Deciphering the Role of Kruppel-like Factor 9 in Sepsis and Immunity: Perspectives from Joint Collective Omics Data and a Literature Review

Abstract:
Publicly available transcriptome profiling
data show that the abundance of Kruppel-like factor 9 (KLF9) transcripts is
elevated in neutrophils exposed to the plasma of septic patients. KLF9 is a
transcription factor involved in regulating cancer cell proliferation,
neurological development and reproduction, but its possible role in sepsis has
not been reported in the literature. In the context of this review, further
exploration of the public literature and transcriptional profiling records
revealed the following: 1) KLF9 transcript abundance is also increased in vivo
in patients with sepsis across multiple datasets. 2) KLF9 is one of the few
members of the KLF family that can be induced by treatment with the
broad-spectrum immune activator PMA/ionomycin. 3) Among other known roles, KLF9
contributes to increased oxidative stress and tissue injury via the repression
of the levels of antioxidants such as thioredoxin reductase 2. A similar role
can be inferred in neutrophils in the context of sepsis. Taken together, this
gene-centric review of omics and bibliographic records identified potential
gaps in biomedical knowledge about the role of KLF9 in sepsis and immunity and
identified potential avenues for downstream investigation.
References:
[1].
Chaussabel, D., Rinchai, D., 2018. Using “collective omics data” for
biomedical research training. Immunology. 155, 18-23.
[2].
Khaenam, P., Rinchai, D., Altman, M.C., Chiche, L., Buddhisa, S.,
Kewcharoenwong, C., et al., 2014. A transcriptomic reporter assay employing
neutrophils to measure immunogenic activity of septic patients’ plasma. J
Transl Med. 12, 65.
[3].
Ley, K., Laudanna, C., Cybulsky, M.I., Nourshargh, S., 2007. Getting to
the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev
Immunol. 7, 678-89.
[4].
Phillipson, M., Kubes, P., 2011. The neutrophil in vascular
inflammation. Nat Med. 17, 1381-90.
[5].
Singer, M., Deutschman, C.S., Seymour, C.W.,
Shankar-Hari, M., Annane, D., Bauer, M., et al., 2016. The Third International
Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 315,
801-10.
[6].
Almalki,
W.H., Ghoneim, M.M., Alshehri, S., Imam, S.S., Kazmi, I., Gupta, G., 2022.
Sepsis triggered oxidative stress-inflammatory axis: The pathobiology of
reprogramming in the normal sleep-wake cycle. Mol Cell Biochem. 477,
2203–2211.
[7].
Malavika,
M., Sanju, S., Poorna, M.R., Vishnu Priya, V., Sidharthan, N., Varma, P., Mony,
U., 2022. Role of myeloid-derived suppressor cells in sepsis. Int
Immunopharmacol. 104, 108452.
[8].
Angus, D.C., Linde-Zwirble, W.T., Lidicker, J., Clermont, G., Carcillo,
J., Pinsky, M.R., 2001. Epidemiology of severe sepsis in the United States:
analysis of incidence, outcome, and associated costs of care. Crit Care Med.
29, 1303-10.
[9].
Seyoum,
K., Sahiledengle, B., Kene, C., Geta, G., Gomora, D., Ejigu, N., Mesfin, T.,
Kumar Chattu, V., 2023. Determinants of neonatal sepsis among neonates admitted
to neonatal intensive care units in Ethiopian hospitals: A systematic review
and meta-analysis. Heliyon. 9, e20336.
[10].
Dang, D.T., Pevsner, J., Yang, V.W., 2000. The biology of the mammalian
Krüppel-like family of transcription factors. Int J Biochem Cell Biol. 32,
1103-21.
[11].
McConnell, B.B., Yang, V.W., 2010. Mammalian Krüppel-like factors in
health and diseases. Physiol Rev. 90, 1337-81.
[12].
Suske, G., Bruford, E., Philipsen, S., 2005. Mammalian SP/KLF
transcription factors: bring in the family. Genomics. 85, 551-6.
[13].
Li, Y., Sun, Q., Jiang, M., Li, S., Zhang, J., Xu, Z., et
al., 2019. KLF9
suppresses gastric cancer cell invasion and metastasis through transcriptional
inhibition of MMP28. FASEB J Off Publ Fed Am Soc Exp Biol. 33, 7915-28.
