptoms and risk factors as a screening tool of bacterial vaginosis among reproductive age-group females in West Bengal, India, Cureus, vol. 15, no. 10, p. e46310.

[10].  Chen, X., Lu, Y., Chen, T., Li, R., 2021, The female vaginal microbiome in health and bacterial vaginosis, Frontiers in Cellular and Infection Microbiology, vol. 11, p. 631972.

[11].  Morrill, S., Gilbert, N. M., Lewis, A. L., 2020, Gardnerella as a cause of bacterial vaginosis: Appraisal of the evidence from models, Frontiers in Cellular and Infection Microbiology, vol. 10, p. 168.

[12].  Ma, X., Wang, X., Ye, S., Liu, J., Yuan, H., Wang, N., 2022, Biofilm and pathogenic factor analysis of Gardnerella associated with bacterial vaginosis in Northeast China, Frontiers in Microbiology, vol. 13, p. 1033040.

[13].  Filloux, A., 2010, Secretion signal and protein targeting in bacteria: A biological puzzle, Journal of Bacteriology, vol. 192, no. 15, pp. 3847-9.

[14].  Hurdle, J. G., O’Neill, A. J., Chopra, I., Lee, R. E., 2011, Targeting bacterial membrane function: An underexploited mechanism for treating persistent infections, Nature Reviews Microbiology, vol. 9, no. 1, pp. 62-75.

[15].  Jiao, L., Liu, Y., Yu, X. Y., Pan, X., Zhang, Y., Tu, J., et al., 2023, Ribosome biogenesis in disease: New players and therapeutic targets, Signal Transduction and Targeted Therapy, vol. 8, no. 1, p. 15.

[16].  Hurtado-Rios, J. J., Carrasco-Navarro, U., Almanza-Pérez, J. C., Ponce-Alquicira, E., 2022, Ribosomes: The new role of ribosomal proteins as natural antimicrobials, International Journal of Molecular Sciences, vol. 23, no. 16, p. 9123.

[17].  National Center for Biotechnology Information [Internet]. [cited 2024 Jul 23]. Available from: www.ncbi.nlm.nih.gov/.

[18].  Gabler, F., Nam, S. Z., Till, S., Mirdita, M., Steinegger, M., Söding, J., et al., 2020, Protein sequence analysis using the MPI bioinformatics toolkit, Current Protocols in Bioinformatics, vol. 72, no. 1, p. e108.

[19].  PDBsum Generate [Internet]. [cited 2024 Jul 23]. Available from: https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.html.

[20].  Xu, D., Zhang, Y., 2011, Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization, Biophysical Journal, vol. 101, no. 10, pp. 2525-34.

[21].  Karp, P. D., Paley, S., Caspi, R., Kothari, A., Krummenacker, M., Midford, P. E., et al., 2023, The EcoCyc database, EcoSal Plus, Available from: https://journals.asm.org/doi/10.1128/ecosalplus.esp-0002-2023.

[22].  PrankWeb [Internet]. [cited 2024 Jul 23]. Available from: https://prankweb.cz/.

[23].  Krivák, R., Hoksza, D., 2018, P2Rank: Machine learning-based tool for rapid and accurate prediction of ligand binding sites from protein structure, Journal of Cheminformatics, vol. 10, no. 1, p. 1-12.

[24].  UCSF Chimera Home Page [Internet]. [cited 2024 Jul 23]. Available from: http://www.cgl.ucsf.edu/chimera.

[25].  PubMed [Internet]. [cited 2024 Jul 23]. PubMed. Available from: https://pubmed.ncbi.nlm.nih.gov/.

[26].  Google Scholar [Internet]. Available from: https://scholar.google.com/schhp?hl=en&as_sdt=0,5.

[27].  USDA Phytochemical Database [Internet]. [cited 2024 Jul 23]. Available from: https://phytochem.nal.usda.gov/.

[28].  Daina, A., Michielin, O., Zoete, V., 2017, SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of small molecules, Scientific Reports, vol. 7, no. 1, p. 1-13.

[29].  ProTox-3.0 - Prediction of TOXicity of Chemicals [Internet]. [cited 2024 Jul 23]. Available from: https://tox.charite.de/protox3/.

[30].  Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., et al., 2022, PubChem 2023 update, Nucleic Acids Research, vol. 51, no. D1, pp. D1373-80.

[31].  BIOVIA Discovery Studio [Internet]. Available from: http://accelrys.com/products/collaborative-science/biovia-discovery-studio/.

[32].  PyRx Website [Internet]. [cited 2024 Jul 23]. Available from: http://pyrx.sourceforge.net.

[33].  Nardostachys jatamansi essential oil, 2023, Antioxidant capacity and combinatorial antimicrobial effects against drug-resistant bacteria, Current Research in Biotechnology, vol. 5, p. 100118.

[34].  Geethashree, S., Murthy, I. A. S., Bagchi, P., 2023, Establishing the taxa with phylogenetic profile and in-silico Ayurvedic remedy of microbiome of bacterial vaginosis, Advances in Health Sciences Research, pp. 178-200.

[35].  Marín, E., Haesaert, A., Padilla, L., Adán, J., Hernáez, M. L., Monteoliva, L., et al., 2018, Unraveling Gardnerella vaginalis surface proteins using cell shaving proteomics, Frontiers in Microbiology, vol. 9, p. 355414.

[36].  Shvartsman, E., Hill, J. E., Sandstrom, P., MacDonald, K. S., 2023, Gardnerella revisited: Species heterogeneity, virulence factors, mucosal immune responses, and contributions to bacterial vaginosis, Infection and Immunity, vol. 91, no. 5, p. e0039022.