[14].
Bai, X.Y., Li, S., Wang, M., Li, X., Yang, Y., Xu, Z., et
al., 2018. Krüppel-like
factor 9 down-regulates matrix metalloproteinase 9 transcription and suppresses
human breast cancer invasion. Cancer Lett. 412, 224-35.
[15].
Li, J.Z., Li, J., Wang, H.Q., Li, X., Wen, B., Wang,
Y.J., 2017. MiR-141-3p
promotes prostate cancer cell proliferation through inhibiting Krüppel-like
factor-9 expression. Biochem Biophys Res Commun. 482, 1381-6.
[16].
Shen, P., Sun, J., Xu, G., Zhang, L., Yang, Z., Xia, S., et al., 2014.
KLF9, a transcription factor induced in flutamide-caused cell apoptosis,
inhibits AKT activation and suppresses tumor growth of prostate cancer cells.
The Prostate. 74, 946-58.
[17].
Ying, M., Sang, Y., Li, Y., Guerrero-Cazares, H.,
Quinones-Hinojosa, A., Vescovi, A.L., et al., 2011. Krüppel-like family of
transcription factor 9, a differentiation-associated transcription factor,
suppresses Notch1 signaling and inhibits glioblastoma-initiating stem cells.
Stem Cells Dayt Ohio. 29, 20-31.
[18].
Sun, J., Wang, B., Liu, Y., Zhang, L., Ma, A., Yang, Z.,
et al., 2014. Transcription
factor KLF9 suppresses the growth of hepatocellular carcinoma cells in vivo and
positively regulates p53 expression. Cancer Lett. 355, 25-33.
[19].
Brown, A.R., Simmen, R.C.M., Raj, V.R., Van, T.T., MacLeod, S.L.,
Simmen, F.A., 2015. Krüppel-like factor 9 (KLF9) prevents colorectal cancer
through inhibition of interferon-related signaling. Carcinogenesis. 36, 946-55.
[20].
Tsukahara, T., Yamagishi, S., Matsuda, Y., Haniu, H., 2017.
Lysophosphatidic acid signaling regulates the KLF9-PPARγ axis in human induced
pluripotent stem cell-derived neurons. Biochem Biophys Res Commun. 491, 223-7.
[21].
Denver, R.J., Ouellet, L., Furling, D., Kobayashi, A., Fujii-Kuriyama,
Y., Puymirat, J., 1999. Basic transcription element-binding protein (BTEB) is a
thyroid hormone-regulated gene in the developing central nervous system.
Evidence for a role in neurite outgrowth. J Biol Chem. 274, 23128-34.
[22].
Cayrou, C., Denver, R.J., Puymirat, J., 2002. Suppression of the basic
transcription element-binding protein in brain neuronal cultures inhibits
thyroid hormone-induced neurite branching. Endocrinology. 143, 2242-9.
[23].
Bonett, R.M., Hu, F., Bagamasbad, P., Denver, R.J., 2009.
Stressor and
glucocorticoid-dependent induction of the immediate early gene Krüppel-like
factor 9: implications for neural development and plasticity. Endocrinology.
150, 1757-65.
[24].
Apara, A., Galvao, J., Wang, Y., Blackmore, M., Trillo, A., Iwao, K., et
al., 2017. KLF9 and JNK3 interact to suppress axon regeneration in the adult
CNS. J Neurosci Off J Soc Neurosci. 37, 9632-44.
[25].
Trakhtenberg, E.F., Li, Y., Feng, Q., Tso, J., Rosenberg, P.A.,
Goldberg, J.L., et al., 2018. Zinc chelation and KLF9 knockdown cooperatively
promote axon regeneration after optic nerve injury. Exp Neurol. 300, 22-9.
[26].
Cui, A., Fan, H., Zhang, Y., Zhang, Y., Niu, D., Liu, S.,
et al., 2019. Dexamethasone-induced
Krüppel-like factor 9 expression promotes hepatic gluconeogenesis and
hyperglycemia. J Clin Invest. 129, 2266-78.
[27].
Zhang, X.L., Zhang, D., Michel, F.J., Blum, J.L., Simmen, F.A., Simmen,
R.C.M., 2003. Selective interactions of Krüppel-like factor 9/basic
transcription element-binding protein with progesterone receptor isoforms A and
B determine transcriptional activity of progesterone-responsive genes in
endometrial epithelial cells. J Biol Chem. 278, 21474-82.
[28].
Zhang, D., Zhang, X.L., Michel, F.J., Blum, J.L., Simmen, F.A., Simmen,
R.C.M., 2002. Direct interaction of the Krüppel-like family (KLF) member,
BTEB1, and PR mediates progesterone-responsive gene expression in endometrial
epithelial cells. Endocrinology. 143, 62-73.
[29].
Denver, R.J., Williamson, K.E., 2009. Identification of a thyroid
hormone response element in the mouse Krüppel-like factor 9 gene to explain its
postnatal expression in the brain. Endocrinology. 150, 3935-43.
[30].
Hu, F., Knoedler, J.R., Denver, R.J., 2016. A mechanism to enhance
cellular responsivity to hormone action: Krüppel-like factor 9 promotes thyroid
hormone receptor-β autoinduction during postembryonic brain development.
Endocrinology. 157, 1683-93.
[31].
Avci, H.X., Lebrun, C., Wehrlé, R., Doulazmi, M., Chatonnet, F., Morel,
M.P., et al., 2012. Thyroid hormone triggers the developmental loss of axonal
regenerative capacity via thyroid hormone receptor α1 and Krüppel-like factor 9
in Purkinje cells. Proc Natl Acad Sci U S A. 109, 14206-11.
[32].
Zhang, Y., Xue, Y., Cao, C., Huang, J., Hong, Q., Hai, T., et al., 2017.
Thyroid hormone regulates hematopoiesis via the TR-KLF9 axis. Blood. 130,
2161-70.
[33].
Velarde, M.C., Geng, Y., Eason, R.R., Simmen, F.A., Simmen, R.C.M.,
2005. Null mutation of Krüppel-like factor9/basic transcription element binding
protein-1 alters peri-implantation uterine development in mice. Biol Reprod.
73, 472-81.
[34].
Simmen, R.C.M., Eason, R.R., McQuown, J.R., Linz, A.L., Kang, T.J.,
Chatman, L., et al., 2004. Subfertility, uterine hypoplasia, and partial
progesterone resistance in mice lacking the Krüppel-like factor 9/basic
transcription element-binding protein-1 (BTEB1) gene. J Biol Chem. 279,
29286-94.
[35].
Pabona, J.M.P., Zhang, D., Ginsburg, D.S., Simmen, F.A., Simmen, R.C.M.,
2015. Prolonged pregnancy in women is associated with attenuated myometrial
expression of progesterone receptor co-regulator Krüppel-like Factor 9. J Clin
Endocrinol Metab. 100, 166-74.
[36].
Zeng, Z., Velarde, M.C., Simmen, F.A., Simmen, R.C.M.,
2008. Delayed
parturition and altered myometrial progesterone receptor isoform A expression
in mice null for Krüppel-like factor 9. Biol Reprod. 78, 1029-37.
[37].
Zhong, Z., Zhou, F., Wang, D., Wu, M., Zhou, W., Zou, Y., et al., 2018.
Expression of KLF9 in pancreatic cancer and its effects on the invasion,
migration, apoptosis, cell cycle distribution, and proliferation of pancreatic
cancer cell lines. Oncol Rep. 40, 3852-60.
[38].
Zucker, S.N., Fink, E.E., Bagati, A., Mannava, S., Bianchi-Smiraglia,
A., Bogner, P.N., et al., 2014. Nrf2 amplifies oxidative stress via induction
of KLF9. Mol Cell. 53, 916-28.
[39].
Yang, D., Lv, Z., Zhang, H., Liu, B., Jiang, H., Tan, X.,
et al., 2017. Activation
of the Nrf2 signaling pathway involving KLF9 plays a critical role in allicin
resisting against arsenic trioxide-induced hepatotoxicity in rats. Biol Trace
Elem Res. 176, 192-200.
[40].
Parga, J.A., Rodriguez-Perez, A.I., Garcia-Garrote, M.,
Rodriguez-Pallares, J., Labandeira-Garcia, J.L., 2018. Angiotensin II induces
oxidative stress and upregulates neuroprotective signaling from the NRF2 and
KLF9 pathway in dopaminergic cells. Free Radic Biol Med. 129, 394-406.
[41].
Mannava, S., Zhuang, D., Nair, J.R., Bansal, R., Wawrzyniak, J.A.,
Zucker, S.N., et al., 2012. KLF9 is a novel transcriptional regulator of
bortezomib- and LBH589-induced apoptosis in multiple myeloma cells. Blood. 119,
1450-8.
[42].
Pankla, R., Buddhisa, S., Berry, M., Blankenship, D.M., Bancroft, G.J.,
Banchereau, J., et al., 2009. Genomic transcriptional profiling identifies a
candidate blood biomarker signature for the diagnosis of septicemic
melioidosis. Genome Biol. 10, R127.
[43].
Smith, C.L., Dickinson, P., Forster, T., Craigon, M., Ross, A.,
Khondoker, M.R., et al., 2014. Identification of a human neonatal
immune-metabolic network associated with bacterial infection. Nat Commun. 5,
4649.
[44].
Banchereau, R., Jordan-Villegas, A., Ardura, M., Mejias, A., Baldwin,
N., Xu, H., et al., 2012. Host immune transcriptional profiles reflect the
variability in clinical disease manifestations in patients with Staphylococcus
aureus infections. PloS One. 7, e34390.
[45].
Parnell, G.P., Tang, B.M., Nalos, M., Armstrong, N.J., Huang, S.J.,
Booth, D.R., et al., 2013. Identifying key regulatory genes in the whole blood
of septic patients to monitor underlying immune dysfunctions. Shock Augusta Ga.
40, 166-74.
[46].
GSE29536_KLF9 [Internet]. Available from: http://cd2k.gxbsidra.org/dm3/miniURL/view/Mb
[47].
Pascual, V., Allantaz, F., Patel, P., Palucka, A.K., Chaussabel, D.,
Banchereau, J., 2008. How the study of children with rheumatic diseases
identified interferon-alpha and interleukin-1 as novel therapeutic targets.
Immunol Rev. 223, 39-59.
[48].
GSE71730_KLF9 [Internet]. Available from: http://sepsis.gxbsidra.org/dm3/miniURL/view/Ow
[49].
Gurram, B., Salzman, N.H., Kaldunski, M.L., Jia, S., Li, B.U.K.,
Stephens, M., et al., 2016. Plasma-induced signatures reveal an extracellular
milieu possessing an immunoregulatory bias in treatment-naive pediatric
inflammatory bowel disease. Clin Exp Immunol. 184, 36-49.
[50].
GSE35713_KLF9 [Internet]. Available from: http://sepsis.gxbsidra.org/dm3/miniURL/view/Oy
[51].
GSE35725_KLF9 [Internet]. Available from: http://sepsis.gxbsidra.org/dm3/miniURL/view/Ox
[52].
Chen, Y.G., Cabrera, S.M., Jia, S., Kaldunski, M.L., Kramer, J., Cheong,
S., et al., 2014. Molecular signatures differentiate immune states in type 1
diabetic families. Diabetes. 63, 3960-73.
[53].
Chinenov, Y., Coppo, M., Gupte, R., Sacta, M.A.,
Rogatsky, I., 2014. Glucocorticoid receptor coordinates transcription factor-dominated
regulatory network in macrophages. BMC Genomics. 15, 656.
[54].
Heard, M.E., Melnyk, S.B., Simmen, F.A., Yang, Y., Pabona, J.M.P.,
Simmen, R.C.M., 2016. High-fat diet promotion of endometriosis in an
immunocompetent mouse model is associated with altered peripheral and ectopic
lesion redox and inflammatory status. Endocrinology. 157, 2870-82.
[55].
Yu, Y., Li, C., Wang, Y., Wang, Q., Wang, S., Wei, S., et
al., 2019. Molecular
cloning and characterization of grouper Krüppel-like factor 9 gene: involvement
in the fish immune response to viral infection. Fish Shellfish Immunol. 89,
677-86.
[56].
GSE60424_KLFs [Internet]. Available from: http://sepsis.gxbsidra.org/dm3/miniURL/view/Oz
[57].
Linsley, P.S., Speake, C., Whalen, E., Chaussabel, D., 2014. Copy number
loss of the interferon gene cluster in melanomas is linked to reduced T cell
infiltrate and poor patient prognosis. PloS One. 9, e109760.
[58].
Feinberg, M.W., Wara, A.K., Cao, Z., Lebedeva, M.A., Rosenbauer, F.,
Iwasaki, H., et al., 2007. The Krüppel-like factor KLF4 is a critical regulator
of monocyte differentiation. EMBO J. 26, 4138-48.
[59].
Karpurapu, M., Ranjan, R., Deng, J., Chung, S., Lee, Y.G., Xiao, L., et
al., 2014. Krüppel-like factor 4 promoter undergoes active demethylation during
monocyte/macrophage differentiation. PloS One. 9, e93362.
[60].
Terry, R.L., Miller, S.D., 2014. Molecular control of monocyte
development. Cell Immunol. 291, 16-21.
[61].
Goodman, W.A., Omenetti, S., Date, D., Di Martino, L., De
Salvo, C., Kim, G.D., et al., 2016. KLF6 contributes to myeloid cell plasticity in the
pathogenesis of intestinal inflammation. Mucosal Immunol. 9, 1250-62.
[62].
Kim, G.D., Das, R., Goduni, L., McClellan, S., Hazlett,
L.D., Mahabeleshwar, G.H., 2016. Krüppel-like factor 6 promotes macrophage-mediated
inflammation by suppressing B cell leukemia/lymphoma 6 expression. J Biol Chem.
291, 21271-82.
[63].
Kwon, S.J., Crespo-Barreto, J., Zhang, W., Wang, T., Kim, D.S., Krensky,
A., et al., 2014. KLF13 cooperates with c-Maf to regulate IL-4 expression in
CD4+ T cells. J Immunol Baltim Md 1950. 192, 5703-9.
[64].
Zhou, M., McPherson, L., Feng, D., Song, A., Dong, C., Lyu, S.C., et
al., 2007. Krüppel-like transcription factor 13 regulates T lymphocyte survival
in vivo. J Immunol Baltim Md 1950. 178, 5496-504.
[65].
Turchinovich, G., Vu, T.T., Frommer, F., Kranich, J.,
Schmid, S., Alles, M., et al., 2011. Programming of marginal zone B-cell fate by basic
Krüppel-like factor (BKLF/KLF3). Blood. 117, 3780-92.
[66].
Vu, T.T., Gatto, D., Turner, V., Funnell, A.P.W., Mak, K.S., Norton,
L.J., et al., 2011. Impaired B cell development in the absence of Krüppel-like
factor 3. J Immunol Baltim Md 1950. 187, 5032-42.
[67].
GSE49755_KLFs [Internet]. Available from: http://sepsis.gxbsidra.org/dm3/miniURL/view/PV
[68].
GSE60424_KLF9 [Internet]. Available from: http://sepsis.gxbsidra.org/dm3/miniURL/view/PW
[69].
Wang, L., Brooks, A.N., Fan, J., Wan, Y., Gambe, R., Li, S., et al.,
2016. Transcriptomic characterization of SF3B1 mutation reveals its pleiotropic
effects in chronic lymphocytic leukemia. Cancer Cell. 30, 750-63.
[70].
Obermoser, G., Presnell, S., Domico, K., Xu, H., Wang, Y., Anguiano, E.,
et al., 2013. Systems scale interactive exploration reveals quantitative and
qualitative differences in response to influenza and pneumococcal vaccines.
Immunity. 38, 831-44.
[71].
Alsina, L., Israelsson, E., Altman, M.C., Dang, K.K.,
Ghandil, P., Israel, L., et al., 2014. A narrow repertoire of transcriptional modules
responsive to pyogenic bacteria is impaired in patients carrying
loss-of-function mutations in MYD88 or IRAK4. Nat Immunol. 15, 1134-42.
[72].
GSE25742_KLF9 [Internet]. Available from: http://cd2k.gxbsidra.org/dm3/miniURL/view/MX
[73].
GSE30101_KLF9 [Internet]. Available from: http://sepsis.gxbsidra.org/dm3/miniURL/view/PE
[74].
GSE25742_IL2 [Internet]. Available from: http://cd2k.gxbsidra.org/dm3/miniURL/view/MY
[75].
GSE25742_IL4 [Internet]. Available from: http://cd2k.gxbsidra.org/dm3/miniURL/view/MZ
[76].
GSE25742_IFNG [Internet]. Available from: http://cd2k.gxbsidra.org/dm3/miniURL/view/MZ
[77].
GSE25742_PRF1 [Internet]. Available from: http://cd2k.gxbsidra.org/dm3/miniURL/view/Ma
[78].
GSE44721_KLF9 [Internet]. Available from: http://monocyte.gxbsidra.org/dm3/miniURL/view/OO
[79].
Banchereau, R., Baldwin, N., Cepika, A.M., Athale, S., Xue, Y., Yu,
C.I., et al., 2014. Transcriptional specialization of human dendritic cell
subsets in response to microbial vaccines. Nat Commun. 5, 5283.
[80].
Godini, R., Fallahi, H., Ebrahimie, E., 2018. Network analysis of
inflammatory responses to sepsis by neutrophils and peripheral blood
mononuclear cells. PloS One. 13, e0201674.
[81].
McDunn, J.E., Turnbull, I.R., Polpitiya, A.D., Tong, A., MacMillan,
S.K., Osborne, D.F., et al., 2006. Splenic CD4+ T cells have a distinct
transcriptional response six hours after the onset of sepsis. J Am Coll Surg.
203, 365-75.
[82].
Lambeth, J.D., 2004. NOX enzymes and the biology of reactive oxygen. Nat
Rev Immunol. 4, 181-9.
[83].
Dupré-Crochet, S., Erard, M., Nüsse, O., 2013. ROS production in phagocytes:
why, when, and where? J Leukoc Biol. 94, 657-70.
[84].
Nathan, C., 2006. Neutrophils and immunity: challenges and
opportunities. Nat Rev Immunol. 6, 173-82.
[85].
Gu, Y., Wu, Y.B., Wang, L.H., Yin, J.N., 2015. Involvement of
Krüppel-like factor 9 in bleomycin-induced pulmonary toxicity. Mol Med Rep. 12,
5262-6.
[86].
Bagati, A., Moparthy, S., Fink, E.E., Bianchi-Smiraglia, A., Yun, D.H.,
Kolesnikova, M., et al., 2019. KLF9-dependent ROS regulate melanoma progression
in stage-specific manner. Oncogene. 38, 3585-97.
[87].
Bagheri-Yarmand, R., Sinha, K.M., Li, L., Lu, Y., Cote, G.J., Sherman,
S.I., et al., 2019. Combinations of tyrosine kinase inhibitor and ERAD
inhibitor promote oxidative stress-induced apoptosis through ATF4 and KLF9 in
medullary thyroid cancer. Mol Cancer Res MCR. 17, 751-60.
[88].
Yan, Q., He, B., Hao, G., Liu, Z., Tang, J., Fu, Q., et al., 2019. KLF9
aggravates ischemic injury in cardiomyocytes through augmenting oxidative
stress. Life Sci. 233, 116641.
[89].
GSE49755_NRF2 [Internet]. Available from: http://sepsis.gxbsidra.org/dm3/miniURL/view/PD
[90].
Imataka, H., Nakayama, K., Yasumoto, K., Mizuno, A., Fujii-Kuriyama, Y.,
Hayami, M., 1994. Cell-specific translational control of transcription factor
BTEB expression. The role of an upstream AUG in the 5’-untranslated region. J
Biol Chem. 269, 20668-73.
[91].
Arnér, E.S.J., 2009. Focus on mammalian thioredoxin
reductases--important selenoproteins with versatile functions. Biochim Biophys
Acta. 1790, 495-526.
[92].
GSE49757_KLF9_By Severity.
[93].
Thimmulappa, R.K., Fuchs, R.J., Malhotra, D., Scollick, C., Traore, K.,
Bream, J.H., et al., 2007. Preclinical evaluation of targeting the Nrf2 pathway
by triterpenoids (CDDO-Im and CDDO-Me) for protection from LPS-induced
inflammatory response and reactive oxygen species in human peripheral blood
mononuclear cells and neutrophils. Antioxid Redox Signal. 9, 1963-70.